
Andrea G. B. Tettamanzi, 2019 1

WebWeb
Master 1 IFIMaster 1 IFI

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2019 2

Unit 4

Client-Side Programming
(JavaScript and the

HTML5 API)

Andrea G. B. Tettamanzi, 2019 3

Agenda

• Elements of the JavaScript language

• JavaScript and HTML5

• JavaScript’s Object-Oriented Model

• Integrated Objects

• Error Handling

Andrea G. B. Tettamanzi, 2019 4

Historical Remarks

• Created in 1995 by Brendan Eich for Netscape

• In December 1995, Sun and Netscape announce its release

• In March 1996, JavaScript engine in NS Navigator 2.0

• Microsoft strikes back by developing Jscript, in August in IE

• In 1997, JavaScript becomes an ECMA standard: ECMAScript

• Choice of the name

– Marketing reasons

– Complementary to Java

– Confusion in the general public

Andrea G. B. Tettamanzi, 2019 5

Language Overview

• Object-oriented, but based on prototypes. No classes

• A program is a collection of communicating objects

• Object = collection of properties

• Primitive values: undefined | null | Boolean | Number | String

• Collection of integrated objects:

– Global Object

– Object, Function, Array, String, Boolean, Number, Math, Date,
RegExp, JSON

– Several error objects: Error, EvalError, …

• Operators: arithmetic, relational, logical, etc.

• Syntax purposefully similar to Java, but less strict

Andrea G. B. Tettamanzi, 2019 6

Types and Expressions

• JavaScript uses weak and dynamic typing

• The type of an expression is determined by its result

– Numbers: integers or floating-point

– Character strings

– Boolean (false, true)

– « null » a single-valued type = absence of data

• Simple expressions: formed by a single element

– Literal

– Variable identifier

– The keyword “this”

• Complex expressions: built w/ operators / functions / methods

Andrea G. B. Tettamanzi, 2019 7

Statements

• Block

• VariableStatement

• EmptyStatement

• ExpressionStatement

• IfStatement

• IterationStatement

• ContinueStatement

• BreakStatement

• ReturnStatement

• WithStatement

• LabelledStatement

• SwitchStatement

• ThrowStatement

• TryStatement

• DebuggerStatement

The ECMAScript standard provides for 15 distinct statement types:

Andrea G. B. Tettamanzi, 2019 8

Control Structures

• The same as Java – that’s on purpose!

• Conditional

– if(cond) … [else …]

– switch(expr) { case … : … break ; … default : … }

• Iterative

– while(cond) …

– do ... while(cond) ;

– for(instr ; cond ; instr) …

Andrea G. B. Tettamanzi, 2019 9

Function Definition

• Anonymous function definition (it’s a “lambda”: λx.y)

function(arguments) { … }

• Named function definition:

function name(arguments) { … }

• Returning a result:

return(expression);

• Function call:

name(arguments)

Andrea G. B. Tettamanzi, 2019 10

JavaScript and HTML

• JavaScript interacts with its containing HTML page via:

– The <script> tag

– The dialog-box functions

– The events

– The document object model (DOM)

– The HTML5 API

• Local Storage

• Geo-location

• Drag and Drop

• Web Sockets

Andrea G. B. Tettamanzi, 2019 11

The <script> Tag

• JavaScript code is attached to an HTML document by the
<script> tag, which may be placed anywhere

• Two ways to do that (in HTML5) :

– Embedded script (i.e., the code is contained within the HTML
document),
<script> embedded code </script>

Example:
<script>document.write("Hello World!")</script>

– External script (i.e., the code is in a separate file),
<script src="URL of the script file"> </script>

• In HTML 4, type was mandatory: <script type="text/javascript">

Andrea G. B. Tettamanzi, 2019 12

Dialog Boxes

• JavaScript can pop up three types of dialog boxes

• Alert dialog boxes

– alert(message)

– Displays a dialog box with a message and an [OK] button

• Confirmation dialog box

– confirm(message) → true | false

– Displays a dialog box with a message and [Cancel] [OK]

• Prompt dialog box

– prompt(message, default_text) → user input

– Displays a message, a text box, which the user can type into,
initialized with the provided default text, and the [Cancel] and
[OK] buttons

Andrea G. B. Tettamanzi, 2019 13

HTML Events

• HTML events are user actions that can cause an interaction

• Examples: mouse click, mouse move, etc.

• JavaScript code can be associated to events

• Such association is made by means of event handlers

• Example:

<button type="button" onclick="calc_input(1)">1</button>

• Every HTML element supports a given set of events

Andrea G. B. Tettamanzi, 2019 14

Objects

• A JavaScript object can be thought of as a set of (property, value)
pairs, which can be represented with the intuitive notation

property : value

• This notation is also used by the syntax of the language to define
object literals

• Properties can be

– Own: explicitly defined in an object

– Inherited: not explicitly defined in an object, but implicitly
derived from other objects (called prototypes)

• A property may take values of any type

• JavaScript objects are implemented as hash tables

Andrea G. B. Tettamanzi, 2019 15

Methods

• A property of an object can have a function as its value

• One calls it a “method” in that case

• When a method of an object is called, the special variable “this”
becomes a reference to the object

• Because of that, the code within the method can access the
properties of the object via the “this” variable

Andrea G. B. Tettamanzi, 2019 16

Lexical Scoping

• When a function is called, its code is executed in a “lexical
environment”

• If the function is called as a method of an object, the “this”
variable becomes a reference to that object; otherwise, it
references the global object

• The identifiers defined in the outer lexical environments (for
instance, the one of the code calling the function) are still within
the scope

Andrea G. B. Tettamanzi, 2019 17

Lexical Scoping

f()

Code calling obj.f()

this

obj

i : 4

j : 1

x : 2.3789

Prototype of obj

y : 1.0

obj

Andrea G. B. Tettamanzi, 2019 18

Encapsulation

• Fundamental Principle of OOP

– Hide the details about data representation

– Allow access to data only through methods

– ⇒ The interface never exposes the data, only methods

• Certain OOP languages (e.g., C++, Java) provide access
modifiers for the methods and data of a class:

– Public – visible from any class, everywhere

– Protected – visible from the class or a subclass only

– Private – visible from the same class only

Andrea G. B. Tettamanzi, 2019 19

Encapsulation in JavaScript

• In JavaScript, the properties (thus including methods) of an object
are all “public”, as it were

– Any piece of code may access and/or change them

• This does not exclude to apply the encapsulation principle

– As a programming good practice

– As a form of self-discipline

– Workarounds are always possible, but should be avoided

• Such « primitive » form of encapsulation is based on

– Getters: methods that read and return the value of an attibute

– Setters: methods that change (set) the value of an attribute

• These methods can check the legality or compute the values

Andrea G. B. Tettamanzi, 2019 20

Private Properties and Methods

• Ordinary variables of the constructor may be used as private
members of the constructed objects

– These variables remain attached to the objects

– They are not visible outside of it

– This holds for parameters passed to the constructor as well

• In addition, they are not visible to the ordinary methods of the
constructed objects either

• However, they can be accessed by the constructor’s internal
functions

– These function are also invisible outside

– We might call them “private methods”

Andrea G. B. Tettamanzi, 2019 21

Example

function Container(param) {
function dec() {

if (secret > 0) {
secret -= 1;
return true; }

else return false; }
this.a = param;
var secret = 3;
var that = this;

}

Andrea G. B. Tettamanzi, 2019 22

Privileged Methods

• A privileged method

– Has the right to access private properties and methods

– Can be called by ordinary methods

– Can be called by external code

• One can delete or replace a privileged method

– However, nobody can change it

– Nor force it to reveal its secrets

• Privileged method definition: in the constructor,

– Assign a constructor’s internal function to a public property
(in the lexical scope of this)

Andrea G. B. Tettamanzi, 2019 23

Example

function Container(param) {
 function dec() {
 if (secret > 0) {
 secret -= 1;
 return true; }
 else return false; }
 this.service = function () {
 return dec() ? that.a : null; };
 this.a = param;
 var secret = 3;
 var that = this;
}

Andrea G. B. Tettamanzi, 2019 24

Prototypes and Heritage

• Every object has an internal link towards its prototype

• A prototype is an object and can in turn have a prototype

• We are then talking about the prototype chain of an object

• Given object o, the value o.x of property x is determined as
follows:

– if x is an ownproperty of o, o.x returns the value of property x
in o;

– else, the prototype chain of o is followed up to the first
prototype p where x is defined; in this case, o.x returns the
value of p.x;

– if, while following the prototype chain, the “null” object is
reached, o.x returns “undefined”.

Andrea G. B. Tettamanzi, 2019 25

Creating Objects

• An object can be created in various ways, including

– Syntactically, by means of the literal notation:

obj = { x : 5, y : 10 } ;

– By a constructor

• A constructor, in JavaScript, is a function that is called with
the “new” operator:

new f(…) ;

• It returns a new object having f.prototype as its prototype

– By calling a utility method of Object:

• Object.create(proto).

Andrea G. B. Tettamanzi, 2019 26

Example

2oq

p

x

0y

o = { x : 2 };
function f() { … }
f.prototype = o;
p = new f();
p.y = 0;
q = new f();

Andrea G. B. Tettamanzi, 2019 27

Integrated Objects

• A number of integrated objects are available when a JavaScript
program is executed.

• The global object is directly belongs to the program’s lexical
environment

– It contains the “global” variables and functions

• The other integrated objects can be accessed as initial properties
of the global object

• Many integrated objects are functions

– They can be called with arguments

– Some can be used as constructors

• The names of these objects are heavily inspired by the names of
the classes of the Java platform and of their methods and
attributes

Andrea G. B. Tettamanzi, 2019 28

The “Object” Object

• Allows to create a conversion object for a given value

• By default, the prototype of the created objects is “null”

• Its methods include

– create(proto, o): creates a new object with the specified
prototype and all the properties of object o

– keys(o): returns an array containing the names of all the
enumerable properties of the given object

– getPrototypeOf(o): returns the prototype of object o

– setPrototypeOf(o, p): sets the prototype of object o to p

– assign(destObj, srcObj): copies all the enumerable properties
for the source object to the destination object

Andrea G. B. Tettamanzi, 2019 29

The “Function” Object

• Any function in JavaScript is in fact an object inheriting the
prototype of Function

• As a constructor, Function creates functions at run-time

• The methods of the objects constructed by Function include:

– apply(o [, args]): applies the function as if it were a method of
object o; the arguments of the function have to be passed as
an Array object

– bind(o): creates a new function which, when called, invokes
this function as if it were a method of object o

– call: the same as apply, but with arguments passed one by
one instead of as one Array object

Andrea G. B. Tettamanzi, 2019 30

Error Handling

• The error handling mechanism relies on three ingredients:

– One ore more exception handlers;

– A mechanism to raise (= signal) exceptions;

– A mechanism allowing to associate exceptions to their
handlers.

• In JavaScript, the mechanism to associate exceptions to their
handlers is provided the “try … catch … finally” structure

• The exception handlers are contained in the “catch” clause of this
structure

• Exceptions are raised by means of the “throw” operator and
objects created by the Error constructor.

Andrea G. B. Tettamanzi, 2019 31

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

