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Abstract

Atrial  fibrillation (AF) characterization — from
electrocardiogram (ECG) recordings requires the
elimination of ventricular activity (VA). The present
contribution demonstrates the potential of blind source
separation (BSS) in atrial activity (AA) extraction from
AF episodes. The applicability of BSS techniques relies
on the assumption that AA and VA are decoupled, and
hence can be regarded as generated by independent
bioelectric sources. In the comparative experiments, a
multi-lead AF signal model is synthesized by adding real
AA from AF episodes to ECGs recorded from healthy
patients. Two direct QRST-cancellation methods are also
considered: template matching and subtraction, and
adaptive noise cancellation. Further experiments are
performed on real multi-lead recordings from 20 patients
with AF episodes. The BSS approach shows a superior
performance, thus manifesting the suitability of BSS
techniques for AA extraction. As a favourable by-product,
BSS arises as a novel technique for QRST-complex
cancellation.

1. Introduction

Atrial fibrillation (AF) is one of the most frequent
cardiac arrhythmia, with a considerable prevalence in
population and a significant impact on mortality. Its
proper characterization from electrocardiogram (ECG)
recordings —regardless of the leads considered— requires
the extraction or cancellation of the signal components
associated to ventricular activity (VA), that is, the QRS
complex and the T wave (QRST) Unfortunately, a
number of facts hinder this operation. Firstly, atrial
activity (AA) presents in the ECG much lower amplitude
—in some cases well under the noise level- than VA.
Also, both phenomena possess spectral distributions
notably overlapped, rendering linear filtering solutions
unsuccessful.

Traditional methods focus on explicit QRST-
cancellation [1][2][3]. However, the key observation that
AA and VA are decoupled [4] introduces an interesting

new perspective which does not rely on direct QRST
elimination. In effect, we can reasonably assume that AA
and VA are generated by physically (and hence
statistically) independent sources of bioelectric current.
The situation then becomes a so-called Blind Source
Separation (BSS) problem. Atrial and ventricular source
contributions appear mixed at the electrode outputs. The
extraction of the atrial sources from the electrode outputs
via a suitable BSS method makes it possible to
reconstruct the atrial contribution to each electrode free
from VA and other interference. Note that, in addition,
this procedure spares the need for explicit QRST-
cancellation as carried out by traditional techniques.

The fact that BSS has already proven useful in other
biomedical applications —such as the extraction of the
fetal ECG from maternal cutaneous recordings [5][6]—
made the authors anticipate promising prospects for its
application to AA extraction and QRST elimination. The
results reported in the present contribution corroborate
this prediction.

2. Database

Since BSS relies on spatial diversity (as explained
later in Section 4.1.), multi-lead recordings were
preferred in this study. Recordings were chosen from
both a commercial (MIT-BIH, AF directory and sinus-
rhythm series 100 and 200) and the author's own database
(real signals obtained at the Electrophysiology Lab of the
Hospital Clinico de Valencia with Prucka Engineering's
Cardiolab system) [7][8]. All rhythms were diagnosed by
a cardiologist following standard criteria based on surface
ECGs and intracardiac electrograms simultaneously
recorded. A total of 74 multi-lead records were selected,
with episodes of around 8 s. Table 1 summarizes the
configuration of the signal database.

Table 1: Patients and episodes with normal sinus rhythm
(NSR) and atrial fibrillation (AF) in the database.

NSR AF
Num. of Patients 20 20
Num. of Episodes 36 38




3.  Preprocessing and AF-episode synthesis

All signals were sampled (or re-sampled, if required)
at 1 kHz. After amplitude normalization, the signals were
preprocessed using a notch adaptive filter to cancel out
mains interference, followed by a band-pass filter with
cut-off frequencies of 0,5 and 60 Hz to remove baseline
wandering and thermal noise [2].

An AF source was synthesized from real recordings by
means of visual detection and repetition of segments
between two sufficiently separated, consecutive Q waves
(Fig. 1.a—1.b). To avoid distortion, special care was taken
in the interpolation and filtering of samples near the
boundaries of adjacent segments. Next, a normal sinus
rhythm (NSR) was selected from the same patient. This
NSR signal was considered as a ventricular source (Fig.
1.c), which, after linear combination with the simulated
AF wave, yielded a synthetic AF episode (Fig. 1.d).
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Figure 1: Generation of simulated AF episodes. Example
over lead V1: (a) real AF episode, (b) AA segment
extracted and concatenated, (c) NSR from same patient,
and (d) linear combination of synthesized AF signal and
NSR of (c).

The correlation between the AF wave estimated by the
methods and the simulated AF source was able to provide
an objective performance measure, from which the
different methods could be assessed and compared.

4. Methods

4.1. Blind source separation

BSS consists of recovering a set of source signals from
the observation of linear mixtures of the sources [5]. The
term “blind” emphasizes that nothing is known about the
source signals or the mixing structure, the only
hypothesis being the source mutual independence.

.zt € R (the
symbol T stands for the transpose operator) represents the
Yl " € RY

denotes the p-sensor output vector, the BSS model for
instantaneous linear mixtures reads:

y=M-x M

Mathematically , if vector x = [z, 2y, ...

q source signals and vector y = [y, ¥, ...

where M € R”*? is the unknown mixing matrix. The

objective is to estimate x and M from the exclusive
knowledge of y.

The relevance of BSS in the problem of AF extraction
lies in the basic assumption that AA and VA are
physically decoupled [4], so that both can be considered
as generated by statistically independent bioelectric
sources. Hence, the skin-electrode signal vector y
complies with model (1), where vector x is composed of
the independent sources of atrial and ventricular cardiac
activity, as well as of (possibly) additional sources of
interference and noise. The mixing coefficients contained
in M depend on the body geometry, tissue conductivity,
electrode position, etc., similarly as occurs in the BSS
formulation of the fetal ECG extraction problem [5][6].
Consequently, the atrial contribution to the recordings
can be recovered by extracting, via BSS, the sources of
AA and the corresponding columns of the mixing matrix.

Several approaches to performing BSS exist [5], but
most rely on higher-order statistics (HOS) due to their
ability to measure statistical independence. Also, the
exploitation of the fact that different linear combinations
of the source signals appear at each sensor —a
phenomenon known as spatial diversity— is crucial for the
separation. This implies that, in general, a BSS method
can only recover as many sources as Sensors.

For this reason, two synthetic leads were produced
from the same simulated AF signal and VA simply by
altering the linear combination coefficients. The mixing
matrix was chosen so that both waveforms resembled an
AF episode; otherwise, its elements could be regarded as



arbitrary. Source separation was performed on these
simulated electrode signals through the HOS-based BSS
method whose mathematical details are summarized in
[9]. As well as to each synthesized 2-lead group, BSS
was applied to real 12-lead ECGs.

4.2. Template matching and subtraction

The TMS method is based on the cancellation of each
QRST complex through the subtraction of an average
QRST complex computed over the recording under
analysis[1][2].

In our case, for each simulated AF signal, R waves
were detected over the 8-second segments by using a
peak detection algorithm [10] and marking the maxima as
fiducial points. A median complex was then obtained by
aligning all the QRST waves at their fiducial points and
performing a median operation. The window length for
this operation was set as the minimum R-R distance
found in the 8-second segment. In order to allow the
window to include each QRST complex, the alignment
was such that the first 30% of the window length
preceded the fiducial point whereas the other 70%
followed it [1]. Next, the median template was aligned
with each QRST interval at their fiducial point and
subtracted, aiming to leave AA only.

4.3. Adaptive noise cancellation

The adaptive noise cancellation (ACA) method
—developed by Widrow [11]- tries to eliminate the
interference present in a primary input by filtering and
subtracting a reference input correlated with the
undesired interference.

The implementation employed in our experiments was
based on a power-normalized least mean square
algorithm with same filter length as the optimal Wiener-
Hopf solution [11]. The simulated AF episodes were
introduced as primary inputs to the canceller. As
reference inputs, two cases were considered. The first
case consisted of the average QRST-complex repetition,
where each repeat was aligned with the R waves (at the
fiducial points). The second type of reference signal
considered was the same signal of VA. Hence this latter
case, which we refer to as ACA with prior knowledge
(ACAk), implements a best-case scenario for adaptive
cancellation.

5. Results

Since the relevant information is contained in the
signal waveforms, rather than in their amplitudes, and in

order to allow a more significant comparison, the atrial
signals estimated by the methods were normalized.

Fig. 2 plots the original and the estimated atrial signals
for the episode of Fig. 1. A straightforward visual
examination reveals that the atrial source is perfectly
separated by BSS (Fig. 2.b), whereas the estimation
quality worsens for TMS (Fig. 2.c) and ACA (Fig. 2.d)
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Figure 2: Comparison between (a) normalized simulated

AF signal and normalized estimates via (b) BSS, (¢) TMS
and (d) ACA.
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The correlation coefficient between the original and
the estimated AF waveforms can be used as an objective
performance measure, as suggested at the end of Section
3. As shown in Table 2, BSS clearly surpasses the two
other methods, including ACAKk.

Table 2: Normalized correlation coefficient between
original and estimated AF signals.

BSS TMS ACA ACAKk

Correlation  99,99%  93,35%  92,52%  97,60%

Fig. 3 displays the error signal obtained as the direct
subtraction of the normalized estimated AF signal from
the normalized original AF signal. Again, the BSS-based
technique produces the best results (Fig. 3.a), even
improving ACAk (Fig. 3.d).

Regarding the application of BSS to real 12-lead ECG
recordings with AF episodes, results are also very
satisfactory. The AA estimates obtained are considered
by cardiologists as very approximate to real atrial
waveforms typically observed in ECGs. This outcome is
illustrated in Fig. 4, which shows lead V1 of a real AF
episode (top) and the atrial source estimated via BSS
from a 12-lead recording of such episode (bottom).
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Figure 3: Error signal obtained through the direct
subtraction of the normalized AF estimate from the
normalized original AF source: (a) BSS, (b) TMS, (c)
ACA, and (d) ACAk.
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Figure 4: (a) Lead V1 of a real AF episode. (b)

Normalized atrial source estimated by BSS from a 12-

lead recording of the same episode.

6. Conclusions

The present contribution has evidenced the
appropriateness of BSS techniques in the problem of AA
extraction from AF episodes. With the aid of a simulated
AF signal model, BSS has been compared with other
methods for QRST cancellation, showing in all cases a
superior performance, even before adaptive cancellation
enjoying prior information about VA.

As a direct consequence of these positive results, BSS
arises as a novel technique for QRST-complex
cancellation, which is implicitly carried out through the
exclusion of the estimated VA sources.

Note that the internal bioelectric sources that

externally generate the ECG are not available, and hence
the estimated AF sources cannot be contrasted with the
real AF sources. Despite this difficulty —typical of inverse
problems— BSS results on real AF episodes are very
promising, and indeed the authors envisage that this
preliminary study will open new paths of research on this
exciting topic.
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