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Unit 5

Persistence, AJAX,
and REST 
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Agenda

• Persistence (and serialization)

• Event-Driven Programming in JavaScript

• AJAX

• Logical Organization of a Web Application

• REST
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Persistence

• General mechanism to save and restore

– Data

– State of computation

• Allow a program to terminate without its data and execution state 
being lost

• A central subject in Web programming

– Server-side and client-side

– Web protocols are stateless!

• Saving

– Locally on disk

– Remotely on a server

• E.g., a relational DB server
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Client-Side Persistence (JavaScript)

• Client-side persistence requires serialization

• Serialization = translating data structures or object state into a 
format that can be stored or transmitted and reconstructed later

• Possible choices for serialization

– Binary

– XML

– JSON

• Two persistence mechanisms for client-side persistence

– HTTP Cookies (traditional solution, predates JavaScript)

– Web Storage API (convenient for small amounts of data)

– IndexDB API (suitable for large, structured data)
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XML

• XML : eXtensible Markup Langage

• W3C standard since 1998

• Version 1.0 (February 1998); Version 1.1 (February 2004)

• A description language for a class of data objects called “XML 
documents”

• The standard partially describes the behavior of programs that 
process them

• XML is a restricted form of SGML (1986)
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XML Document Example

<!DOCTYPE glossary PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
<glossary><title>example glossary</title>
 <GlossDiv><title>S</title>
  <GlossList><GlossEntry ID="SGML" SortAs="SGML">
    <GlossTerm>Standard Generalized Markup Language</GlossTerm>
    <Acronym>SGML</Acronym>
    <Abbrev>ISO 8879:1986</Abbrev>
    <GlossDef>
     <para>A meta-markup language, used to create markup
           languages such as DocBook.</para>
     <GlossSeeAlso OtherTerm="GML">
     <GlossSeeAlso OtherTerm="XML">
    </GlossDef>
    <GlossSee OtherTerm="markup">
 </GlossEntry></GlossList>
 </GlossDiv>
</glossary>
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XML Documents

• Consist of storage units called entities, containing data, which 
may be parsed or not

• Data are characters representing either simple values or tagged 
content

• The markup (tags) describes the logical/storage structure of the 
document

• An XML document is well-formed if it respects XML syntax

• XML provides a mechanism to constrain this syntax, namely the 
DTD (Document Type Definition)

• An XML document may be valid w/ respect to one or more DTDs
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DTD

• Element Definition: <! ELEMENT Name Content >

• Content:

– ANY: The element may contain data of any type

– EMPTY: The element contains no data

– #PCDATA: The element must contains a character string 
(parsed character data)

– Operators:

• + at least one * zero or more

• ? optional | alternative

• , concatenation ( ) grouping
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DTD Example

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ATTLIST

contact (address, url?, tel*)>

address (addrline, zip, city)>

addrline (line+)>

line (#PCDATA)>

zip (#PCDATA)>

city (#PCDATA)>

url (#PCDATA)>

tel (#PCDATA)>

tel t (fixed|fax|mobile) “fixed”>
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XML Processor

• A software module used to read XML documents and access their 
content (with or without validation)

• An XML processor does the work on behalf of another module, an 
application

XML File

DTD

XML
Processor

Application



Andrea G. B. Tettamanzi, 2019 12

XML in JavaScript

• The XML processor in JavaScript is the DOM API

• The XML DOM defines the properties and methods for accessing 
and editing XML

• Before an XML document can be accessed, it must be loaded into 
an XML DOM object

• DOMParser

parser = new DOMParser();

xmlDoc = parser.parseFromString(xml,"text/xml");

title = xmlDoc.getElementsByTagName("title")[0];

…
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JSON

• JSON = JavaScript Object Notation

– Lighter than XML

– Native to JavaScript

– Platform- and Programming-language-independent

object ::=  '{}'  |   '{' members '}' 

members ::= pair | pair ',' members

pair ::= string ':' value

array ::= '[]'  |   '[' elements ']'

elements ::= value   |   value ',' elements

value ::= string  |  number  |  object  |  array  |  'true'  |  'false'  |  'null' 
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JSON Example

{ "glossary":
  { "title": "example glossary",
    "GlossDiv": {
      "title": "S",
      "GlossList": {
        "GlossEntry": {
          "ID": "SGML",
          "SortAs": "SGML",
          "GlossTerm": "Standard Generalized Markup Language",
          "Acronym": "SGML",
          "Abbrev": "ISO 8879:1986",
          "GlossDef": {
            "para": "A meta-markup language, used to create
                     markup languages such as DocBook.",

  "GlossSeeAlso": ["GML", "XML"] },
          "GlossSee": "markup" } } }
  }
}
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The JSON Object

• JSON.stringify(value[, replacer[, space]])

– Returns a JSON representation of value as a string

– Throws a TypeError exception if value is cyclic

– space is a Number (0, 1, …) or String (like “”, “ ”, “\t”, “\n”)

– replacer is a function(key, value) → JSON string

• JSON.parse(json_string[, reviver])

– Throws a SyntaxError exception if json_string is not valid

– reviver is a function(key, json_string) → value
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Cookies

• An HTTP cookie is a small piece of data that a server sends to 
the user's browser

• The browser may store it and send it back with the next request to 
the same server

• Cookies are used for

– Session management

– Personalization (preferences, themes, settings)

– Tracking (bad, bad, …)

– General client-side persistence (but that’s old-fashioned)

• In JavaScript:

– document.cookie is a pseudo-variable to access cookies
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Web Storage API

• Two storage object are available in an HTML5 client:

– sessionStorage maintains a separate storage area for each 
given origin that's available for the duration of the page 
session (as long as the browser is open, including page 
reloads and restores)

– localStorage does the same thing, but persists even when 
the browser is closed and reopened

• They expose the same interface:

– length: the number of data items stored in the area 

– setItem(key, serializedValue), getItem(key), removeItem(key)

– Clear() – clear  the whole area, key(n) – returns the nth key

– The “storage” event is fired when the a storage area changes
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Event-Driven Programming

• A programming style based on events

• Contrasts with traditional sequential programming

• The program is mainly defined by its reactions to the various 
events that can occur

– Variable state changes

– User actions

– Message reception

– End of a long task delegated to another process/thread

• Much used in graphical user interfaces (GUIs)

• Typical of distributed systems

– Parallelism and asynchronous execution

• Node.js is a JavaScript-based event-driven software platform
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Callback Functions

• Web programming promotes an event-driven style for two main 
reasons

– Web clients often implement reactive GUIs

– Web applications are distributed (client-server)

• In this style, so-called callback functions are first-class citizens

– HTML event handlers are one remarkable example

– Interrupt handlers in system programming are another

• A callback function is a function

– Passed as an argument to another function/method

– This latter calls it (asynchronously) at the end of its execution, 
to pass back some results, for instance

– Other uses/schemes are possible and popular
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Asynchronous Remote Procedure Call
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AJAX

• Acronym of “Asynchronous JavaScript and XML”

• Principle: to make an asynchronous request to a server/service

– To verify/validate

– Po get/retrieve information

• Asynchronous HTTP request (to a CGI script or similar)

• The HTTP response will consist of XML (or JSON, or other…)

– Such content will then be exploited to change the Web page 
(e.g., getElementById + innerHTML)

• The whole process does not require to reload the current page or 
to download a new page!
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AJAX: XMLHttpRequest

• A JavaScript constructor providing an API to exchange data 
between an HTTP client and an HTTP server:

– http://www.w3.org/TR/XMLHttpRequest/

• The name has historical reasons, however

– Any textual format can be used, not just XML

– It allows to use HTTP as well as SHTTP (or other protocols)

– Request, here, is in a very broad sense (any HTTP method)

• Working principle:

– Create an object with this constructor

– Assign a reference to a handler (i.e., a callback function) to 
the “onreadystatechange” property/event

– Call the open() et send() methods to submit the request
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Handler Example

function my_handler( ) {

  // test the processing state of the request

  if ((this.readyState==4) && (this.status==200))

  {

    // retrieve the response in XML or text format

    var myXML = this.responseXML; // a DOM object

    var myText = this.responseText; // a string

  // … do something with the response

  }

}
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Using XMLHttpRequest

var client = new XMLHttpRequest();

client.onreadystatechange = my_handler;

client.open("GET", url);

client.send();

// alternatively:

client.open("POST", url);

client.setRequestHeader("Content-Type",

  "text/plain;charset=UTF-8");

client.send("var1=va1&var2=val2&…");
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Architecture of a Web Application
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Request Handling

• Two approaches to request handling:

– “Post-Back” Approach (we know that already, cf. CGIs)

• Form-based development

• Server-centric

• Rapid prototyping

– “RESTful” Approach, based on the notion of Web service

• More client-centric

• Finer control of the GUI and more flexibility

• The choice between these two approaches must take into 
account the desired degree of control on GUI, the development 
process and scalability 
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Representational State Transfer
(REST)

• Architectural style for distributed hypermedia systems

• Proposed in 2000 by Roy Fielding

• Defined by six architectural constraints:

1) Client-server architecture: clear separation of concerns

2) Statelessness: each requests must also contain its context

3) Cacheabilty: responses must define if they are cacheable 

4) Uniform Interface: (a) resource identification in requests;
(b) resource manipulation through representations;
(c)self-descriptive messages;
(d) Hypermedia as the engine of application state (HATEOAS)

5) Layered System

6) Code on Demand (→ client-side scripting)
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