
Andrea G. B. Tettamanzi, 2019 1

WebWeb
Master 1 IFIMaster 1 IFI

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2019 2

Unit 5

Persistence, AJAX,
and REST

Andrea G. B. Tettamanzi, 2019 3

Agenda

• Persistence (and serialization)

• Event-Driven Programming in JavaScript

• AJAX

• Logical Organization of a Web Application

• REST

Andrea G. B. Tettamanzi, 2019 4

Persistence

• General mechanism to save and restore

– Data

– State of computation

• Allow a program to terminate without its data and execution state
being lost

• A central subject in Web programming

– Server-side and client-side

– Web protocols are stateless!

• Saving

– Locally on disk

– Remotely on a server

• E.g., a relational DB server

Andrea G. B. Tettamanzi, 2019 5

Client-Side Persistence (JavaScript)

• Client-side persistence requires serialization

• Serialization = translating data structures or object state into a
format that can be stored or transmitted and reconstructed later

• Possible choices for serialization

– Binary

– XML

– JSON

• Two persistence mechanisms for client-side persistence

– HTTP Cookies (traditional solution, predates JavaScript)

– Web Storage API (convenient for small amounts of data)

– IndexDB API (suitable for large, structured data)

Andrea G. B. Tettamanzi, 2019 6

XML

• XML : eXtensible Markup Langage

• W3C standard since 1998

• Version 1.0 (February 1998); Version 1.1 (February 2004)

• A description language for a class of data objects called “XML
documents”

• The standard partially describes the behavior of programs that
process them

• XML is a restricted form of SGML (1986)

Andrea G. B. Tettamanzi, 2019 7

XML Document Example

<!DOCTYPE glossary PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
<glossary><title>example glossary</title>
 <GlossDiv><title>S</title>
 <GlossList><GlossEntry ID="SGML" SortAs="SGML">
 <GlossTerm>Standard Generalized Markup Language</GlossTerm>
 <Acronym>SGML</Acronym>
 <Abbrev>ISO 8879:1986</Abbrev>
 <GlossDef>
 <para>A meta-markup language, used to create markup
 languages such as DocBook.</para>
 <GlossSeeAlso OtherTerm="GML">
 <GlossSeeAlso OtherTerm="XML">
 </GlossDef>
 <GlossSee OtherTerm="markup">
 </GlossEntry></GlossList>
 </GlossDiv>
</glossary>

Andrea G. B. Tettamanzi, 2019 8

XML Documents

• Consist of storage units called entities, containing data, which
may be parsed or not

• Data are characters representing either simple values or tagged
content

• The markup (tags) describes the logical/storage structure of the
document

• An XML document is well-formed if it respects XML syntax

• XML provides a mechanism to constrain this syntax, namely the
DTD (Document Type Definition)

• An XML document may be valid w/ respect to one or more DTDs

Andrea G. B. Tettamanzi, 2019 9

DTD

• Element Definition: <! ELEMENT Name Content >

• Content:

– ANY: The element may contain data of any type

– EMPTY: The element contains no data

– #PCDATA: The element must contains a character string
(parsed character data)

– Operators:

• + at least one * zero or more

• ? optional | alternative

• , concatenation () grouping

Andrea G. B. Tettamanzi, 2019 10

DTD Example

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ATTLIST

contact (address, url?, tel*)>

address (addrline, zip, city)>

addrline (line+)>

line (#PCDATA)>

zip (#PCDATA)>

city (#PCDATA)>

url (#PCDATA)>

tel (#PCDATA)>

tel t (fixed|fax|mobile) “fixed”>

Andrea G. B. Tettamanzi, 2019 11

XML Processor

• A software module used to read XML documents and access their
content (with or without validation)

• An XML processor does the work on behalf of another module, an
application

XML File

DTD

XML
Processor

Application

Andrea G. B. Tettamanzi, 2019 12

XML in JavaScript

• The XML processor in JavaScript is the DOM API

• The XML DOM defines the properties and methods for accessing
and editing XML

• Before an XML document can be accessed, it must be loaded into
an XML DOM object

• DOMParser

parser = new DOMParser();

xmlDoc = parser.parseFromString(xml,"text/xml");

title = xmlDoc.getElementsByTagName("title")[0];

…

Andrea G. B. Tettamanzi, 2019 13

JSON

• JSON = JavaScript Object Notation

– Lighter than XML

– Native to JavaScript

– Platform- and Programming-language-independent

object ::= '{}' | '{' members '}'

members ::= pair | pair ',' members

pair ::= string ':' value

array ::= '[]' | '[' elements ']'

elements ::= value | value ',' elements

value ::= string | number | object | array | 'true' | 'false' | 'null'

Andrea G. B. Tettamanzi, 2019 14

JSON Example

{ "glossary":
 { "title": "example glossary",
 "GlossDiv": {
 "title": "S",
 "GlossList": {
 "GlossEntry": {
 "ID": "SGML",
 "SortAs": "SGML",
 "GlossTerm": "Standard Generalized Markup Language",
 "Acronym": "SGML",
 "Abbrev": "ISO 8879:1986",
 "GlossDef": {
 "para": "A meta-markup language, used to create
 markup languages such as DocBook.",

 "GlossSeeAlso": ["GML", "XML"] },
 "GlossSee": "markup" } } }
 }
}

Andrea G. B. Tettamanzi, 2019 15

The JSON Object

• JSON.stringify(value[, replacer[, space]])

– Returns a JSON representation of value as a string

– Throws a TypeError exception if value is cyclic

– space is a Number (0, 1, …) or String (like “”, “ ”, “\t”, “\n”)

– replacer is a function(key, value) → JSON string

• JSON.parse(json_string[, reviver])

– Throws a SyntaxError exception if json_string is not valid

– reviver is a function(key, json_string) → value

Andrea G. B. Tettamanzi, 2019 16

Cookies

• An HTTP cookie is a small piece of data that a server sends to
the user's browser

• The browser may store it and send it back with the next request to
the same server

• Cookies are used for

– Session management

– Personalization (preferences, themes, settings)

– Tracking (bad, bad, …)

– General client-side persistence (but that’s old-fashioned)

• In JavaScript:

– document.cookie is a pseudo-variable to access cookies

Andrea G. B. Tettamanzi, 2019 17

Web Storage API

• Two storage object are available in an HTML5 client:

– sessionStorage maintains a separate storage area for each
given origin that's available for the duration of the page
session (as long as the browser is open, including page
reloads and restores)

– localStorage does the same thing, but persists even when
the browser is closed and reopened

• They expose the same interface:

– length: the number of data items stored in the area

– setItem(key, serializedValue), getItem(key), removeItem(key)

– Clear() – clear the whole area, key(n) – returns the nth key

– The “storage” event is fired when the a storage area changes

Andrea G. B. Tettamanzi, 2019 18

Event-Driven Programming

• A programming style based on events

• Contrasts with traditional sequential programming

• The program is mainly defined by its reactions to the various
events that can occur

– Variable state changes

– User actions

– Message reception

– End of a long task delegated to another process/thread

• Much used in graphical user interfaces (GUIs)

• Typical of distributed systems

– Parallelism and asynchronous execution

• Node.js is a JavaScript-based event-driven software platform

Andrea G. B. Tettamanzi, 2019 19

Callback Functions

• Web programming promotes an event-driven style for two main
reasons

– Web clients often implement reactive GUIs

– Web applications are distributed (client-server)

• In this style, so-called callback functions are first-class citizens

– HTML event handlers are one remarkable example

– Interrupt handlers in system programming are another

• A callback function is a function

– Passed as an argument to another function/method

– This latter calls it (asynchronously) at the end of its execution,
to pass back some results, for instance

– Other uses/schemes are possible and popular

Andrea G. B. Tettamanzi, 2019 20

Asynchronous Remote Procedure Call

Andrea G. B. Tettamanzi, 2019 21

AJAX

• Acronym of “Asynchronous JavaScript and XML”

• Principle: to make an asynchronous request to a server/service

– To verify/validate

– Po get/retrieve information

• Asynchronous HTTP request (to a CGI script or similar)

• The HTTP response will consist of XML (or JSON, or other…)

– Such content will then be exploited to change the Web page
(e.g., getElementById + innerHTML)

• The whole process does not require to reload the current page or
to download a new page!

Andrea G. B. Tettamanzi, 2019 22

AJAX: XMLHttpRequest

• A JavaScript constructor providing an API to exchange data
between an HTTP client and an HTTP server:

– http://www.w3.org/TR/XMLHttpRequest/

• The name has historical reasons, however

– Any textual format can be used, not just XML

– It allows to use HTTP as well as SHTTP (or other protocols)

– Request, here, is in a very broad sense (any HTTP method)

• Working principle:

– Create an object with this constructor

– Assign a reference to a handler (i.e., a callback function) to
the “onreadystatechange” property/event

– Call the open() et send() methods to submit the request

Andrea G. B. Tettamanzi, 2019 23

Handler Example

function my_handler() {

 // test the processing state of the request

 if ((this.readyState==4) && (this.status==200))

 {

 // retrieve the response in XML or text format

 var myXML = this.responseXML; // a DOM object

 var myText = this.responseText; // a string

 // … do something with the response

 }

}

Andrea G. B. Tettamanzi, 2019 24

Using XMLHttpRequest

var client = new XMLHttpRequest();

client.onreadystatechange = my_handler;

client.open("GET", url);

client.send();

// alternatively:

client.open("POST", url);

client.setRequestHeader("Content-Type",

 "text/plain;charset=UTF-8");

client.send("var1=va1&var2=val2&…");

Andrea G. B. Tettamanzi, 2019 25

Architecture of a Web Application

Client

Web Server

Data Sources Services

Browser

Presentation
Layer

Business
Layer

Data
Layer

Vertical Aspects

View

GUI Component

GUI Process Components

Application Façade

Workflow Business Component

Data Access
Components

Utilities
Service
Agents

S
ec

ur
ity

O
pe

ra
tio

ns
 M

an
a

ge
m

en
t

C
om

m
un

ic
at

io
n

GUI Component

Andrea G. B. Tettamanzi, 2019 26

Request Handling

• Two approaches to request handling:

– “Post-Back” Approach (we know that already, cf. CGIs)

• Form-based development

• Server-centric

• Rapid prototyping

– “RESTful” Approach, based on the notion of Web service

• More client-centric

• Finer control of the GUI and more flexibility

• The choice between these two approaches must take into
account the desired degree of control on GUI, the development
process and scalability

Andrea G. B. Tettamanzi, 2019 27

Representational State Transfer
(REST)

• Architectural style for distributed hypermedia systems

• Proposed in 2000 by Roy Fielding

• Defined by six architectural constraints:

1) Client-server architecture: clear separation of concerns

2) Statelessness: each requests must also contain its context

3) Cacheabilty: responses must define if they are cacheable

4) Uniform Interface: (a) resource identification in requests;
(b) resource manipulation through representations;
(c)self-descriptive messages;
(d) Hypermedia as the engine of application state (HATEOAS)

5) Layered System

6) Code on Demand (→ client-side scripting)

Andrea G. B. Tettamanzi, 2019 28

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

