
Heavy and Light
Virtualization

Guillaume Urvoy-Keller

UCA/I3S

2

Outline

➢ Part I

➔ What is virtualization : a �rst de�nition

➔ Why virtualizing?

➔ The new features offered by virtualization

➔ The various virtualization solutions

➢ Part II : Nuts and bolts of Hypervisors

➔ Refresher on computer architecture and the harware/OS/Application interfaces

➔ Popek and Golberg criteria for virtualizing an ISA

➔ Details on Vmware player

➔ Hardware support: Intel-VT and AMD-V

➢ Part III : Nuts and bolts of Containers

➔ Namespaces

➔ Docker

3

Part I: Introduction

4

Introduction

➢ Set of techniques to enable several OS to run

simultaneously on a physical machine/server (≠

multi-boot)

➢ Virtualization entails a specific layer called
a hypervisor, a.k.a, virtual machine
monitor (VMM)

➔ Mediator between physical resources and the OSes
that are virtualized

5

➢ Processors features two modes : user and kernel

Virtualization = unpriviledging an OS

OS

apps

kernel

mode

user

mode

6

Unpriviledging an OS

OS

apps

kernel

mode

user

mode

virtual machine monitor

OS

apps

OS in user
mode is called
Guest OSGuest OS

7

Hypervisors Zoo

➢ For servers :

➔ VmWare Vsphere ~ 60% market share

➔ Microsoft Hyper-V ~ 20%

➔ Citrix XenServer ~ 4% - Amazon Web Services

➔ QEMU/KVM – default openstack deployements

➢ For clients

➔ Oracle Virtualbox

➔ Vmware player

➢ Source :
http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtua
lization-market-cm316783

http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783
http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783

8

Why virtualizing?

➢ In the 90s, cost of servers decreased gradually

➢ Software editors (Microsoft, distribution Linux)
advocate one application/service per server �

➔ One DNS server

➔ One mail server

➔ One NFS server

➢ Each server with speci�c OS version and libraries

➢ Servers isolation

9

Why virtualizing

➢ Net result:

➔ A host of servers in servers rooms (data centers)

➔ 80% have an average utilization below 10%

➔ Maintenance/operational costs increase with the number of servers

➔ Server rooms are not in�nitely extensible lack of�

 place

➔ Non negligible electricity/air conditioning cost

10

Why virtualizing

➢ Servers are less expensive but also more powerful

➔ 64 bits multi-core with tons of RAMs are the norm

➔ One server in 2009 is roughly estimated to be one order of
magnitude more powerful than a server in 2004

➢ Replacing servers on a one to one basis is not an
option any more

➢ Still, one wants to ensure service isolation

11

Advantages of virtualization

➢ Consider a company that has virtualized its IT

➢ Typical set-up for an SME:

➔ Two high-end servers, a SAN (Storage Area Network) to
share/consolidate storage between the servers

➔ Licences, e.g., Vmware

➔ Training cost for IT service

SANSource : http://oracle-base.com

12

Advantages of virtualization

➢ Cost reduction

➔ 20 to 40% (even if you had a a few tens of servers before and
just 2 after)

➢ More space in the server room

➢ New functionalities

13

Virtualization: New features

➢ Migration of VM from one physical server to the other one

➔ In case of failure (rare) higher availability�

➔ Maintenance of physical servers (more often)

14

Virtualization: New features

➢ Fast start-up of new machines through a GUI:

➔ Pick number of CPU, amount of memory, disk type and size, network access, OS

➔ Indicate where the ISO image of OS

➔ Start installation

➢ Using ISO takes time

➔ Use of templates(one for Linux Debian, etc) that are duplicated (aka clone in
the virtualization world) on the Hy

➔ Called images in Virtualization world

✗ Vagrant images, AMI (Amazon Images), Docker images

➢ Current trend : automatic preparation of images out of ISO

➔ See Packer https://packer.io/

15

Virtualization: New features

➢ Snapshots of VM stage

➢ Example :

➔ You want to update a library/software but you are unaware of �nal
outcome

➔ You can :

✗ Make a snapshot

✗ Install the library/software

✗ Roll-back time if it is not satisfactory

➔ Also used by hypervisor when freezing (stopping/saving) a virtual
machine

16

Snapshots

Source : https://www.altaro.com/vmware/wp-content/uploads/2017/02/022817_1130_Workingwith1.png

17

Virtualization: New features

➢ Isolation

➔ Virtualization still enforces the one server per machine rule

➔ If one VM is compromised, the other services remain safe

➢ On the Hy recon�guration of VMs more CPU, more memory, new virtual disks�

➢ Easier con�guration of VM as hypervisor always displays the same interface to the VM

➔ This is the hypervisor that handles the gory details, e.g., supports of SSD drive while
VMs are exposed always an SCSI drive no need to install driver in VMs!!!!�

18

Various types of virtualization

➢ Different types:

➔ Bare-metal (native) versus host-based ..versus
KVM/QEMU

➔ Virtual versus para-virtual.. versus hardware assisted

➔ Container-based versus hypervisor-based

19

Bare metal vs. host-based

➢ Bare-metal :

➔ Layer 1

➔ Production servers, data centers

➔ Hypervisor seats directly on top of hardware

✗ Machine boots on hypervisor directly

✗ Installed as an OS

➔ Examples :

✗ VMware VSphere Hypervisor

✗ Microsoft Hyper-V

✗ Citrix XenServer

20

Bare metal vs. host-based

➢ Host-based

➔ Hypervisor is an application running in an existing OS

➔ Layer 2 virtualization

➔ Typically deployed on end-user machines

✗ VMware player

✗ Virtualbox

Source : wikipedia

21

Bare metal vs. host-based

➢ KVM – Kernel Virtual Machine

➔ Support of virtualization in Linux kernel

➔ Not an hypervisor per se

➢ Need QEMU – Quick emulator

➢ Layer 1 in terms of perf

➢ Layer 2 in style…

➢ Default in Openstack
Source :

22

Full vs. Para-virtulization

➢ Key question : is there a need to patch the guest OS?

➔ No full virtualization�

✗ Direct support by hypervisor

✗ VMware approach

➔ Yes para-virtualization�

✗ A (typically small) part of the kernel is patched to interact with

 hypervisor

✗ Better performance

✗ Used by Xen initially

➢ Current trend : no patch but installation of guest additions
inside OS

23

Hardware assisted Virtualization

➢ Intel and AMD propose various solutions to support virtualization at
hardware level ease of hypervisor task�

➢ Intel VT-x, AMD-V

➢ Enable OS of virtual machines to do more actions natively addition of a �
duplicated structures within processor and a new control level called (-1) for
hypervisor

24

Container-based vs. Hypervisor-based

➢ Rather than using an hypervisor, the container
approach shares kernel among VM

➢ On a typical server :

➔ 10-100 virtual machines

➔ 100-1000 containers

➢ A container is a group of processes on a Linux host,
grouped together in an isolated environment.

➔ Use of namespaces so as to assign to a set of processes : isolation,
their own network stack (interfaces, sockets, routing), volumes

➔ Use of cgroups to assign resources to processes, eg., CPU share,
memory limit

25

Container-based vs. Hypervisor-based

➢ Inside the box, it looks like a VM.

➢ Outside the box, it looks like normal processes.

➢ A container might not contain a full VM, it might
contain simply process, eg. Apache or MySQL server.

➢ Container engines:

➔ LXC (LinuX Containers – August 2008)

➔ Docker (started in March 2013)

➔ Openvz (started in 2005)

26

Container-based vs. Hypervisor-based

➢ Typical arguments for container approach

➔

Source : http://goo.gl/bFHSh

No virtualisation

27

Around virtualization: management of
VMs, containers, virtual network

➢ Management of VMs

➔ Vmware Vsphere, Citrix Xen are hypervisors and can offer
management of a handful nodes of the same type (ESX servers
only or Citrix Server only)

➔ Vagrant: Management of VMs a hypervisor independent approach

✗ Notion of images (boxes in Vagrant)

✗ Provisioning of VM: Puppet, Chef, Ansible to con�gure

 automatically the VMs

✗ A single �le that includes everything

28

Vagrant.le (excerpt)

29

Around virtualization: management of
VMs, containers, virtual network

➔ Cloud platforms to orchestrate at a larger scale, with possibly different
hypervisors

✗ Openstack

✗ Each function (management of VM, of network, of volumes, of identities) is a component

✗ Nova: compute nodes (hypervisors)
✗ Cinder : volumes
✗ Neutron : network

✗ Components interact through a REST API

✗ Compute nodes (physical servers) might run different hypervisors: KVM, Xen, Citrix, etc

30

Around virtualization: management of
VMs, containers, virtual network

➢ Orchestration of containers

➔ Single server level: Docker, LXC

➔ Several servers level: Docker Swarm

➢ Advanced orchestration: Kubernetes

31

Part II: the nuts and bolts of
(hypervisor-based) virtualization

32

Refresher on computer architecture and OS
➔ Computer Components

➔ ISA (Instruction Set Architecture)

➔ Operating System

33

33

34

Processor

➢ Nowadays processors

➔ Several cores

➔ Multithreading 2 processes sharing the same core�

➢ Consequence: if you have p processors with c core and
multithreading, VMware, Xen and others will expose 2 * p * c
vCPU (virtual CPUs)

➢ We talk hereafter about processor by referring to a basic
computation unit (a processor or a core or half a core..)

➢ Important : at a given time instant, a processor is servicing a
single program:

➔ Either a user program (processor in user mode)

➔ Or the OS (processor in kernel mode)

35

ISA

➢ Architecture of a processor de�nes

➔ A set of resources : memory, registers, ...

➔ A set of instructions that operate on registers and memory

➢ De�nition of storage resources + instructions Instruction Set �

Architectures (ISA)

➢ One distinguishes :

➔ User instructions for programs computations�

➔ System instructions for OS management of resources�

36

37

Registers

➢ Generic(aka working) registers

➔ Can host different types of values

➢ Typed registers: for speci�c operands

➔ ISA dependent

➔ ex: pointers towards memory segments in Intel IA-32 ISA

➢ Speci�c registers:

➔ Program counters: index of current instuction

➔ Condition

38

User ISA

➢ Four main categories

➔ Load/store memory ↔ registers

➔ Integral/logical operations and shifting

➔ Floating point operations

➔ Branching and jumps

39

System ISA

➢ Processors features several execution modes :

➔ In general 4, from 0 to 3

➔ Windows and Unix use levels 0 and 3

➔ Level 0 : system mod for OS to control and share fairly resources

among programs

➔ Level 3 : user programs

➢ Execution mode is stored in a speci�c register

40

System registers

➢ Time Register

➢ Traps and interruptions registers

➢ Traps and interruptions masking registers

➢ Page table pointer

➔ Mapping between logical and physical spaces. Kept in RAM

➔ “Page table pointer” points to the memory location of this table

41

Traps and interruptions

➢ Traps and Interruptions lead to a transfer of control
of processor to OS

➢ Interruption: request from an I/O device to the OS

➢ Trap:

➔ An error during the execution of an instructions(page fault ,
division by 0, ..)

or

➔ An explicit demand from a program

42

System ISA : management of processor

➢ OS must be able to hand over control of the

processor to a user program

➔ Jump to an instruction of a user program

➔ Modi�cation of execution state register

➢ … and must be able to gain control later again

➔ Thanks to a timer that will generate an interruption

43

System ISA : I/O management

➢ Can be speci�c instructions

➢ Can be speci�c addresses translated as instructions
to be executed by memory controller

➢ Wide variety of I/O devices ISA offers in general �
only a few basic instructions

➔ OS in charge of communication with devices through the device driver

44

Refresher on Operating system

4

4

45

OS tasks

➢ Manage resources on behalf of user programs

➔ Time multiplexing of processor

➔ Management of physical memory via page table and TLB

✗ When page error, OS takes over control of CPU

➔ I/O management:

➔ Processes perform requests to OS via system calls (that result in traps)

➔ OS uses device drivers (that are added to OS) to control devices

46

47

Interface with OS

➢ User mode ISA directly accessible to user programs

➢ ABI (Application Binary Interface) is the interface with OS

➢ API: high-level libraries (as compared to ABI)

➢ System calls:

➔ Process management, ex : fork()

➔ Memory management, ex : malloc()

➔ I/O, ex : . read()

➢ Abstraction of traps and interruptions at ABI = signals

48

ISA, ABI, API

49

L1 and L2 hypervisors from the inside

4

9

50

Management of VM states

➢ Hypervisor must store complete VM state when switching

from one VM to the next VM :

➔ Registers

➔ Page table (of guest OS)

➔ I/O

➢ Two main options for context switching:

➔ Indirection – inef�cient because operation between register

imposes several memory accesses

➔ Copy – possible if same ISA between guest and host (the

51

 Fig 8.3

52

Global control by Hypervisor

➢ VMM (=hypervisor) must be able to get back

control of processor when VMs

➔ Equivalent to time multiplexing of OS (dealing with user

 programs)

➔ Same objective: fairness

➢ How? VMM manages the time timer

➢ As guest OSes need also this timer, one needs

emulate this timer for guest OSes

53

Global control by Hypervisor

54

Virtualization of resources – processor

➢ Two main approaches

➢ Emulation

➔ Mandatory if guest and host (physical) ISA are different

✗ Ex: you want to test an Android program on a different

 architecture

➢ Direct execution (same ISA) :

➔ Faster than emulation

➔ Some instruction must be emulated anyway:

✗ Instructions sent by user program can be executed as is

✗ Instruction sent by guest OS must often be emulated

55

Conditions for an ISA to be

virtualizable
➢ Article Popek and Goldberg 1974

➔ Virtualization dates back to the mainframe age

➢ Hypotheses (short version) :

➔ Hardware = 1 (unique) processor

➔ Processor has 2 modes : system and user

➔ Some instructions can only be executed in kernel mode

➢ I/O non considered in article, but results can be extended to this

case

56

Sensitive vs. non sensitive instructions

➢ Sensitive instructions:
✗ Modify the con�guration of resources, e.g. memory or execution

mode (control type)

✗ Ex : SPT - Set CPU timer (IBM/370)

✗ Whose result depend on resource state (behavioral type)

✗ Ex : Load Real Address (IBM/370)

✗

➢ Instructions that are neither of control nor

behavioral type are called benign (non sensitive)

57

Popek and Goldberg

Property : sensitive instructions must form a subset of

privileged instructions

58

Job of hypervisor if Popek and Goldberg

conditions are met
➢ Non sensitive instructions can be executed

natively (no interference of hypervisor) → speed

➢ Hypervisor keeps control of resources : a user
program or the guest OS cannot modify system
resources (as processor has to be in kernel mode)

59

Job of hypervisor if Popek and Goldberg
conditions are met

➢ If the set of sensitive instructions is a subset of

privileged ones, the job of hypervisor is easy: wait

for traps (errors from guest OS or guest programs)

and patch:

➔ If an error by guest OS, do the job and give

back hand to the guest OS

➔ If an error by guest program, give back hand to

guest OS

60

Job of hypervisor if Popek and Goldberg

conditions are met: Wait for traps!!!

61

 Intel ISA x86 case

➢ “Analysis of the Intel Pentiums Ability to Support a

Secure Virtual Machine Monitor” USENIX 2000, J.

Robin, C. Irvine

➢ Over the 250 instructions, 17 are sensitive but not

privileged (they are called critical)

➔ Example: popf

✗ Popf in user mode: change ALU Hag

✗ Popf en kernel mode: change ALU and system Hag

✗ No trap in user mode

62

 Consequence : if popf
executed by guest
OS, it will not trapped
but system flag won't
be modified → guest
OS will be in
inconsistent state!!!

 Similar problem in
other ISAs.

 Solution: VMM
intercepts and
“patches”

63

63

Hypervisor job: track critical

instructions
➢ Hypervisor must scan code and patch instructions before execution

➢ Challenge : code can branch and it is dif�cult to know which

branch will be used in advance

64

Processor Virtualization: summary

➢ Popek and Goldberg conditions not met by ISA in
general

➢ Hypervisor must scan code

➔ Only when guest OS is in function

➢ It must patch

➢ Above operation is called Binary Translation

➔ VMware is an expert in this area

65

 One of the most complex tasks in virtualization
because there is a LOT of I/O devices

 General approach: offer a clean interface to guest
OS

I/O Virtualization

66

I/O Virtualization

➢ Typology of devices:

➔ Dedicated. Ex: screen, keyboard.

➔ Partitioned. Ex : disks

➔ Shared. Ex: NIC

➔ Spooled. Ex : printer. Shared, but at a high level of

granularity(files in spooler). In practice, printers often

accessed through network

➔ Non existing. Ex : virtual switch to interconnect VM in the

same physical machine

67

 Options:
◦ System calls?
◦ Drivers?
◦ I/O operations?

 Solution used: driver level

Where can we virtualize I/O?

68

Driver level

➢ Call to driver via system call

➢ For hypervisor to intercept this call, it must know

details of the guest OS and of driver too complex�

➢ Alternative approach: offer a normalized interface

to device(e.g., always the same Intel Ethernet card,

irrespectively of physical one) and provide a

speci�c driver to guest OS to intercept and translate

requests.

➢ This entails that hypervisor has drivers for real device

69

Virtualization at driver level : the case of
Xen

➢ Dom U: VMs

➢ Dom 0 : drivers

