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Unit 4
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(JavaScript and the 

HTML5 API) 
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Agenda

• Elements of the JavaScript language

• JavaScript and HTML5

• JavaScript’s Object-Oriented Model

• Integrated Objects

• Error Handling
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Historical Remarks

• Created in 1995 by Brendan Eich for Netscape

• In December 1995, Sun and Netscape announce its release

• In March 1996, JavaScript engine in NS Navigator 2.0

• Microsoft strikes back by developing Jscript, in August in IE

• In 1997, JavaScript becomes an ECMA standard: ECMAScript

• Choice of the name

– Marketing reasons

– Complementary to Java

– Confusion in the general public 
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Language Overview

• Object-oriented, but based on prototypes. No classes

• A program is a collection of communicating objects

• Object = collection of properties

• Primitive values: undefined | null | Boolean | Number | String

• Collection of integrated objects:

– Global Object

– Object, Function, Array, String, Boolean, Number, Math, Date, 
RegExp, JSON

– Several error objects: Error, EvalError, …

• Operators: arithmetic, relational, logical, etc.

• Syntax purposefully similar to Java, but less strict
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Types and Expressions

• JavaScript uses weak and dynamic typing

• The type of an expression is determined by its result

– Numbers: integers or floating-point

– Character strings

– Boolean (false, true)

– « null » a single-valued type = absence of data

• Simple expressions: formed by a single element

– Literal

– Variable identifier

– The keyword “this”

• Complex expressions: built w/ operators / functions / methods
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Statements

• Block

• VariableStatement

• EmptyStatement

• ExpressionStatement

• IfStatement

• IterationStatement

• ContinueStatement

• BreakStatement

• ReturnStatement

• WithStatement

• LabelledStatement

• SwitchStatement

• ThrowStatement

• TryStatement

• DebuggerStatement

The ECMAScript standard provides for 15 distinct statement types:



Andrea G. B. Tettamanzi, 2019 8

Control Structures

• The same as Java – that’s on purpose!

• Conditional

– if(cond) … [ else … ]

– switch(expr) { case … : … break ; … default : … }

• Iterative

– while(cond) …

– do ... while(cond) ;

– for(instr ; cond ; instr) …
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Function Definition

• Anonymous function definition (it’s a “lambda”: λx.y)

function(arguments) { … }

• Named function definition:

function name(arguments) { … }

• Returning a result:

return(expression);

• Function call:

name(arguments)
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JavaScript and HTML

• JavaScript interacts with its containing HTML page via:

– The <script> tag

– The dialog-box functions

– The events

– The document object model (DOM)

– The HTML5 API

• Local Storage

• Geo-location

• Drag and Drop

• Web Sockets
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The <script> Tag

• JavaScript code is attached to an HTML document by the 
<script> tag, which may be placed anywhere

• Two ways to do that (in HTML5) :

– Embedded script (i.e., the code is contained within the HTML 
document),
<script> embedded code </script>

Example:
<script>document.write("Hello World!")</script>

– External script (i.e., the code is in a separate file),
<script src="URL of the script file"> </script>

• In HTML 4, type was mandatory: <script type="text/javascript">
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Dialog Boxes

• JavaScript can pop up three types of dialog boxes

• Alert dialog boxes

– alert(message)

– Displays a dialog box with a message and an [OK] button

• Confirmation dialog box

– confirm(message) → true | false

– Displays a dialog box with a message and [Cancel] [OK]

• Prompt dialog box

– prompt(message, default_text) → user input

– Displays a message, a text box, which the user can type into, 
initialized with the provided default text, and the [Cancel] and 
[OK] buttons
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HTML Events

• HTML events are user actions that can cause an interaction

• Examples: mouse click, mouse move, etc.

• JavaScript code can be associated to events

• Such association is made by means of event handlers

• Example:

<button type="button" onclick="calc_input(1)">1</button>

• Every HTML element supports a given set of events



Andrea G. B. Tettamanzi, 2019 14

Objects

• A JavaScript object can be thought of as a set of (property, value) 
pairs, which can be represented with the intuitive notation

property : value

• This notation is also used by the syntax of the language to define 
object literals

• Properties can be

– Own: explicitly defined in an object

– Inherited: not explicitly defined in an object, but implicitly 
derived from other objects (called prototypes)

• A property may take values of any type

• JavaScript objects are implemented as hash tables
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Methods

• A property of an object can have a function as its value

• One calls it a “method” in that case

• When a method of an object is called, the special variable “this” 
becomes a reference to the object

• Because of that, the code within the method can access the 
properties of the object via the “this” variable
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Lexical Scoping

• When a function is called, its code is executed in a “lexical 
environment”

• If the function is called as a method of an object, the “this” 
variable becomes a reference to that object; otherwise, it 
references the global object

• The identifiers defined in the outer lexical environments (for 
instance, the one of the code calling the function) are still within 
the scope
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Lexical Scoping

f()

Code calling obj.f()

this

obj

i : 4

j : 1

x : 2.3789

Prototype of obj

y : 1.0

obj
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Encapsulation

• Fundamental Principle of OOP

– Hide the details about data representation

– Allow access to data only through methods

–  ⇒ The interface never exposes the data, only methods

• Certain OOP languages (e.g., C++, Java) provide access 
modifiers for the methods and data of a class:

– Public – visible from any class, everywhere

– Protected – visible from the class or a subclass only

– Private – visible from the same class only
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Encapsulation in JavaScript

• In JavaScript, the properties (thus including methods) of an object 
are all “public”, as it were

– Any piece of code may access and/or change them

• This does not exclude to apply the encapsulation principle

– As a programming good practice

– As a form of self-discipline

– Workarounds are always possible, but should be avoided

• Such « primitive » form of encapsulation is based on

– Getters: methods that read and return the value of an attibute

– Setters: methods that change (set) the value of an attribute

• These methods can check the legality or compute the values
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Private Properties and Methods

• Ordinary variables of the constructor may be used as private 
members of the constructed objects

– These variables remain attached to the objects

– They are not visible outside of it

– This holds for parameters passed to the constructor as well

• In addition, they are not visible to the ordinary methods of the 
constructed objects either

• However, they can be accessed by the constructor’s internal 
functions

– These function are also invisible outside

– We might call them “private methods”
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Example

function Container(param) {
function dec() {

if (secret > 0) {
secret -= 1;
return true; }

else return false; }
this.a = param;
var secret = 3;
var that = this;

}
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Privileged Methods

• A privileged method

– Has the right to access private properties and methods

– Can be called by ordinary methods

– Can be called by external code

• One can delete or replace a privileged method

– However, nobody can change it

– Nor force it to reveal its secrets

• Privileged method definition: in the constructor,

– Assign a constructor’s internal function to a public property
(in the lexical scope of this)
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Example

function Container(param) {
  function dec() {
    if (secret > 0) {
      secret -= 1;
      return true; }
    else return false; }
  this.service = function () {
    return dec() ? that.a : null; };
  this.a = param;
  var secret = 3;
  var that = this;
}
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Prototypes and Heritage

• Every object has an internal link towards its prototype

• A prototype is an object and can in turn have a prototype

• We are then talking about the prototype chain of an object

• Given object o, the value o.x of property x is determined as 
follows:

– if x is an ownproperty of o, o.x returns the value of property x 
in o;

– else, the prototype chain of o is followed up to the first 
prototype p where x is defined; in this case, o.x returns the 
value of p.x;

– if, while following the prototype chain, the “null” object is 
reached, o.x returns “undefined”.
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Creating Objects

• An object can be created in various ways, including

– Syntactically, by means of the literal notation:

obj = { x : 5, y : 10 } ;

– By a constructor

• A constructor, in JavaScript, is a function that is called with 
the “new” operator:

new f(…) ;

• It returns a new object having f.prototype as its prototype

– By calling a utility method of Object:

• Object.create(proto).
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Example

2oq

p

x

0y

o = { x : 2 };
function f() { … }
f.prototype = o;
p = new f();
p.y = 0;
q = new f();
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Integrated Objects

• A number of integrated objects are available when a JavaScript 
program is executed.

• The global object is directly belongs to the program’s lexical 
environment 

– It contains the “global” variables and functions

• The other integrated objects can be accessed as initial properties 
of the global object

• Many integrated objects are functions

– They can be called with arguments

– Some can be used as constructors

• The names of these objects are heavily inspired by the names of 
the classes of the Java platform and of their methods and 
attributes
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The “Object” Object

• Allows to create a conversion object for a given value

• By default, the prototype of the created objects is “null”

• Its methods include

– create(proto, o): creates a new object with the specified 
prototype and all the properties of object o

– keys(o): returns an array containing the names of all the 
enumerable properties of the given object

– getPrototypeOf(o): returns the prototype of object o

– setPrototypeOf(o, p): sets the prototype of object o to p

– assign(destObj, srcObj): copies all the enumerable properties 
for the source object to the destination object
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The “Function” Object

• Any function in JavaScript is in fact an object inheriting the 
prototype of Function

• As a constructor, Function creates functions at run-time

• The methods of the objects constructed by Function include:

– apply(o [, args]): applies the function as if it were a method of 
object o; the arguments of the function have to be passed as 
an Array object

– bind(o): creates a new function which, when called, invokes 
this function as if it were a method of object o

– call: the same as apply, but with arguments passed one by 
one instead of as one Array object
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Error Handling

• The error handling mechanism relies on three ingredients:

– One ore more exception handlers;

– A mechanism to raise (= signal) exceptions;

– A mechanism allowing to associate exceptions to their 
handlers.

• In JavaScript, the mechanism to associate exceptions to their 
handlers is provided the “try … catch … finally” structure

• The exception handlers are contained in the “catch” clause of this 
structure

• Exceptions are raised by means of the “throw” operator and 
objects created by the Error constructor.
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