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Motivating Example

• Suppose we have a knowledge base containing:

– A: Gold can only be stained by aqua regia

– B: The acid in the bottle is sulphuric acid

– C: Sulphuric acid is not aqua regia

– D: My wedding ring is made of gold

• The following fact is derivable from A–D:

– E: My wedding ring will not be stained by the acid in the bottle

• Now, suppose that, as a matter of fact, the wedding ring is indeed 
stained by the acid: you want to add ¬E to the KB

• However, the KB would become inconsistent: you have to revise

• Instead of giving up all your beliefs, you have to choose
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Methodological Questions

• How are the beliefs in the knowledge base represented?

• What is the relation between the elements explicitly represented 
in the database and the beliefs that may be derived from these 
elements?

• How are the choices concerning how to retract made?

When beliefs are represented by sentences in a belief system K, one 
can distinguish three main kinds of belief changes:

• Expansion: a new sentence A together with its logical 
consequences is added to K: K’ = K + A

• Revision: a new sentence A is added but others must be retracted 
to maintain consistency: K’ = K*A

• Contraction: a sentence is retracted: K’ = K – A
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Expansion

• Expansion of beliefs can be handled comparatively easily

• K + A can simply be defined as the logical closure of K with A:
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Introduction

• It is not possible to give a similar explicit definition of revision and 
contraction

• When tackling the problem of Belief Revision (and contraction), 
there are two general strategies to follow:

– To present explicit constructions of the revision process

– To formulate postulates for such constructions

• Constructions and postulates can be connected via a number of 
representation theorems

• [Peter Gärdenfors. Belief Revision: A vade-mecum, META 1992]
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Preliminaries

• To simplify things, we may work in propositional logic

• The simplest way of modeling a belief state is to represent it as a 
set of sentences

• We define a belief set as a set K of sentences such that 

if then

There is exactly one inconsistent belief set, namely the set 
of all sentences in the language
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Rationality Postulates (AGM)

• AGM = Alchourrón, Gärdenfors, and Makinson

• Let us assume belief sets are used as models of belief states

• AGM Postulates for rational functions of

– Revision (*)

– Contraction (–)

• The postulates state conditions that any rational function should 
satisfy

– For all belief sets K

– For all sentences A and B
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AGM Basic Postulates for Revision 

(K*1)

(K*2)

(K*3)

(K*4)

(K*5)

is a belief set

If then

(K*6)

if and only if

If then
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AGM Postulates for Composite Revision 

(K*7)

(K*8) If then
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AGM Basic Postulates for Contraction 

(K–1)

(K–2)

(K–3)

(K–4)

(K–5)

is a belief set

If then

(K–6) If then

If then

If then
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AGM Postulates for Composite Contraction 

(K–7)

(K–8) If then
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Revision as Contraction and Expansion

Theorem: If a contraction function ‘–’ satisfies (K–1) to (K–4) and 
(K–6), then the revision function ‘*’ defined as

satisfies (K*1) to (K*6). This is called the Levi Identity

Furthermore,

• if (K–7) is also satisfied, (K*7) will be satisfied

• if (K–8) is also satisfied, (K*8) will be satisfied

If we define contraction, this will also give us a revision function!
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Contraction as Revision by the Negation

Theorem: If a revision function ‘*’ satisfies (K*1) to (K*6), then the 
contraction function ‘–’ defined as

satisfies (K–1) to (K–6).

Furthermore,

• if (K*7) is also satisfied, (K–7) will be satisfied

• if (K*8) is also satisfied, (K–8) will be satisfied
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Constructing Contraction

• A general idea is to start from K and then give some recipe for 
choosing which propositions to delete from K so that K – A does 
not contain A as a logical consequence.

• We should look for as large a subset of K as possible.

• A belief set K' is a maximal subset of K that fails to imply A if and 
only if

1)

2)

3) For any sentence B that is in K but not in K’,
● The set of all belief subsets of K that fail to imply A is denoted K A⊥A

(also called the remainder set of K by A)
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Selection Function and Maxichoice

• A first tentative solution to the problem of constructing a 
contraction function is to identify K–A with one of the maximal 
subsets in K A⊥A

• Technically, this can be done with the aid of a selection function S

• S picks out an element S(K A) of K A for any K and any A ⊥A ⊥A
whenever K A is nonempty⊥A

(Maxichoice) K – A = S(K A) when |⊥A ≠ A, and K – A = K otherwise.

Any maxichoice contraction function satisfies (K–1) to (K–6), but they 
also satisfy the fullness condition

(K–F) If B  K and B  K–A, then B → A  K–A for any belief set K.∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K. ∉ K–A, then B → A ∈ K–A for any belief set K. ∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K.



Andrea G. B. Tettamanzi, 2019 18

Maximal Belief Set

• In a sense, maxichoice contraction functions in general produce 
contractions that are too large

• Let us say that a belief set K is maximal iff, for every sentence B, 
either B  K or ¬B  K∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K. ∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K.

Theorem: If a revision function ‘*’ is defined from a maxichoice 
contraction function ‘–’ by means of the Levi identity, then, for any A 
such that ¬A  K, K*A will be maximal.∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K.
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Full Meet Contraction

• The idea of full meet contraction is to assume that K–A contains 
only the propositions that are common to all of the maximal 
subsets in K A⊥A

(Meet)

Any full meet contraction function satisfies (K–1) to (K–6), but they 
also satisfy the intersection condition

(K–I)
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Partial Meet Contraction

• The drawback of full meet contraction is that it results in 
contracted belief sets that are far too small.

Theorem: If a revision function ‘*’ is defined from a full meet 
contraction function ‘–’ by means of the Levi identity, then, for any A 
such that ¬A  K, K*A = Cn({A}).∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K.

We can have the selection function S pick the “best” elements of 
K A and then take their intersection:⊥A
(Partial meet)
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Transitively Relational
Partial Meet Contraction

• What does “best” mean?

• We must be given a transitive and reflexive ordering relation ≤ on 
K A⊥A

• Then we can define the selection function as follows

Theorem: For any belief set K, ‘–’ satisfies (K–1) – (K–8) iff ‘–’ is a 
transitively relational partial meet contraction function.
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Computational Considerations

• Thus far, we have found a way of connecting the rationality 
postulates with a general way of modeling contraction functions

• The drawback of the partial meet construction is that the 
computational costs involved in determining what is in the 
relevant maximal subsets of a belief set K are so overwhelming 
that other solutions to the problem of constructing belief revisions 
and contractions should be considered.

• As a generalization of the AGM postulates several authors have 
suggested postulates for revisions and contractions of bases for 
belief sets rather than the belief sets themselves
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Epistemic Entrenchment

• A second way of modeling contractions is based on the idea that 
some sentences in a belief system have a higher degree of 
epistemic entrenchment than others.

• The guiding idea for the construction of a contraction function is 
that when a belief set K is revised or contracted, the sentences in 
K that are given up are those having the lowest degrees of 
epistemic entrenchment.

• If A and B are sentences, the notation A ≤ B will be used as a 
shorthand for “B is at least as epistemically entrenched as A”.
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Postulates for Epistemic Entrenchment

(EE1) If A ≤ B and B ≤ C, then A ≤ C (transitivity)

(EE2) If A |= B, then A ≤ B (dominance)

(EE3) For any A and B, A ≤ A ∧ B or B ≤ A ∧ B (conjunctiveness)

(EE4) When K ≠ K⊥A , A  K iff A ≤ B, for all B ∉ K–A, then B → A ∈ K–A for any belief set K. (minimality)

(EE5) If B ≤ A for all B, then |= A (maximality)

(C≤) A ≤ B if and only if A  K – A ∉ K–A, then B → A ∈ K–A for any belief set K. ∧ B or |= A ∧ B.

(C–) B  K – A if and only if B  K and either A < A v B or |= A.∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K. ∈ K and B ∉ K–A, then B → A ∈ K–A for any belief set K.

Theorem: if ≤ satisfies (EE1) to (EE5), then the contraction uniquely 
determined by (C–) satisfies (K–1) to (K–8) as well as (C≤) and vice-
versa
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Thank you for your attention
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