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Unit 1

The Web's Architecture 
and Protocols
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Agenda

• Course Objectives and Structure

• What is the Web?

• Hypertexts

• The Hypertext Transfer Protocol

• The Programmable Web

• The Architecture of a Web Application
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Course Objectives and Structure

• The Web, originally intended to be an open document-sharing 
platform, has evolved into a distributed platform for the 
deployment and execution of applications, to the point that it can 
now be viewed as a sort of global operating system (the 
programmable web).

• It has also become a "social machine" and a technological 
infrastructure for collective intelligence, which constitutes an 
interesting and complex subject of study.

• The objective of this course is to provide a comprehensive 
introduction to the architecture, standards, languages, and 
models that allow this huge distributed system to function, without 
forgetting its societal impact.
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Course Structure

The course is organized in 8 units:

1) The Web's Architecture and Protocols (this unit)

2) A refresher on HTML, CSS, and the Document Object Model

3) The Common Gateway Interface and Server-side Programming

4) Client-side Programming (JavaScript and the HTML5 API)

5) Persistence, AJAX, and REST

6) An introduction to Web Services, UDDI, and SOAP

7) Ergonomy

8) Web Science: The Web as an object of study.
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Material

• Web page :

– http://www.i3s.unice.fr/~tettaman/Classes/WebL3MIAGE/

• Official Standards :

– http://www.w3.org/standards/webdesign/htmlcss

http://www.i3s.unice.fr/~tettaman/Classes/WebL3MIAGE/
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The Web and The Internet

• WWW = World-Wide Web

– aka “The Web”

• A public hypertext system based on the Internet

• Created at CERN by Tim Berners-Lee in 1990

• Original idea: create a distributed hypertext system on the 
Internet to allow collaborators to share information within CERN

• On April 30, 1993, CERN puts in the public domain all the 
technologies developed around the WWW

• NCSA Mosaic: first « browser »

• The Web could not exist without standards

• To understand the Web is to understand its standards
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Source: The Web Foundation, 2019
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What’s a Hypertext?

• Hypertext = a text equipped with links allowing to jump
immediately from one point to the other

• In 1945 the American engineer and scientific consultant 
Vannevar Bush publishes on the Atlantic Monthly the article
“As We May Think”

• Memex = memory extension

– A photo-electro-mechanical device

– Create and follow links between documents on microfilm

• In the 1960s:

– Doug Engelbart creates the prototype NLS (oN-Line System), 
which makes it possible to edit and browse a hypertext

– Ted Nelson invents the term “hypertext”



Andrea G. B. Tettamanzi, 2019 10

Hypertext System

• A set of nodes connected by hyperlinks,
making it possible to jump automatically from one node to another

• Node = a minimal unit of information, a part of the text

• The links between these nodes are managed by the computer

– Associative access to information

– Non-linear, personalized traversal

• When nodes are also audio-visual, one can speak of a 
hypermedia system

• Ted Nelson : « Let me introduce the word 'hypertext' to mean a 
body of written or pictorial material interconnected in such a 
complex way that it could not conveniently be presented or 
represented on paper » (Proc. 20th ACM Nat'l Conf, 1965).
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The Web ≠ The Internet
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Distributed Systems

Definition: A collection of independent computers
that appears to its users as a single coherent system.
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Layered Architectures

Layer N

Layer N – 1

Layer 2

Layer 1

Request flow Response flow
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Clients and Servers

General interaction between a client and a server.

1.25
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Middleware Protocols:
An adaptation of the ISO/OSI Stack

Application

Middleware

Transport

Network

Data-link

Physical

Network

7

5 + 6

4

3

2

1

Application Protocol

Middleware Protocol

Transport Protocol

Network Protocol

Data-Link Protocol

Physical Protocol



Andrea G. B. Tettamanzi, 2019 16

Hypertext Transfer Protocol (HTTP)

• Works on top of TCP and IP

• HTTP allows Web servers to send Web content to clients

• To make it simple:

– Server: a host who can serve Web content

– Client: a browser

• An HTTP server is implemented by a computer program (e.g., 
httpd) running on a network host

• A browser is a computer program (e.g., Firefox) running on a user 
device (PC, laptop, tablet, smartphone,...)

• Web content consists of “documents” (aka Web pages) 
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Servers and State

Stateless servers

• Never keep accurate information about the status of a client after 
having handled a request:

• Don’t record whether a file has been opened (simply close it 
again after access)

• Don’t promise to invalidate a client’s cache

• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent

• State inconsistencies due to client or server crashes are reduced

• Possible loss of performance because, e.g., a server cannot 
anticipate client behavior (think of prefetching file blocks)
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Servers and State

Stateful servers: Keep track of the status of their clients:

• Record that a file has been opened, so that prefetching can be

done

• Know which data a client has cached, and allow clients to keep

local copies of shared data

Observation

• The performance of stateful servers can be extremely high, 
provided clients are allowed to keep local copies. As it turns out, 
reliability is not a major problem.



Andrea G. B. Tettamanzi, 2019 19

Naming in Distributed Systems

• Name

– Bit or character string → resource

– Resource:

• Host, printer, disk, file, Web page, 

• Process, User, Mailbox, window, etc.

• Address

– Every resource has one or more access points

– Address = name of an access point

– Access points are not fixed

• Identifier: a special kind of name

– Resource ↔ Identifier
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Naming versus Locating Entities

a) Direct, single level mapping between names and 
addresses.

b) Three-level mapping using identities.
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Naming Resources on the Web:
URIs, IRIs, and URLs

• URI = Uniform Resource Identifier (→ IRI = Internationalized …)

• URL = Uniform Resource Locator, if used to locate a resource

• A URL identifies

– Where a resource is stored (its address)

– How it can be accessed (a protocol)

• A resource may be stored in different places: it will thus possess 
one or more URLs

• A resource may be a directory, a document, a fragment of a 
document, an image, a multimedia file, an executable file, etc.
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Structure of an URL

Protocol:// Host [:Port] Path Name [#Anchor] [?Parameters]

http:// iihm.imag.fr /cgi-bin/Vitesse2/ vitesse2.bat ?
Keywords=unsa&SearchEngine=Googl
e&Kind=Search&InfoSpace=&MaxInfo
Number=100&VitesseMode=Win

http:// www.i3s.unice.fr /~tettaman/ index.html #classes

 Example 1 : a static resource (an HTML document)

 Example 2 : a dynamically generated resource
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URL Encoding

• The components of an URL are alphanumerical strings, plus the 
two characters – (dash) and  _ (underscore)

• The syntax builds on top of IP addresses and Posix paths

• A blank space is sometimes replaced by a +

• Escape sequences are used to represent special characters:

– %xx, where xx is the hex ASCII code of the character

– %20 = space

– %7E = ~

– %2B = +

– %25 = %

– Etc.
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HTTP

• HTTP is the most used protocol on the Internet since 1990. 

• Developed initiated by Tim Berners-Lee at CERN in 1989

• Development of HTTP standards coordinated by IETF and W3C

• HTTP/1.1 is the version of HTTP in common use

• RFC 2068 (1997) < RFC 2616 (1999) < RFCs 7230 (2014)

• A request–response protocol in the client–server architecture

• HTTP uses plain-text ASCII messages

• The client submits an HTTP request message to the server

• The server returns a response message to the client

– Header: completion status information, MIME type of content

– Body: the requested content (if available/applicable)

• HTTP/1.1 can reuse the same TCP connection: HTTP session
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Request Message

• A request message consists of

– A request line (e.g., GET /images/logo.png HTTP/1.1)

– Request header fields (e.g., Accept-Language: en)

– An empty line

– An optional message body

• Lines are terminated by CR LF

• The request line defines the request method (e.g., GET)

– GET, POST, HEAD (HTTP/1.0)

– OPTIONS, PUT, DELETE, TRACE, CONNECT (HTTP/1.1)

– Additional methods can be defined, e.g. PATCH

– Method names are case-sensitive

• The “Host” header field indicates the target host
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HTTP Methods

• GET: requests a representation of the specified resource

• HEAD: same as GET, but response header only

• POST: sends data/items to be added to the specified resource

• PUT: (over)write the resource at the specified URI

• DELETE: delete the specified resource

• TRACE: echoes the received requests

• OPTIONS: requests the supported methods for the specified URI

• CONNECT: open a transparent TCP/IP tunnel

• PATCH: applies partial modifications to a resource

HEAD, GET, OPTIONS and TRACE are safe, i.e. they do not 
change the state of the server
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Response Message

• A response message consists of

– A status line (e.g., HTTP/1.1 200 OK)

– Response header fields (e.g., Content-Type: text/html)

– An empty line

– An optional message body

• Lines are terminated by CR LF

• The status line includes

– a machine-readable numerical code (e.g., 404)

– a human-readable textual reason phrase (e.g., “Not Found”)

• Reason phrases are only recommendations

• The first digit of the numerical code defines its general class
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Response Classes

• Informational 1XX

• Successful 2XX

– 200 OK

• Redirection 3XX

– 301 Moved Permanently

– 302 Found

– 303 See Other

• Client Error 4XX

– 403 Forbidden

– 404 Not Found

– 451 Unavailable For Legal Reasons

• Server Error 5XX
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In Summary

Internet

URL
DNS Lookup

IP Address
GET ...

GET ...

HTTP/1.0 200 OK
HTTP/1.0 200 OK

Parsing
.
.
.

GET ...
GET ...

HTTP/1.0 200 OK
...

Display
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