
Andrea G. B. Tettamanzi, 2017 1

Systèmes DistribuésSystèmes Distribués
Master MIAGE 1Master MIAGE 1

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2017 2

CM - Séance 2

Processus

Andrea G. B. Tettamanzi, 2017 3

Processes

Chapter 3

Andrea G. B. Tettamanzi, 2017 4

Introduction to Threads

Basic idea

We build virtual processors in software, on top of physical
processors:

• Processor: Provides a set of instructions along with the capability
of automatically executing a series of those instructions.

• Thread: A minimal software processor in whose context a series
of instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

• Process: A software processor in whose context one or more
threads may be executed. Executing a thread, means executing a
series of instructions in the context of that thread.

Andrea G. B. Tettamanzi, 2017 5

Context Switching

Contexts

• Processor context: The minimal collection of values stored in the

registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program

counter).

• Thread context: The minimal collection of values stored in

registers and memory, used for the execution of a series of

instructions (i.e., processor context, state).

• Process context: The minimal collection of values stored in

registers and memory, used for the execution of a thread (i.e.,

thread context, but now also at least MMU register values).

Andrea G. B. Tettamanzi, 2017 6

Thread Usage in Nondistributed
Systems

Context switching as the result of IPC

Andrea G. B. Tettamanzi, 2017 7

Context Switching : Observations

• Threads share the same address space. Thread context
switching can be done entirely independent of the operating
system.

• Process switching is generally more expensive as it involves

getting the OS in the loop, i.e., trapping to the kernel.

• Creating and destroying threads is much cheaper than doing so

for processes.

Andrea G. B. Tettamanzi, 2017 8

Threads and Operating Systems

• Main issue : Should an OS kernel provide threads, or should they
be implemented as user-level packages?

• User-space solution

– All operations can be completely handled within a single
process implementations can be extremely efficient.⇒

– All services provided by the kernel are done on behalf of the
process in which a thread resides if the kernel decides to ⇒
block a thread, the entire process will be blocked.

– Threads are used when there are lots of external events:
threads block on a per-event basis if the kernel can’t ⇒
distinguish threads, how can it support signaling events to
them?

Andrea G. B. Tettamanzi, 2017 9

Threads and Operating Systems

• Kernel solution : The whole idea is to have the kernel contain the
implementation of a thread package. This means that all
operations return as system calls

– Operations that block a thread are no longer a problem: the
kernel schedules another available thread within the same
process.

– Handling external events is simple: the kernel (which catches
all events) schedules the thread associated with the event.

– The big problem is the loss of efficiency due to the fact that
each thread operation requires a trap to the kernel.

• Conclusion: Try to mix user-level and kernel-level threads into a
single concept.

Andrea G. B. Tettamanzi, 2017 10

Solaris Threads

Combining kernel-level lightweight processes and user-level
threads.

Andrea G. B. Tettamanzi, 2017 11

Solaris Thread Operation

• User-level thread does system call the LWP that is executing ⇒
that thread, blocks. The thread remains bound to the LWP.

• The kernel can schedule another LWP having a runnable thread
bound to it. Note: this thread can switch to any other runnable
thread currently in user space.

• A thread calls a blocking user-level operation do context switch ⇒
to a runnable thread, (then bound to the same LWP).

• When there are no threads to schedule, an LWP may remain idle,
and may even be removed (destroyed) by the kernel.

• Note: This concept has been virtually abandoned – it’s just either
user-level or kernel-level threads.

Andrea G. B. Tettamanzi, 2017 12

Threads in Distributed Systems

Multithreaded Web client

Hiding network latencies:

• Web browser scans an incoming HTML page, and finds that more
files need to be fetched.

• Each file is fetched by a separate thread, each doing a (blocking)
HTTP request.

• As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

• A client does several calls at the same time, each one by a
different thread.

• It then waits until all results have been returned.

Note: if calls are to different servers, we may have linear speed-up.

Andrea G. B. Tettamanzi, 2017 13

Threads in Distributed Systems

• Improve performance

– Starting a thread is much cheaper than starting a new
process.

– Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.

– As with clients: hide network latency by reacting to next
request while previous one is being replied.

• Better structure

– Most servers have high I/O demands. Using simple, well-
understood blocking calls simplifies the overall structure.

– Multithreaded programs tend to be smaller and easier to
understand due to simplified flow of control.

Andrea G. B. Tettamanzi, 2017 14

Multithreaded Servers (1)

A multithreaded server organized in a dispatcher/worker model.

Andrea G. B. Tettamanzi, 2017 15

Multithreaded Servers (2)

Three ways to construct a server.

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls

Andrea G. B. Tettamanzi, 2017 16

Virtualization

• Virtualization is becoming increasingly important:

– Hardware changes faster than software

– Ease of portability and code migration

– Isolation of failing or attacked components

Andrea G. B. Tettamanzi, 2017 17

APPLICATION

LIBRARY

Architecture of Virtual Machines

OS

HARDWARE

API

System Calls

General InstructionsPrivileged Instructions

Andrea G. B. Tettamanzi, 2017 18

Types of Virtual Machines

Process Virtual Machine

•One VM per process

•Runtime system

•Interpreted or emulated
instructions

Virtual Machine Monitor

•One VM for more
processes

•Layer that completely
encapsulates the original
h/w

•Interface to a virtual h/w

Andrea G. B. Tettamanzi, 2017 19

VM MONITOR

Process VMs vs. VM Monitors

APPLICATION

RUNTIME SYSTEM

OS

HARDWARE

API

System Calls

Gen. InstructionsPriv. Instructions

HARDWARE

APPLICATION

LIBRARY

OS

API

System Calls

Gen. InstructionsPriv. Instructions

Gen. InstructionsPriv. Instructions

Andrea G. B. Tettamanzi, 2017 20

VM Monitors on Operating Systems

We’re seeing VMMs run on top of existing operating systems.

• Perform binary translation: while executing an application
oroperating system, translate instructions to that of the underlying

machine.

• Distinguish sensitive instructions: traps to the orginal kernel (think

of system calls, or privileged instructions).

• Sensitive instructions are replaced with calls to the VMM.

Andrea G. B. Tettamanzi, 2017 21

Clients: User Interfaces

The basic organization of the X Window System

Andrea G. B. Tettamanzi, 2017 22

Client-Side Software for Distribution
Transparency

A possible approach to transparent replication of a
remote object using a client-side solution.

Andrea G. B. Tettamanzi, 2017 23

Servers: General Design Issues

a) Client-to-server binding using a daemon as in DCE
b) Client-to-server binding using a superserver as in UNIX

3.7

Andrea G. B. Tettamanzi, 2017 24

Out-of-Band Communication

Issue: Is it possible to interrupt a server once it has accepted (or is
in the process of accepting) a service request?

• Solution 1: Use a separate port for urgent data:

– Server has a separate thread/process for urgent messages

– Urgent message comes in associated request put on hold⇒
– Note: we require OS supports priority-based scheduling

• Solution 2: Use out-of-band communication facilities of the
transport layer:

– Example: TCP allows for urgent messages in same
connection

– Urgent messages can be caught using OS signaling
techniques

Andrea G. B. Tettamanzi, 2017 25

Servers and State

Stateless servers

• Never keep accurate information about the status of a client after
having handled a request:

• Don’t record whether a file has been opened (simply close it
again after access)

• Don’t promise to invalidate a client’s cache

• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent

• State inconsistencies due to client or server crashes are reduced

• Possible loss of performance because, e.g., a server cannot
anticipate client behavior (think of prefetching file blocks)

Andrea G. B. Tettamanzi, 2017 26

Servers and State

Stateful servers: Keep track of the status of their clients:

• Record that a file has been opened, so that prefetching can be

done

• Know which data a client has cached, and allow clients to keep

local copies of shared data

Observation

• The performance of stateful servers can be extremely high,
provided clients are allowed to keep local copies. As it turns out,
reliability is not a major problem.

Andrea G. B. Tettamanzi, 2017 30

Merci de votre attention

	Titolo
	Slide 2
	Processes
	Slide 4
	Slide 5
	Thread Usage in Nondistributed Systems
	Slide 7
	Slide 8
	Slide 9
	Thread Implementation
	Slide 11
	Slide 12
	Slide 13
	Multithreaded Servers (1)
	Multithreaded Servers (2)
	Slide 16
	Virtualization
	Tipi di Macchine Virtuali
	Architetture delle Macchine Virtuali
	Slide 20
	The X-Window System
	Client-Side Software for Distribution Transparency
	Servers: General Design Issues
	Slide 24
	Slide 25
	Slide 26
	Slide 30

