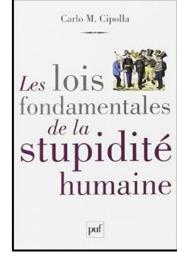


## Pourquoi la stupidité? La parole aux agents

Andrea G. B. Tettamanzi, I3S / EPC Wimmics (travail effectué avec Célia da Costa Pereira, I3S)














- C. Cipolla (1976). The Basic Laws of Human Stupidity.
- Ton ironique, mais dans la plupart des cultures, l'humour permet de dire les vérités qui fâchent sans violer les normes sociales.
- Prise au sérieux, la théorie de Cipolla devrait nous permettre de faire des affirmations falsifiable.
- La théorie de l'évolution de Darwin est bien corroborée.
- La théorie de la stupidité humaine de Cipolla est-elle compatible avec la théorie de l'évolution de Darwin ?
- Sous quelles conditions les deux théories ne se contredisent pas ?
- Pour répondre à ces questions, nous avons utilisé la modélisation basée sur le agents.

## Modélisation basée sur les agents

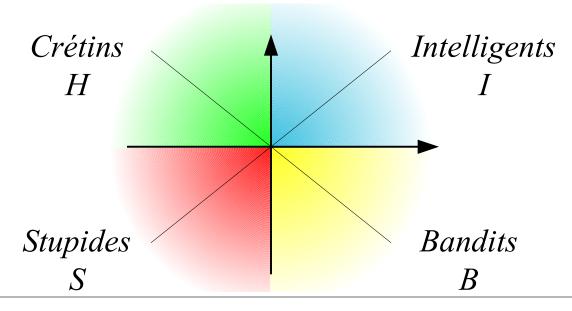
- Un outil pour l'étude des systèmes complexes
  - Alternatif / complémentaire aux outils mathématiques
  - Avantage : description plus réaliste
- Pourquoi l'utiliser ?
  - Nous vivons dans un monde de plus en plus complexe
  - Certains systèmes ont toujours été complexes mais nous ne disposions pas d'outils adaptés pour les analyser
  - Systèmes biologiques, écologie
  - Économie, systèmes sociaux, réseaux sociaux
- La disponibilité en augmentation constante de micro-données permet désormais des micro-simulations
- Puissance de calcul de moins en moins chère

## Comment ça marche ?

#### Agents

- Entités discrètes avec leurs propres objectifs et comportements
- Autonomes, capable d'adapter et modifier leurs comportements

#### Hypothèses


- On peut décrire certains aspects-clefs des comportements
- On peut décrire les mécanismes d'interaction entre les agents
- On peut (re-)construire des processus et des systèmes complexes de façon ascendante

#### Exemples

- Personnes, groupes, organisations, insectes sociaux, cellules, etc.
- Sociétés, marchés, organismes, essaims, métabolismes, etc.
- Les agents peuvent être variés et hétérogènes

## La théorie de Carlo Cipolla

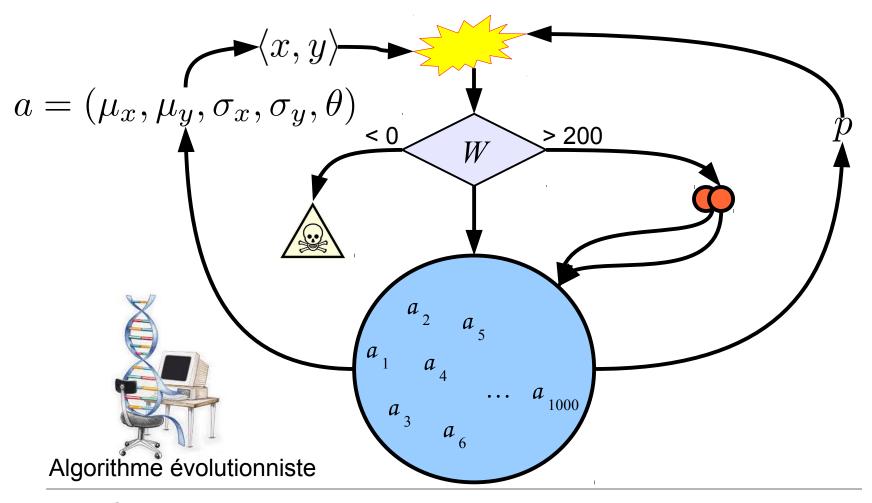
- Modèle abstrait du comportement social d'un agent :
  - X: gain (perte) moyen que ses actions entraînent pour lui-même
  - Y: gain (perte) moyen causé aux autres par ses actions



## Les cinq « lois » de la stupidité humaine selon Carlo Cipolla

- 1. Toute estimation numérique de la fraction  $\sigma$  des stupides se révèle toujours et inévitablement une estimation par défaut
- 2. La probabilité qu'une personne soit stupide est indépendante de toute autre caractéristique de cette personne
- 3. Un stupide est celui qui entraîne une perte pour les autres tout en n'en tirant lui-même aucun bénéfice et en s'infligeant éventuellement des pertes
- 4. Les non-stupides sous-estiment toujours le pouvoir des stupides de faire des dégâts
- 5. Un stupide est le type de personne le plus dangereux






- Une conséquence de la 1<sup>ère</sup> et de la 2<sup>ème</sup> loi de Cipolla est que les stupides doivent constituer la majorité de tout échantillon
- Contradiction apparente avec la sélection naturelle :
  - Les stupides et les crétins devraient avoir un désavantage compétitif vis-à-vis des individus plus opportunistes
  - À long terme, on s'attendrait que les individus rationnels (= intelligents + bandits) prennent le dessus
- Des possibles hypothèses explicatives (à tester) :
  - Les dégâts causés par les stupides neutralisent la sélection
  - Les stupides sont moins sensibles aux pertes infligées par autrui
  - La fraction observée est un effet de conditions initiales particulières
  - Etc...

## Un modèle basé sur les agents

- Actions des agents gouvernées par une loi normale bivariée
- Agents comme individus d'un algorithme évolutionniste
- Génome d'un agent :  $(\mu_x, \mu_y, \sigma_x, \sigma_y, heta)$
- « Patrimoine » des agents dans la population initiale = 100
- Mort si patrimoine < 0; division asexuée si patrimoine > 200
- Cycle d'interaction des agents (= 1 période de la simulation) :
  - An agent « actif » extrait au hasard de la population
  - An agent « passif » extrait au hasard des agents restants
  - <x, y> extrait de la loi de probabilité de l'agent actif
  - Patrimoine de l'agent actif mis à jour selon x
  - Patrimoine de l'agent passif mis à jour selon y

## Un modèle basé sur les agents



## Modélisation des hypothèses à tester

- Jeux à somme zéro ?
  - Redistribution du patrimoine lors des transferts
- Transfert de patrimoine
  - Linéaire et symétrique
  - Logarithmique ou hyperbolique et asymétrique
- Agents rationnels savent se défendre des bandits
  - Facteur de défense
- Stupides moins sensibles aux pertes
  - Les effets x et y des interactions sont "relativisés" en fonction des caractéristiques de l'agent qui les ressent

## Distribution du patrimoine

- En général, ce n'est pas un jeu à somme zéro :
  - Si la plupart des agent agit intelligemment, la population jouira d'une augmentation nette du patrimoine
  - Si la plupart des agent agit stupidement, le bien-être global de la population diminuera et rien n'empêche qu'elle arrive à l'extinction
- On peut forcer la somme zéro en redistribuant le surplus ou la perte nette de patrimoine de manière proportionnelle parmi tous les agents de la population après chaque interaction

## Transfert du patrimoine

#### Linéaire

$$W_{t+1}^a = W_t^a + x$$
  $W_{t+1}^p = W_t^p + y$ 

#### Logarithmique

$$W_{t+1}^{a} = \begin{cases} W_{t}^{a} + x, & \text{si } x \leq 0; \\ W_{t}^{a} + \log(x+1), & \text{sinon}; \end{cases}$$

#### Hyperbolique

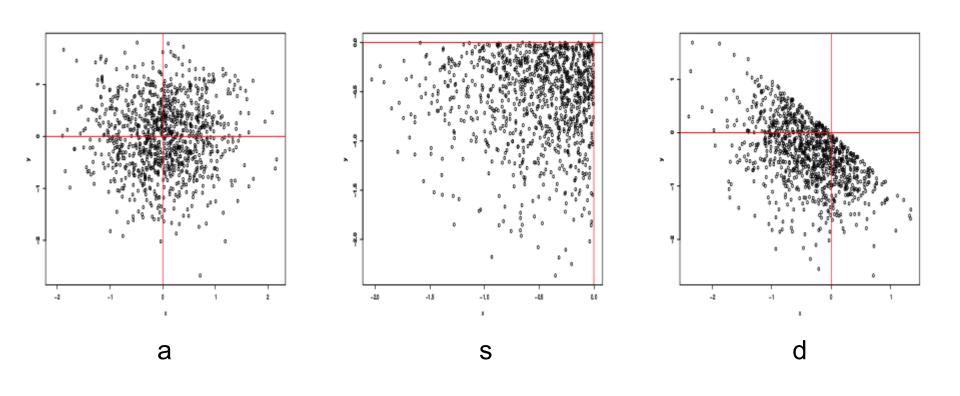
$$W_{t+1}^{a} = \begin{cases} W_{t}^{a} + x, & \text{si } x \leq 0; \\ W_{t}^{a} + \frac{x}{x+1}, & \text{sinon}; \end{cases}$$

#### Défense

- Pour modéliser le fait que les agents rationnels sont plus avisés
- Les agents rationnels sont capables de construire des défenses contre les bandits (mais en aucun cas contre les stupides, par la 4<sup>ème</sup> et la 5<sup>ème</sup> loi de Cipolla)
- Lors d'une interaction, si l'agent actif se comporte comme un bandit (c-à-d, x > 0 et y < 0), x et y sont escomptés en les multipliant par un « facteur de défense » 1 – δ, où

$$\delta = \frac{\mu_x^p}{\mu_x^p + 1}$$

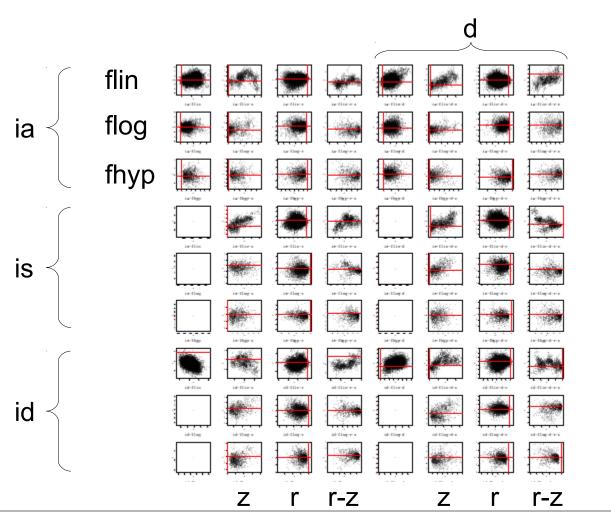
#### Relativisation des effets des interactions

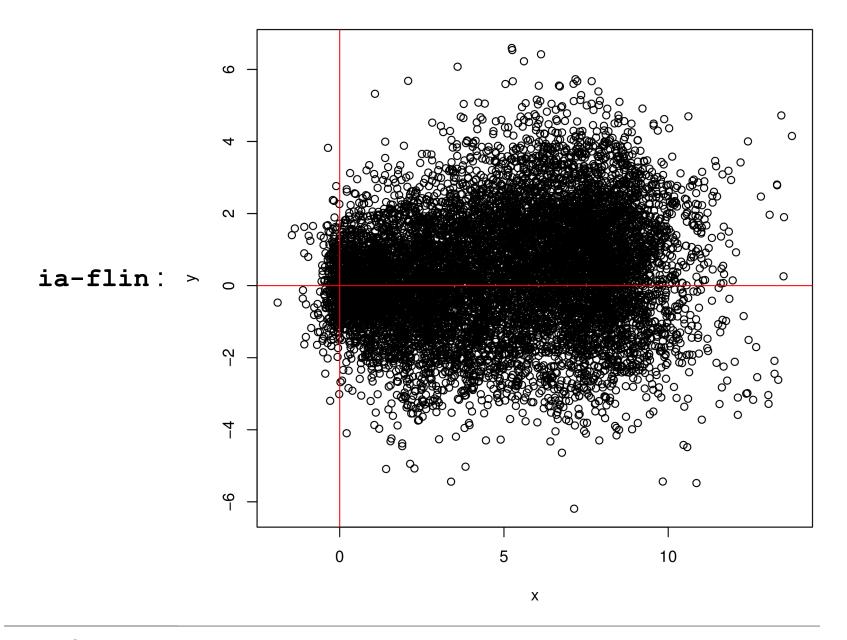

- Pour modéliser l'hypothèse que les agents stupides sont plus résistants que les autres aux dégâts infligés par leurs pairs
- Les effets x et y d'une interaction sont « relativisés » par rapport au  $\mu_x$  de l'agent qui les ressent (qu'il soit actif ou passif)
- Le patrimoine de l'agent actif sera mis à jour en fonction de

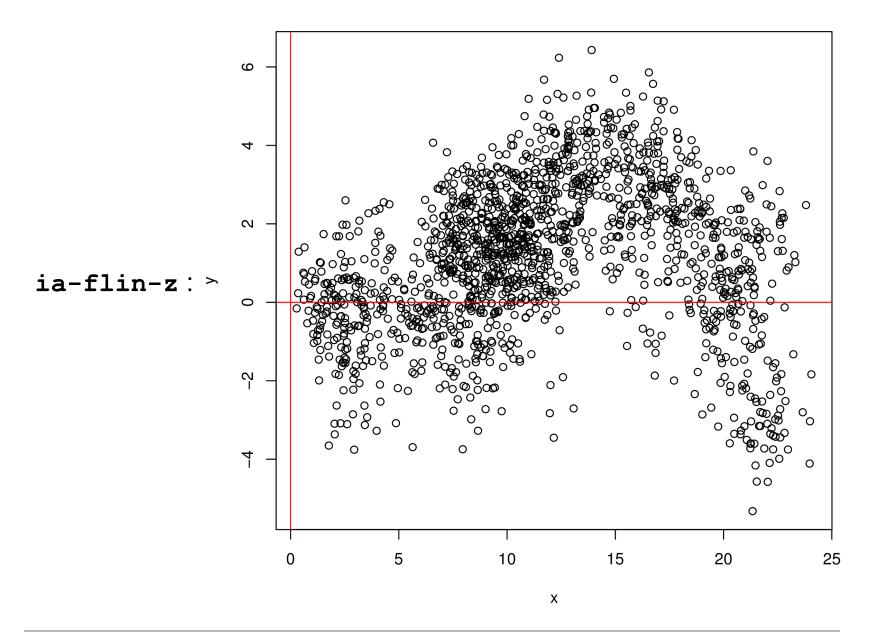
$$x - \mu_x^a$$

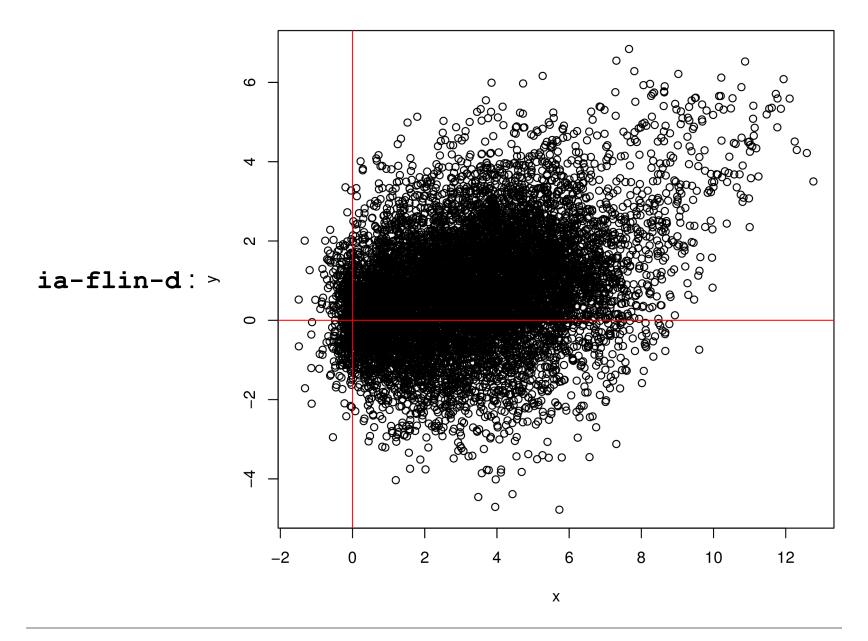
Le patrimoine de l'agent passif sera mis à jour en fonction de

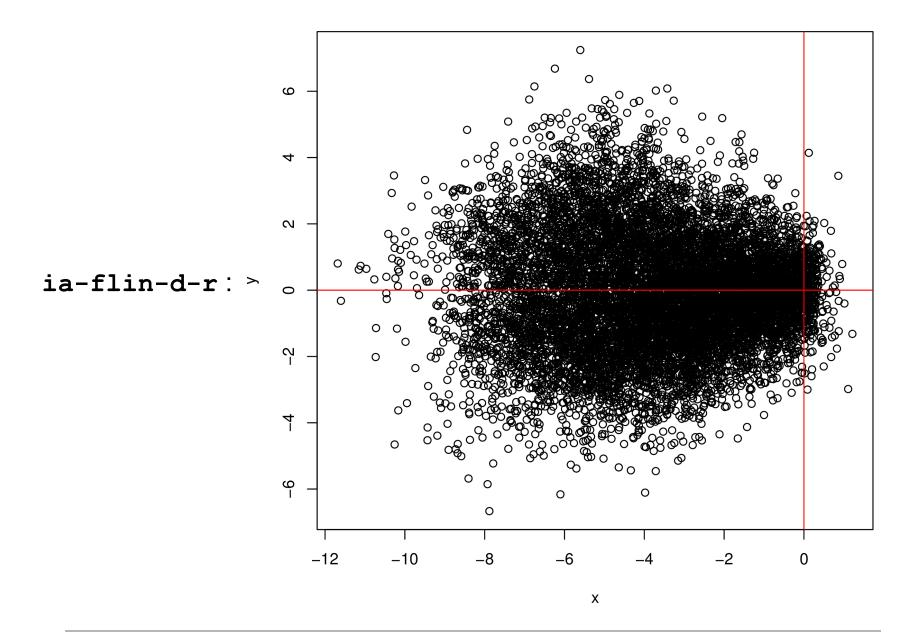
$$y-\mu_x^p$$


### Distribution initiale

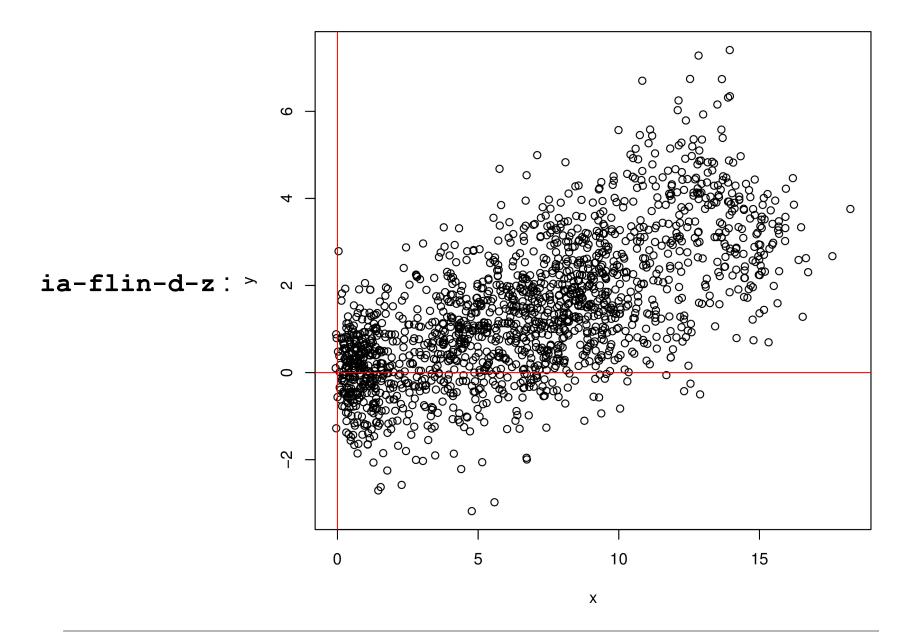




## Protocole expérimental

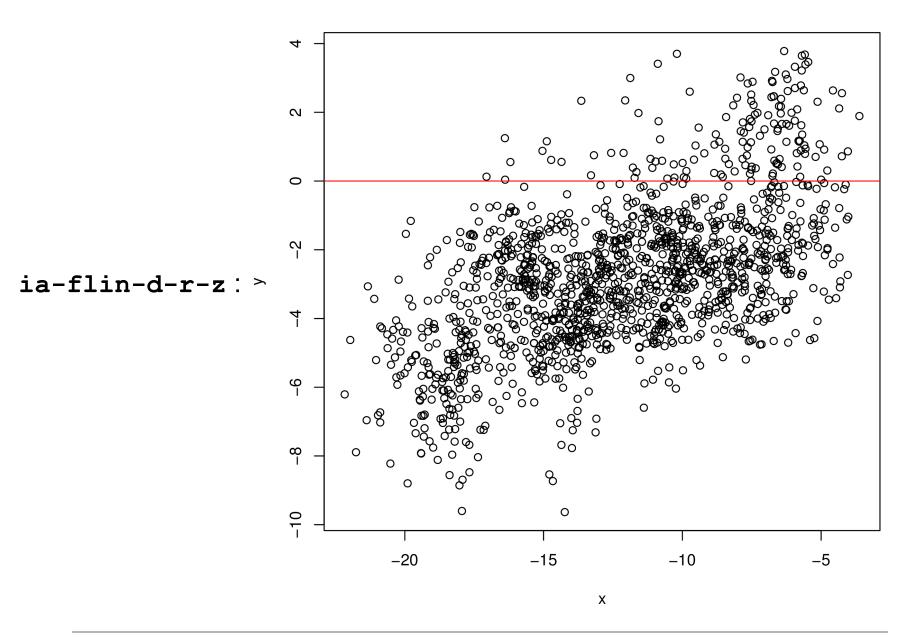

- Essayer toutes les combinaisons des paramètres suivants :
  - − Distribution initiale : i = a | s | d
  - Fonction de transfert : f = linéaire | logarithmique | hyperbolique
  - Facteur de défense : d = oui | non
  - Effets relativisés :  $r = oui \mid non$
  - Jeu à somme zéro :  $z = oui \mid non$
- Cela donne un total de 72 combinaisons
- Nom en code systématique des combinaisons :
  - Exemple: ia-flin-d-r-z
- Population initiale: 1 000 agents. Max: 10 000 agents
- Temps de simulation : 1 000 000 de périodes


#### Résultats: distributions finales





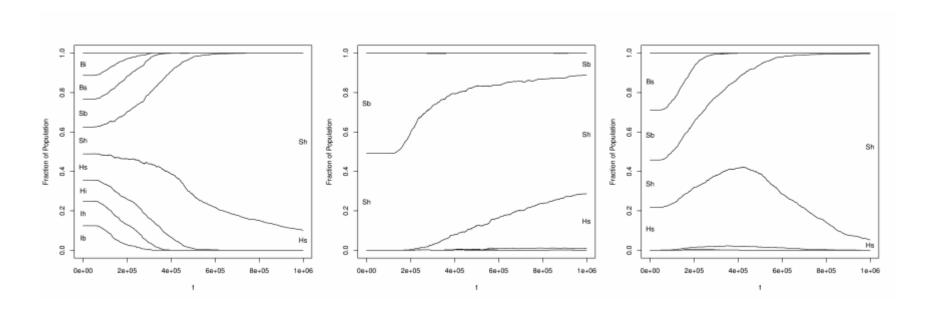


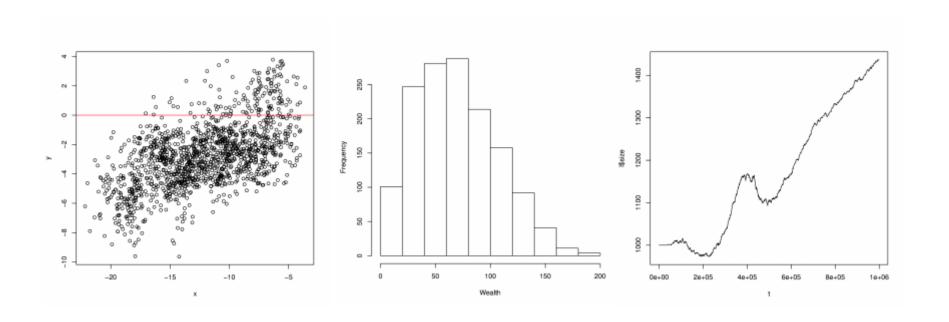



Andrea G. B. Tettamanzi, 2015




Andrea G. B. Tettamanzi, 2015




#### Résultats : observations

- Un premier examen des distributions finales révèle que :
  - La relativisation des effets est essentielle pour la survie et prolifération des stupides
  - Si on se concentre sur les simulations avec  $\mathbf{r}$  = oui, les distributions les plus prometteuses s'observent lors que le jeu à somme zéro est appliqué
  - La seule combinaison qui produit une prépondérance de stupides à partir d'une distribution initiale "neutre" est ia-flin-d-r-z, qui utilise le facteur de défense
  - Une distribution initiale biaisée vers les stupides semble favoriser la prévalence des stupides dans la population finale
- En tout, huit combinaisons de paramètres ont engendré une distribution finale avec une majorité de stupides

# Évolution de la composition de la population



### **Simulation** ia-flin-d-r-z



Distribution finale

Distr. finale patrimoine

Taille population

#### Conclusion

- Certaines combinaisons de paramètres font émerger des comportements en ligne avec la théorie de Cipolla
- La plus prometteuse : ia-flin-d-r-z
- L'application du jeu à somme zéro semble critique
  - Pas évident et nécessite d'une explication
  - L'utilité subjective des agents dépend en quelque sorte du bien-être de leurs pairs... Jalousie ?
- Ce n'est qu'un premier pas
- Les travaux futurs pourraient inclure :
  - reproduction sexuée
  - Propensions différentes à se reproduire
  - etc.

## **Applications**

- Cette étude n'est pas une fin en soi
- Trop souvent, on fait l'hypothèse que les agents sont rationnels
- Cela n'est clairement pas le cas pour plusieurs phénomènes réels
- Simulation réaliste de :
  - Circulation routière
  - Mouvements de foule
  - Bulles financières
- Dans les réseaux sociaux :
  - Modèles de confiance



#### Travaux connexes

- Lendrem, Lendrem, Gray, and Isaacs. The Darwin Awards: Sex differences in idiotic behaviour. The BMJ, 2014;349:g7094.
  (Merci à Alain Giboin pour m'avoir fait remarquer cela!)
  - 88.7% des gagnants des Prix Darwin sont mâles
  - Une telle différence est statistiquement très significative :
    - $\chi^2 = 190.30$ ; P<0.0001
  - Cela suggère une enquête plus approfondie
  - Où se situent les gagnants des Prix Darwin sur le plan XY ?

#### Référence

Andrea G. B. Tettamanzi and Célia da Costa Pereira.

« Testing Carlo Cipolla's Laws of Human Stupidity with Agent-Based Modeling ».

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2014)

(Prix pour le meilleur article)