Heavy and Light
Virtualization

Guillaume Urvoy-Keller
UCA/I3S

Outline

> Part 1

> What is virtualization : a first definition
> Why virtualizing?
> The new features offered by virtualization

> The various virtualization solutions
> Part II : Nuts and bolts of Hypervisors

> Refresher on computer architecture and the harware/OS/Application interfaces
> Popek and Golberg criteria for virtualizing an ISA

> Details on Vmware player

> Hardware support: Intel-VT and AMD-V

> Part III : Nuts and bolts of Containers

> Namespaces

> Docker 2

Part I: Introduction

Introduction

> Set of techniques to enable several OS to run
simultaneously on a physical machine/server (#
multi-boot)

> Virtualization entails a specific layer called
a hypervisor, a.k.a, virtual machine
monitor (VMM)

> Mediator between physical resources and the OSes
that are virtualized

Virtualization = unpriviledging an OS

> Processors features two modes : user and kernel

user
mode

kernel

mode
5

OS in user
mode is called

Guest OS

Unpriviledging an OS

user
mode

kernel
mode

Hypervisors Zoo

> For servers :

> VmWare Vsphere ~ 60% market share

> Microsoft Hyper-V ~ 20%

> Citrix XenServer ~ 4% - Amazon Web Services
> QEMU/KVM - default openstack deployements

> For clients

> QOracle Virtualbox

> Vmware player

> Source :

http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtua
lization-market-cm316783

http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783
http://www.nasdaq.com/article/growing-competition-for-vmware-in-virtualization-market-cm316783

Why virtualizing?

> In the 90s, cost of servers decreased gradually

> Software editors (Microsoft, distribution Linux)
advocate one application/service per server —

> One DNS server
> One mail server
> One NFS server

> Each server with specific OS version and libraries

> Servers 1solation

Why virtualizing

> Net result;

> A host of servers in servers rooms (data centers)
> 80% have an average utilization below 10%
> Maintenance/operational costs increase with the number of servers
> Server rooms are not infinitely extensible — lack of
place

> Non negligible electricity/air conditioning cost

Why virtualizing

> Servers are less expensive but also more powerful

> 64 bits multi-core with tons of RAMs are the norm

> One server in 2009 1s roughly estimated to be one order of
magnitude more powerful than a server in 2004

> Replacing servers on a one to one basis 1s not an
option any more

> Still, one wants to ensure service 1solation

10

Advantages of virtualization

> Consider a company that has virtualized its I'T
> Typical set-up for an SME:

> Two high-end servers, a SAN (Storage Area Network) to
share/consolidate storage between the servers

> Licences, e.g., Vmware

> Training cost for IT service

public network
]public(ethO) public (ethO)l
private (eth1)
Source : http://oracle-base.com SAN
node1 node2 ‘

% 11

sharable virtual disks

Advantages of virtualization

> Cost reduction

> 20 to 40% (even if you had a a few tens of servers before and
just 2 after)

> More space 1n the server room

> New functionalities

12

Virtualization: New features

> Migration of VM from one physical server to the other one

> In case of failure (rare) — higher availability

> Maintenance of physical servers (more often)

13

Virtualization: New features

> Fast start-up of new machines through a GUI:

> Pick number of CPU, amount of memory, disk type and size, network access, OS
> Indicate where the ISO image of OS

> Start installation

> Using ISO takes time

> Use of templates(one for Linux Debian, etc) that are duplicated (aka clone in
the virtualization world) on the fly

> Called images in Virtualization world
» Vagrant images, AMI (Amazon Images), Docker images

> Current trend : automatic preparation of images out of ISO

> See Packer https://packer.io/

14

Virtualization: New features

> Snapshots of VM stage
> Example :
> You want to update a library/software but you are unaware of final

outcome

> Youcan :
~ Make a snapshot
« Install the library/software
~ Roll-back time if it is not satisfactory

> Also used by hypervisor when freezing (stopping/saving) a virtual
machine

15

(4 Back)

Snapshots

- Win el B e | (B Actions v
Getting Started Summary Monitor Configure Parmissions | Snapshots | Datastores Networks

P 2| 8 8

v [vesab5-a vsphereds local
w [T Altaro Backups
« [[7) Discovered virtual machine
w [Templates
[J Cent0S7-Minimal
(A Centos7_Template
[J Windows7-Template

{#® Centos

Actions - Windows 7
% Windows | o

Power

Guest 0S

Snapshots
#F Open Console

e Migrate

| / EditSnapshot
X Deiete Snapshot

Delets AN Snapshots Option B - Click on the VM and
: move to the Snapshots tab where
() Pre Windows Update you can select a task from the All
« % Pre Windows Update Actions menu or by clicking on the
w i) Pre Windows Update respective action'lcon

w (L9 Pre Windows Update
w [0 Pre Windows Update ‘
& Pre Windows Update

i Take Snapshot

iigy Revertto Latest Snapshot Podate

i3 Manage Snapshots s Update

Cione » ConsoRie idows Update
Tomolsie ,| Delete All Snapshots { .
. | T w (ig Pre Windows Update
°P‘?9"?‘ - mw-q]}ck on w {{5 Pre Windows Update
thcfr!:'M" :;: :::h :::l* {9 Pre Windows Update
R w iy Pre Windows Update
w (9 Pre Windows Update

Source : https://www.altaro.com/vmware/wp-content/uploads/2017/02/022817_1130_Workingwith1.png

16

Virtualization: New features

> Isolation

> Virtualization still enforces the one server per machine rule
> If one VM is compromised, the other services remain safe

> On the fly reconfiguration of VMs — more CPU, more memory, new virtual disks
> Easier configuration of VM as hypervisor always displays the same interface to the VM

> This is the hypervisor that handles the gory details, e.g., supports of SSD drive while
VMs are exposed always an SCSI drive — no need to install driver in VMs!!!!

Apgplticaticon Applicatian

17

Various types of virtualization

> Different types:

> Bare-metal (native) versus host-based ..versus
KVM/QEMU

> Virtual versus para-virtual.. versus hardware assisted

> Container-based versus hypervisor-based

18

Bare metal vs. host-based

> Bare-metal :
> Layer 1

> Production servers, data centers

> Hypervisor seats directly on top of hardware

x - Machine boots on hypervisor directly
« Installed as an OS
> Examples :
x VMware VSphere Hypervisor
» Microsoft Hyper-V
~ Citrix XenServer

19

Bare metal vs. host-based

> Host-based

> Hypervisor 1s an application running in an existing OS
> Layer 2 virtualization

> Typically deployed on end-user machines

x VMware player o
» Virtualbox S @ e

HYPER
VISOR
HARD
WARE

TYPE 1

native

TYPE 2

(bare metal) hosted

Source : wikipedia 20

Bare metal vs. host-based

> KVM — Kernel Virtual Machine

> Support of virtualization in Linux kernel

> Not an hypervisor per se

> Need QEMU — Quick emulator
> Layer 1 in terms of pert O

a N
> Layer 2 1n style... e
gemu-kvm Process in host system)
> Deftault in Openstack L)
Source :
Mastering KVM —) [

Virtualization ot |

Humble Devassy Chirammal op
Prasad Mukhedkar Anil Vettathu KVM Guest

Full vs. Para-virtulization

> Key question : 1s there a need to patch the guest OS?

> No — full virtualization

~ Direct support by hypervisor
» VMware approach

> Yes — para-virtualization

» A (typically small) part of the kernel is patched to interact with
hypervisor

~ Better performance

~ Used by Xen initially

> Current trend : no patch but installation of guest additions
inside OS

22

Hardware assisted Virtualization

> Intel and AMD propose various solutions to support virtualization at
hardware level — ease of hypervisor task

> Intel VI-x, AMD-V

> Enable OS of virtual machines to do more actions natively — addition of a
duplicated structures within processor and a new control level called (-1) for
hypervisor

Ring 3 [User Application }\

Ring 2

Ring 1 E /0 call

Ring0 | Guestos) |/
privileged

Ring 1 or

Container-based vs. Hypervisor-based

> Rather than using an hypervisor, the container
approach shares kernel among VM

> On a typical server :

> 10-100 virtual machines
> 100-1000 containers

> A container 1s a group of processes on a Linux host,
grouped together 1n an 1solated environment.

> Use of namespaces so as to assign to a set of processes : 1solation,
their own network stack (interfaces, sockets, routing), volumes

> Use of cgroups to assign resources to processes, eg., CPU share,
memory limit

24

Container-based vs. Hypervisor-based

> Inside the box, it looks like a VM.
> QOutside the box, it looks like normal processes.

> A container might not contain a full VM, it might
contain simply process, eg. Apache or MySQL server.

> Container engines:

> LXC (LinuX Containers — August 2008)
> Docker (started in March 2013)
> Openvz (started in 2005)

25

Container-based vs. Hypervisor-based

> Typical arguments for container approach

> saurce: NEEP 1 //g00.gL/bFHSh

Ships Manual Automated Boots in ...
within ... deployment | deployment
takes ... takes ...
No virtualisation days hours minutes minutes
Virtualization | minutes minutes seconds less than a
minute
Lightweight seconds minutes seconds seconds
Virtualization
26

Around virtualization: management of

VMs, containers, virtual network

> Management of VMSs

> Vmware Vsphere, Citrix Xen are hypervisors and can offer
management of a handful nodes of the same type (ESX servers
only or Citrix Server only)

> Vagrant: Management of VMs a hypervisor independent approach

~ Notion of images (boxes in Vagrant)

» Provisioning of VM: Puppet, Chef, Ansible to configure
automatically the VMs

~ A single file that includes everything

VAG RANT

AUTOMATED CobE
vmquLe —_'i
MACHIN
< o e D

... b ‘.. (D;é ‘ a CrPFDf\ BILITY 2 7

SETTINGS RAM oS

Vagrantfile (excerpt)

B —— mode: ruby —x—
vi: set ft=ruby :

A1l Vagrant configuration is done below. The "2" in Vagrant.configure

configures the configuration version (we support older styles for

backwards compatibility). Please don't change it unless you know what

you're doing.

Vagrant.configure(2) do |config|
The most common configuration options are documented and commented below.
For a complete reference, please see the online documentation at
https://docs.vagrantup.com.

Every Vagrant development environment requires a box. You can search for
boxes at https://atlas.hashicorp.com/search.
config.vm.box = "ubuntu/vivid64"

Disable automatic box update checking. If you disable this, then
boxes will only be checked for updates when the user runs

“vagrant box outdated'. This is not recommended.

config.vm.box_check_update = false

Create a forwarded port mapping which allows access to a specific port

within the machine from a port on the host machine. In the example below,

accessing "localhost:8080" will access port 80 on the guest machine.
config.vm.network "forwarded_port", gquest: 5001, host: 5001

Create a private network, which allows host-only access to the machine
using a specific IP.
config.vm.network "private_network", ip: '"192.168.33.10"

Create a public network, which generally matched to bridged network.
Bridged networks make the machine appear as another physical device on
your network.

config.vm.network "public_network"

28

Around virtualization: management of

VMs, containers, virtual network

> Cloud platforms to orchestrate at a larger scale, with possibly different
hypervisors

~ Openstack

~ Each function (management of VM, of network, of volumes, of identities) is a component

~ Nova: compute nodes (hypervisors)
~ Cinder : volumes
~ Neutron : network
» Components interact through a REST API

~ Compute nodes (physical servers) might run different hypervisors: KVM, Xen, Citrix, etc

nova-compute
Cloud Controller
r 5 'S ~ a ~ s 3

Hyper-V VMWare Xen i LibVirt
Compute Node/ Compute Node AV RN
Y
| QEMU UML
|
L | L] 1| (]
—
|
: — —

Around virtualization: management of
VMs, containers, virtual network

> Orchestration of containers dOCkQ(
> Single server level: Docker, LXC

> Several servers level: Docker Swarm

> Advanced orchestration: Kubernetes

With Docker Swarm

30

Part 1I: the nuts and bolts of
(hypervisor-based) virtualization

31

Retresher on computer architecture and OS

> Computer Components
> ISA (Instruction Set Architecture)
> Operating System

32

I High-Speed VO Bus
{ i :

CD ROM

l_‘* g«ﬁgﬁ
0

33
33

Processor

> Nowadays processors

> Several cores

> Multithreading — 2 processes sharing the same core

> Consequence: if you have p processors with ¢ core and
multithreading, VMware, Xen and others will expose 2 * p * ¢

vCPU (virtual CPUs)

> We talk hereafter about processor by referring to a basic
computation unit (a processor or a core or half a core..)

> Important : at a given time instant, a processor 1s servicing a
single program:

> Either a user program (processor in user mode)

> Or the OS (processor in kernel mode)

34

ISA

> Architecture of a processor defines

> A et of resources : memory, registers, ...
> A set of instructions that operate on registers and memory

> Definition of storage resources + instructions — Instruction Set
Architectures (ISA)

> One distinguishes :

> User instructions for programs — computations

> System instructions for OS — management of resources

35

] Speclal-Purpose
User Logical Registers
Memory
Program counter
Condition codes
General-Purpose Floating-Point
Registers Registers
Reg 0 FPreg0
W
Reg 1 FP reg 1
L L

includes a logical (virtual) memory space, a special-purpose register,

general-purpose registers, and floating-point registers.

36

Registers

> Generic(aka working) registers

> Can host different types of values

~ Typed registers: for specific operands

> ISA dependent

> ex: pointers towards memory segments in Intel IA-32 ISA
> Specific registers:

> Program counters: index of current instuction

> Condition

37

User ISA

> Four main categories
> Load/store memory <> registers
> Integral/logical operations and shifting
> Floating point operations
> Branching and jumps

38

System ISA

> Processors features several execution modes :

> In general 4, from O to 3
> Windows and Unix use levels 0 and 3

> Level O : system mod for OS to control and share fairly resources
among programs

> Level 3 : user programs

~ Execution mode is stored 1n a specific register

39

System registers

> Time Register

> Traps and interruptions registers

> Traps and interruptions masking registers

~ Page table pointer
> Mapping between logical and physical spaces. Kept in RAM

> “Page table pointer” points to the memory location of this table

40

Traps and interruptions

> Traps and Interruptions lead to a transfer of control
of processor to OS

> Interruption: request from an I/O device to the OS
> Trap:

> An error during the execution of an instructions(page fault ,
division by O, ..)

or

> An explicit demand from a program

41

System ISA : management of processor

> OS must be able to hand over control of the
processor to a user program

> Jump to an instruction of a user program

> Modification of execution state register

> ... and must be able to gain control later again

> Thanks to a timer that will generate an interruption

42

System ISA : I/0 management

> Can be specific instructions

> Can be specific addresses translated as instructions
to be executed by memory controller

> Wide variety of I/0 devices — ISA offers in general
only a few basic instructions

> OS in charge of communication with devices through the device driver

43

Refresher on Operating system

OS tasks

~ Manage resources on behalf of user programs

> Time multiplexing of processor

»> Management of physical memory via page table and TLB

* When page error, OS takes over control of CPU

> /O management:
> Processes perform requests to OS via system calls (that result in traps)

> OS uses device drivers (that are added to OS) to control devices

45

User_ Levek 1 ______________________________

Kernel Level ¥
System-Call Interface
File Subsystem R Process Control Subsystem
* I Memo
ry Interprocess
Scheduler | panagement | Communication
Buffer Cache 7 3
¥
Character Block
Device Drivers
A
Y ¥
Hardware Control
KernelLevel
Hardware Level

Hardware I
Linux Architecture. 46

Interface with OS

~ User mode ISA directly accessible to user programs
- ABI (Application Binary Interface) is the interface with OS
> API: high-level libraries (as compared to ABI)

Y

System calls:

> Process management, ex : fork()
> Memory management, ex : malloc()
> /O, ex : . read()
> Abstraction of traps and interruptions at ABI = signals

47

ISA, ABI, API

Application

programs
| Software

Libraries
API
ABI
7 ISA
Exeoution hardware

Hardware

1/0 devices
and
networking

Main
memory

Figure 2. Computer system architecture. Key implementation layers communicate
vertically via the instruction set architecture (ISA), application binary interface
(ABI), and application programming interface (API).

48

L1 and L2 hypervisors from the inside

49

Management of VM states

~ Hypervisor must store complete VM state when switching
from one VM to the next VM :

> Registers
> Page table (of guest OS)
> 1/0

> Two main options for context switching:

> Indirection — inefficient because operation between register
imposes several memory accesses

> Copy — possible if same ISA between guest and host (the

50

VMM Memory Load register block pointer
to point to VM's registers
- Register values 10 Y memory.
BN Load program counter to
oa gram er
Vw@%;f:;gﬁf point to VM program and
J;zsamWamu start execution
Register values :
for VM 2
Register Block load temp <- reg_pointer, index(A)
Pointer store reg_pointer, index(B) <- temp
Register values .
for VM 3 .
.
(@)
VMM Memory Copy register state from
Processor VMM memory
Register values Load program counter to
for VM 1 point to VM program and
VMM copies register start execution
values when VM is *
activated %
Processor | M '\> Register values
Registers FT‘ v for VM 2 mov reg A -> reg B
Register values Copy register state from
for VM 3 processor back to system

memory

(b)

51

Global control by Hypervisor

>~ VMM (=hypervisor) must be able to get back
control of processor when VMs

> Equivalent to time multiplexing of OS (dealing with user
programs)

> Same objective: fairness

> How? VMM manages the time timer

> As guest OSes need also this timer, one needs
emulate this timer for guest OSes

52

Global control by Hypervisor

VMM determines VMM restores
next VM to be architected state
activated for next VM
Timer VMM saves VMM sets timer VMM sets PC to timer
interrupt architected state interval and interrupt handler of

occurs of running VM enables interrupts OS in next VM

l L

VMM Active A Active

53

Virtualization of resources — processor

~ Two main approaches

> Emulation

> Mandatory if guest and host (physical) ISA are different
* Ex: you want to test an Android program on a different
architecture

> Direct execution (same ISA) :

2> Faster than emulation

> Some instruction must be emulated anyway:

* Instructions sent by user program can be executed as is
*Instruction sent by guest OS must often be emulated

54

Conditions for an ISA to be

virtualizable
> Article Popek and Goldberg 1974

> Virtualization dates back to the mainframe age
> Hypotheses (short version) :
*> Hardware = 1 (unique) processor

> Processor has 2 modes : system and user

> Some instructions can only be executed in kernel mode

> 1/0O non considered in article, but results can be extended to this
case

55

Sensitive vs. non sensitive instructions

> Sensitive instructions:

X

X

X

X

X

Modity the configuration of resources, €.g. memory or execution
mode (control type)

Ex : SPT - Set CPU timer (IBM/370)
Whose result depend on resource state (behavioral type)
Ex : Load Real Address (IBM/370)

> Instructions that are neither of control nor
behavioral type are called benign (non sensitive)

56

Popek and Goldberg

Property : sensitive instructions must form a subset of
privileged instructions

(a) Does not satisfy condition (b) Satisfies condition —
efficiently virtualizable

57

Job of hypervisor if Popek and Goldberg

conditions are met

> Non sensitive instructions can be executed
natively (no interference of hypervisor) - speed

- Hypervisor keeps control of resources : a user
program or the guest OS cannot modify system
resources (as processor has to be in kernel mode)

58

Job of hypervisor if Popek and Goldberg

conditions are met

- If the set of sensitive instructions is a subset of
privileged ones, the job of hypervisor is easy: wait
for traps (errors from guest OS or guest programs)

and patch:

> If an error by guest OS, do the job and give
back hand to the guest OS

> If an error by guest program, give back hand to
guest OS

59

Job of hypervisor if Popek and Goldberg

conditions are met: Wait for traps!!!

Instruction
trap occurs
Dispatcher :
These instructions Privileg .ed
Instruction

desire to change
machine resources,
e.g., load relocation

bounds register

Interpreter

Privileged Routine 1

Instruction

Privileged

Instruction
Allocator

Interpreter
Routine 2

Privileged
Instruction

L]

These instructions do not °
change machine resources Interpreter
but access privileged Routine n

resources, e.9., IN, OUT,
Write TLB

60

Intel ISA x86 case

~ “Analysis of the Intel Pentiums Ability to Support a
Secure Virtual Machine Monitor” USENIX 2000, J.
Robin, C. Irvine

> Over the 250 instructions, 17 are sensitive but not
privileged (they are called critical)
> Example: popf
* Popf in user mode: change ALU flag
* Popf en kernel mode: change ALU and system flag

* No trap in user mode

61

» Consequence : if popf
executed by guest
OS, it will not trapped
but system flag won't
be modified - guest
OS will be in

Inconsistent state!l!

» Similar problem in
other ISAs.

» Solution: VMM
intercepts and
“patches”

Guest OS code in VM
(user mode)

Privileged instruction (LPSW) —

Next instruction (target of LPSW)
X

VMM code
(privileged mode)

Dispatcher

s

™

LPSW Routine:

Change mode to privileged
Check privilege level in VM

Emulate instruction
Compute target

\ Restore mode to user

[Jump to target

'

62

Hypervisor job: track critical

instructions

> Hypervisor must scan code and patch instructions before execution

~ Challenge : code can branch and it is difficult to know which
branch will be used in advance

(>
J

Original Program

Code patch for
discovered
critical instruction

Scanner and
—fE—

-

“~._ Control transfer,
s, e.g., trap

Patched Program 63

Processor Virtualization: summary

> Popek and Goldberg conditions not met by ISA in
general

> Hypervisor must scan code
> Only when guest OS is in function

> It must patch

> Above operation is called Binary Translation

> VMware is an expert in this area

64

I/0 Virtualization

» One of the most complex tasks in virtualization
because there is a LOT of I/O devices

» General approach: offer a clean interface to guest
OS

65

I/0 Virtualization

> Typology of devices:

> Dedicated. Ex: screen, keyboard.
> Partitioned. Ex : disks

> Shared. Ex: NIC

> Spooled. Ex : printer. Shared, but at a high level of
granularity(files in spooler). In practice, printers often
accessed through network

> Non existing. Ex : virtual switch to interconnect VM in the
same physical machine

66

Where can we virtualize 1/0?

» Options:
- System calls?
- Drivers?
- 1/O operations?
» Solution used: driver level

Application

Operating System

dri\ier Cflls
(VMM) @o Drive@
v Vv

physical memory and I/O operations

|| | |
Yoy v oY

Hardware

67

Driver level

~ Call to driver via system call

> For hypervisor to intercept this call, it must know
details of the guest OS and of driver — too complex

~ Alternative approach: offer a normalized interface
to device(e.g., always the same Intel Ethernet card,
irrespectively of physical one) and provide a
specific driver to guest OS to intercept and translate
requests.

> This entails that hypervisor has drivers for real device

68

Virtualization at driver level : the case of

Xen

> Dom U: VMs

> Dom O : drivers

>

Console

‘ \Toolstack \ Applications Applications Applications

DomO Kernel Guest OS Guest 0S Guest 0S

Memory CPUs

Source: http://www.xenproject.org/

69

