
Andrea G. B. Tettamanzi, 2019 1

WebWeb
Master 1 IFIMaster 1 IFI

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2019 2

Unit 1

The Web's Architecture
and Protocols

Andrea G. B. Tettamanzi, 2019 3

Agenda

• Course Objectives and Structure

• What is the Web?

• Hypertexts

• The Hypertext Transfer Protocol

• The Programmable Web

• The Architecture of a Web Application

Andrea G. B. Tettamanzi, 2019 4

Course Objectives and Structure

• The Web, originally intended to be an open document-sharing
platform, has evolved into a distributed platform for the
deployment and execution of applications, to the point that it can
now be viewed as a sort of global operating system (the
programmable web).

• It has also become a "social machine" and a technological
infrastructure for collective intelligence, which constitutes an
interesting and complex subject of study.

• The objective of this course is to provide a comprehensive
introduction to the architecture, standards, languages, and
models that allow this huge distributed system to function, without
forgetting its societal impact.

Andrea G. B. Tettamanzi, 2019 5

Course Structure

The course is organized in 8 units:

1) The Web's Architecture and Protocols (this unit)

2) A refresher on HTML, CSS, and the Document Object Model

3) The Common Gateway Interface and Server-side Programming

4) Client-side Programming (JavaScript and the HTML5 API)

5) Persistence, AJAX, and REST

6) An introduction to Web Services, UDDI, and SOAP

7) Ergonomy

8) Web Science: The Web as an object of study.

Andrea G. B. Tettamanzi, 2019 6

Material

• Web page :

– http://www.i3s.unice.fr/~tettaman/Classes/WebL3MIAGE/

• Official Standards :

– http://www.w3.org/standards/webdesign/htmlcss

http://www.i3s.unice.fr/~tettaman/Classes/WebL3MIAGE/

Andrea G. B. Tettamanzi, 2019 7

The Web and The Internet

• WWW = World-Wide Web

– aka “The Web”

• A public hypertext system based on the Internet

• Created at CERN by Tim Berners-Lee in 1990

• Original idea: create a distributed hypertext system on the
Internet to allow collaborators to share information within CERN

• On April 30, 1993, CERN puts in the public domain all the
technologies developed around the WWW

• NCSA Mosaic: first « browser »

• The Web could not exist without standards

• To understand the Web is to understand its standards

Andrea G. B. Tettamanzi, 2019 8

Source: The Web Foundation, 2019

Andrea G. B. Tettamanzi, 2019 9

What’s a Hypertext?

• Hypertext = a text equipped with links allowing to jump
immediately from one point to the other

• In 1945 the American engineer and scientific consultant
Vannevar Bush publishes on the Atlantic Monthly the article
“As We May Think”

• Memex = memory extension

– A photo-electro-mechanical device

– Create and follow links between documents on microfilm

• In the 1960s:

– Doug Engelbart creates the prototype NLS (oN-Line System),
which makes it possible to edit and browse a hypertext

– Ted Nelson invents the term “hypertext”

Andrea G. B. Tettamanzi, 2019 10

Hypertext System

• A set of nodes connected by hyperlinks,
making it possible to jump automatically from one node to another

• Node = a minimal unit of information, a part of the text

• The links between these nodes are managed by the computer

– Associative access to information

– Non-linear, personalized traversal

• When nodes are also audio-visual, one can speak of a
hypermedia system

• Ted Nelson : « Let me introduce the word 'hypertext' to mean a
body of written or pictorial material interconnected in such a
complex way that it could not conveniently be presented or
represented on paper » (Proc. 20th ACM Nat'l Conf, 1965).

Andrea G. B. Tettamanzi, 2019 11

The Web ≠ The Internet

Andrea G. B. Tettamanzi, 2019 12

Distributed Systems

Definition: A collection of independent computers
that appears to its users as a single coherent system.

Andrea G. B. Tettamanzi, 2019 13

Layered Architectures

Layer N

Layer N – 1

Layer 2

Layer 1

Request flow Response flow

Andrea G. B. Tettamanzi, 2019 14

Clients and Servers

General interaction between a client and a server.

1.25

Andrea G. B. Tettamanzi, 2019 15

Middleware Protocols:
An adaptation of the ISO/OSI Stack

Application

Middleware

Transport

Network

Data-link

Physical

Network

7

5 + 6

4

3

2

1

Application Protocol

Middleware Protocol

Transport Protocol

Network Protocol

Data-Link Protocol

Physical Protocol

Andrea G. B. Tettamanzi, 2019 16

Hypertext Transfer Protocol (HTTP)

• Works on top of TCP and IP

• HTTP allows Web servers to send Web content to clients

• To make it simple:

– Server: a host who can serve Web content

– Client: a browser

• An HTTP server is implemented by a computer program (e.g.,
httpd) running on a network host

• A browser is a computer program (e.g., Firefox) running on a user
device (PC, laptop, tablet, smartphone,...)

• Web content consists of “documents” (aka Web pages)

Andrea G. B. Tettamanzi, 2019 17

Servers and State

Stateless servers

• Never keep accurate information about the status of a client after
having handled a request:

• Don’t record whether a file has been opened (simply close it
again after access)

• Don’t promise to invalidate a client’s cache

• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent

• State inconsistencies due to client or server crashes are reduced

• Possible loss of performance because, e.g., a server cannot
anticipate client behavior (think of prefetching file blocks)

Andrea G. B. Tettamanzi, 2019 18

Servers and State

Stateful servers: Keep track of the status of their clients:

• Record that a file has been opened, so that prefetching can be

done

• Know which data a client has cached, and allow clients to keep

local copies of shared data

Observation

• The performance of stateful servers can be extremely high,
provided clients are allowed to keep local copies. As it turns out,
reliability is not a major problem.

Andrea G. B. Tettamanzi, 2019 19

Naming in Distributed Systems

• Name

– Bit or character string → resource

– Resource:

• Host, printer, disk, file, Web page,

• Process, User, Mailbox, window, etc.

• Address

– Every resource has one or more access points

– Address = name of an access point

– Access points are not fixed

• Identifier: a special kind of name

– Resource ↔ Identifier

Andrea G. B. Tettamanzi, 2019 20

Naming versus Locating Entities

a) Direct, single level mapping between names and
addresses.

b) Three-level mapping using identities.

Andrea G. B. Tettamanzi, 2019 21

Naming Resources on the Web:
URIs, IRIs, and URLs

• URI = Uniform Resource Identifier (→ IRI = Internationalized …)

• URL = Uniform Resource Locator, if used to locate a resource

• A URL identifies

– Where a resource is stored (its address)

– How it can be accessed (a protocol)

• A resource may be stored in different places: it will thus possess
one or more URLs

• A resource may be a directory, a document, a fragment of a
document, an image, a multimedia file, an executable file, etc.

Andrea G. B. Tettamanzi, 2019 22

Structure of an URL

Protocol:// Host [:Port] Path Name [#Anchor] [?Parameters]

http:// iihm.imag.fr /cgi-bin/Vitesse2/ vitesse2.bat ?
Keywords=unsa&SearchEngine=Googl
e&Kind=Search&InfoSpace=&MaxInfo
Number=100&VitesseMode=Win

http:// www.i3s.unice.fr /~tettaman/ index.html #classes

 Example 1 : a static resource (an HTML document)

 Example 2 : a dynamically generated resource

Andrea G. B. Tettamanzi, 2019 23

URL Encoding

• The components of an URL are alphanumerical strings, plus the
two characters – (dash) and _ (underscore)

• The syntax builds on top of IP addresses and Posix paths

• A blank space is sometimes replaced by a +

• Escape sequences are used to represent special characters:

– %xx, where xx is the hex ASCII code of the character

– %20 = space

– %7E = ~

– %2B = +

– %25 = %

– Etc.

Andrea G. B. Tettamanzi, 2019 24

HTTP

• HTTP is the most used protocol on the Internet since 1990.

• Developed initiated by Tim Berners-Lee at CERN in 1989

• Development of HTTP standards coordinated by IETF and W3C

• HTTP/1.1 is the version of HTTP in common use

• RFC 2068 (1997) < RFC 2616 (1999) < RFCs 7230 (2014)

• A request–response protocol in the client–server architecture

• HTTP uses plain-text ASCII messages

• The client submits an HTTP request message to the server

• The server returns a response message to the client

– Header: completion status information, MIME type of content

– Body: the requested content (if available/applicable)

• HTTP/1.1 can reuse the same TCP connection: HTTP session

Andrea G. B. Tettamanzi, 2019 25

Request Message

• A request message consists of

– A request line (e.g., GET /images/logo.png HTTP/1.1)

– Request header fields (e.g., Accept-Language: en)

– An empty line

– An optional message body

• Lines are terminated by CR LF

• The request line defines the request method (e.g., GET)

– GET, POST, HEAD (HTTP/1.0)

– OPTIONS, PUT, DELETE, TRACE, CONNECT (HTTP/1.1)

– Additional methods can be defined, e.g. PATCH

– Method names are case-sensitive

• The “Host” header field indicates the target host

Andrea G. B. Tettamanzi, 2019 26

HTTP Methods

• GET: requests a representation of the specified resource

• HEAD: same as GET, but response header only

• POST: sends data/items to be added to the specified resource

• PUT: (over)write the resource at the specified URI

• DELETE: delete the specified resource

• TRACE: echoes the received requests

• OPTIONS: requests the supported methods for the specified URI

• CONNECT: open a transparent TCP/IP tunnel

• PATCH: applies partial modifications to a resource

HEAD, GET, OPTIONS and TRACE are safe, i.e. they do not
change the state of the server

Andrea G. B. Tettamanzi, 2019 27

Response Message

• A response message consists of

– A status line (e.g., HTTP/1.1 200 OK)

– Response header fields (e.g., Content-Type: text/html)

– An empty line

– An optional message body

• Lines are terminated by CR LF

• The status line includes

– a machine-readable numerical code (e.g., 404)

– a human-readable textual reason phrase (e.g., “Not Found”)

• Reason phrases are only recommendations

• The first digit of the numerical code defines its general class

Andrea G. B. Tettamanzi, 2019 28

Response Classes

• Informational 1XX

• Successful 2XX

– 200 OK

• Redirection 3XX

– 301 Moved Permanently

– 302 Found

– 303 See Other

• Client Error 4XX

– 403 Forbidden

– 404 Not Found

– 451 Unavailable For Legal Reasons

• Server Error 5XX

Andrea G. B. Tettamanzi, 2019 29

In Summary

Internet

URL
DNS Lookup

IP Address
GET ...

GET ...

HTTP/1.0 200 OK
HTTP/1.0 200 OK

Parsing
.
.
.

GET ...
GET ...

HTTP/1.0 200 OK
...

Display

Andrea G. B. Tettamanzi, 2019 30

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Layered Architectures
	Clients and Servers
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Naming versus Locating Entities
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

