$\begin{array}{l} \mbox{Logic for AI} & - \mbox{Master 1 IFI} \\ \mbox{Class Assignment $\#6$: Possibility Theory} \end{array} \\$

Andrea G. B. Tettamanzi Université côte d'Azur andrea.tettamanzi@univ-cotedazur.fr

Academic Year 2019/2020

1 Possibility Measures

Let the universe Ω contain the following four interpretations:

$$\begin{array}{rcl} \omega_0 &=& \{P \mapsto 0, Q \mapsto 0\}, \\ \omega_1 &=& \{P \mapsto 0, Q \mapsto 1\}, \\ \omega_2 &=& \{P \mapsto 1, Q \mapsto 0\}, \\ \omega_3 &=& \{P \mapsto 1, Q \mapsto 1\}. \end{array}$$

Let us assume the possibility distribution π is given, such that

$$\begin{aligned} \pi(\omega_0) &= 0.3, \\ \pi(\omega_1) &= 1, \\ \pi(\omega_2) &= 0.1, \\ \pi(\omega_3) &= 0.2. \end{aligned}$$

Compute the following:

- 1. $\Pi(P);$
- 2. N(P);
- 3. $\Pi(P \Rightarrow Q);$
- 4. $N(P \Rightarrow Q)$.

2 Semantics of a Possibilistic Belief Base

Let $\Sigma = \{(P \Rightarrow Q, 0.6), (P \lor R, 1), (\neg R, 0.2)\}$ be a possibilistic belief base. Compute its associated possibility distribution π_{Σ} .

3 Guaranteed Possibility

Given a possibility distribution π , a guaranteed possibility measure, noted Δ , is defined as:

$$\Delta(\phi) = \min_{\omega \models \phi} \pi(\omega).$$

In words, the guaranted possibility measure estimates to what extent *all* the models of ϕ are actually possible according to what is known, i.e., any model of ϕ is at least possible to degree $\Delta(\phi)$.

Derive the properties of Δ .