
Andrea G. B. Tettamanzi, 2019 1

WebWeb
Master 1 IFIMaster 1 IFI

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2019 2

Unit 3

The Common Gateway
Interface and Server-side

Programming

Andrea G. B. Tettamanzi, 2019 3

Agenda

• The Common Gateway Interface

• Server-Side Programming

Andrea G. B. Tettamanzi, 2019 4

Introduction

• An HTTP server is often used as a gateway to a different
information system (legacy or not), for example

– an existing body of documents

– an existing database application

• The Common Gateway Interface (CGI) is an agreement between
HTTP server implementors about how to integrate such gateway
scripts and programs

• It was typically (but not exclusively) used in conjunction with
HTML forms to build database applications

• Nowadays largely superseded by dynamic Web content
technologies such as PHP, ASP.NET, Java Servlets, and Node.js

Andrea G. B. Tettamanzi, 2019 5

The Common Gateway Interface

• The Common Gateway Interface (CGI) is a de facto standard
protocol for Web servers to execute an external program that
generates a Web page dynamically

• The external program executes like a console application running
on the same machine as the Web server (the host)

• Such program is known as a CGI script or simply as a CGI

Andrea G. B. Tettamanzi, 2019 6

How Does That Work?

• Each time a client requests the URL corresponding to a CGI
program, the server will execute it in real-time

– E.g.: GET http://www.example.org/cgi-bin/add?x=2&y=2

• The output of the program will go more or less directly to the
client

• Strictly speaking, the “input” to the program is the HTTP request

• Environment variables are used to pass data about the request
from the server to the program

– They are accessed by the script in a system-defined manner

– Missing environment variable = NULL value

– Character encoding is system-defined

Andrea G. B. Tettamanzi, 2019 7

The Environment Variables

• AUTH_TYPE

• CONTENT_LENGTH

• CONTENT_TYPE

• GATEWAY_INTERFACE

• HTTP_*

• PATH_INFO

• PATH_TRANSLATED

• QUERY_STRING

• REMOTE_ADDR

• REMOTE_HOST

• REMOTE_IDENT

• REMOTE_USER

• REQUEST_METHOD

• SCRIPT_NAME

• SERVER_NAME

• SERVER_PORT

• SERVER_PROTOCOL

• SERVER_SOFTWARE

Andrea G. B. Tettamanzi, 2019 8

REQUEST_METHOD

• The method with which the request was made:

– GET, HEAD: see the QUERY_STRING variable

– POST: see the request content variables and standard input

Andrea G. B. Tettamanzi, 2019 9

Request Content Variables

• CONTENT_LENGTH

– The size of the data attached to the request, if any

– Decimal number of octets (bytes)

• CONTENT_TYPE

– The MIME type of the data attached to the request

• application/x-www-form-urlencoded
(HTML Form)

– If the type remains unknown, assume

• application/octet-stream

Andrea G. B. Tettamanzi, 2019 10

QUERY_STRING

• The query string of an URI is anything that follows the “?”

• Example:

– http://www.example.org/cgi-bin/add?x=2&y=2

– Here, the query string is “x=2&y=2”

• The QUERY_STRING variable contains the query string of the
CGI program’s URI

• In principle, it is up to the CGI script to parse the query string to
extract the parameters, e.g.:

– x = 2

– y = 2

Andrea G. B. Tettamanzi, 2019 11

Path Variables

• Assume a CGI program called “script” is invoked via a request

– GET http://www.example.com/cgi-bin/script/a/path/x.html?q

• The string “/a/path/x.html” is called an extra-path

• The extra-path is anything between the name of the CGI program
and the “?” that introduces the query string

• This extra-path is passed to the CGI program via the PATH_INFO
environment variable

• The PATH_TRANSLATED variable contains the operating
system path corresponding to PATH_INFO

– CGI programs using this variable may suffer limited portability

Andrea G. B. Tettamanzi, 2019 12

REMOTE_* Variables

• REMOTE_ADDR: The IP address of the agent sending the
request. Not necessarily that of the client

• REMOTE_HOST: The fully qualified domain name of the agent
sending the request

• REMOTE_IDENT: The identity information reported about the
connection by a RFC 931 request to the remote agent, if available

• REMOTE_USER:

– If AUTH_TYPE = "Basic", then the user-ID sent by the client

– If AUTH_TYPE = NULL, then NULL

– Otherwise, undefined

Andrea G. B. Tettamanzi, 2019 13

HTTP_* Variables

• HTTP_COOKIE: all the set cookies

– It is up to the CGI program to parse the cookie string

• Cookies can be set in the header of a response:

– Set-Cookie:<key> = <value>;

– Set-Cookie:Expires = <expiration date>

– Set-Cookie:Domain = www.example.org

– Set-Cookie:Path = <path>

• Before the Content-type header!

Andrea G. B. Tettamanzi, 2019 14

Accessing Environment Variables

• In C:

– #include <stdlib.h>

– char *getenv(const char *name);

– Example: browser = getenv("HTTP_USER_AGENT");

• In Python:

– import os

– os.environ[<varname>]

– Example: browser = os.environ["HTTP_USER_AGENT"]

Andrea G. B. Tettamanzi, 2019 15

The Command Line

• Most systems support a method for supplying a array of strings to
the CGI programs (i.e., command-line arguments)

• This is only used in the case of an “indexed” query, i.e.:

– A "GET" or "HEAD" HTTP request

– with a URL search string not containing any "=" characters

• For such a request, the Web server will break the search string
into words

• Each word is URL-decoded

• Then, the argument list is set to the list of words

Andrea G. B. Tettamanzi, 2019 16

The Standard Input

• For some methods, there may be data attached to the request

– This is the case for POST, PUT, and PATCH

• Therefore, there must be a system-defined method for the CGI
program to read these data

• The standard way to pass data is via the “standard input” file
descriptor (stdin in C)

• There will be at least CONTENT_LENGTH bytes available for the
program to read

• The program is not obliged to read (all) the data

• … but it must not attempt to read more than CONTENT_LENGTH
bytes, even if more data is available

Andrea G. B. Tettamanzi, 2019 17

Output

• A CGI program will always return some data:

– An HTML page

– An image

– A file of some other type (e.g., a PDF file)

• This is via the “standard output” file descriptor (stdout in C)

• The program must return a complete HTTP response message!

– Header (status, content-type, etc.)

– Body (the actual content, in the declared format)

Andrea G. B. Tettamanzi, 2019 18

Error Handling

• CGI programs should reject unexpected methods (such as
DELETE etc.) with error

– 405 Method Not Allowed

• If the script does not intend processing the PATH_INFO data,
then, if PATH_INFO is not NULL, it should reject the request with

– 404 Not Found

• If the output of a form is being processed, check that
CONTENT_TYPE = "application/x-www-form-urlencoded"

– Presumably 400 is the appropriate error code in this case...

Andrea G. B. Tettamanzi, 2019 19

Server-Side Programming

• The CGI is interesting for historic reasons

• … but also because it is at the origin of server-side programming

• Today’s frameworks all build upon the basic concepts of CGI

• The main improvements with respect to the CGI are

– Better integration with the HTTP server

– Basic APIs and utilities allow for faster development

– The script runs in the same process as the server

– The script can be embedded in HTML pages providing a static
skeleton, where the generated parts can be inserted

Andrea G. B. Tettamanzi, 2019 20

Example: PHP Hello World

<html>
 <head>
 <title>PHP Test Page</title>
 </head>
 <body>
 <?php
 echo '<p>Hello World!</p>';
 ?>
 </body>
</html>

Andrea G. B. Tettamanzi, 2019 21

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

