Logic for AI - Master 1 IFI
 Class Assignment \#5: Fuzzy Logic

Andrea G. B. Tettamanzi
Université côte d'Azur
andrea.tettamanzi@univ-cotedazur.fr

Academic Year 2019/2020

1 Fuzzy Sets

Using your intuition and triangular, trapezoidal, or gaussian functions, define the membership functions on the real line for the following fuzzy sets:

1. the fuzzy number "approximately 3 ";
2. the fuzzy number "approximately 2 or approximately 8 ";
3. the fuzzy number "approximately 6 to approximately 8 ";
4. for the weight of people: very light, light, average, heavy, very heavy;
5. for outdoor temperature: cold, cool, comfortable, warm, hot;
6. for alcohol content of a beverage: soft, light, hard.

2 Operations on Fuzzy Sets

Let

$$
\begin{aligned}
& A=\frac{1}{a}+\frac{0.7}{b}+\frac{0.4}{c}+\frac{0.2}{d} \\
& B=\frac{0.5}{b}+\frac{1}{c}+\frac{0.5}{d}+\frac{0.1}{e}
\end{aligned}
$$

be fuzzy sets defined on the universe $U=\{a, b, c, d, e\}$. Compute (using the min t-norm and max t-conorm):

1. $A \cup B$;
2. $A \cap B$;
3. \bar{A}.
4. \bar{B}.
5. $A \cap \bar{B}$.
6. $A \cap \bar{A}$.

3 Extension Principle

Let $f: U \times U \rightarrow\{0,1,2,3,4\}$, where U is defined like in Exercise 2 and let $f(x, y)$ be given by the following table:

$x \backslash y$	a	b	c	d	e
a	0	1	2	3	4
b	1	1	2	3	4
c	2	2	2	3	4
d	3	3	3	3	4
e	4	4	4	4	4

Use the Extension Principle to compute the fuzzy set $f(A, B)$, where A and B are the sets defined in Exercise 2.

4 Fuzzy Inference

Consider the following rule base:

IF	x is left	AND	v is neg	THEN	F is pos
IF	x is left	AND	v is pos	THEN	F is zero
IF	x is right	AND	v is neg	THEN	F is zero
IF	x is right	AND	v is pos	THEN	F is neg

and let the linguistic values be defined as follows:

- for variable x :

$$
\operatorname{left}(x)=\left\{\begin{array}{ll}
1, & x \leq-1 ; \\
(1-x) / 2, & -1<x<1 ; \\
0, & x \geq 1 ;
\end{array} \quad \operatorname{right}(x)= \begin{cases}0, & x \leq-1 \\
(x+1) / 2, & -1<x<1 \\
1, & x \geq 1\end{cases}\right.
$$

- for variable v :

$$
\operatorname{neg}(v)=\left\{\begin{array}{ll}
1, & v \leq-1 ; \\
(1-v) / 2, & -1<v<1 ; \\
0, & v \geq 1 ;
\end{array} \quad \operatorname{pos}(v)= \begin{cases}0, & v \leq-1 \\
(v+1) / 2, & -1<v<1 \\
1, & v \geq 1\end{cases}\right.
$$

- for variable F :

$$
\begin{gathered}
\operatorname{zero}(F)= \begin{cases}1-|F|, & |F|<1 \\
0, & |F| \geq 1\end{cases} \\
\operatorname{neg}(F)=\left\{\begin{array}{ll}
1, & F \leq-1 ; \\
-F, & -1<F<0 ; \\
0, & F \geq 0 ;
\end{array} \quad \operatorname{pos}(F)= \begin{cases}0, & F \leq 0 \\
F, & 0<F<1 \\
1, & F \geq 1\end{cases} \right.
\end{gathered}
$$

Compute the fuzzy set on F when $x=-0.5$ and $v=-0.1$.

