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Abstract

Atrial fibrillation (AF) is the most common arrhythmia,
and one of the main causes of ictus and strokes. Effective
treatments for AF are still unknown, as its effects on the
heart substrate have not been clearly quantified yet. One
of the main lines of investigation aims at characterizing
ventricular response by looking at its effects on heartbeat
interval dynamics. Most of the standard approaches have
focused on RR interval (RRI) histogram parameters albeit
with several shortcomings, such as bin width dependence
or lack of attention to the time-varying dynamical struc-
ture. In this study, we model heartbeat interval series as a
history-dependent inverse Gaussian (HDIG) point process
where the history for each RRI prediction is a linear re-
gression of the previous RRIs. As opposed to classical non-
parametric methods, the heart rate (HR) variability fea-
tures derived from the proposed parametric model provide
a physiologically more consistent characterization during
AF, and can clearly discriminate AF from sinus rhythm
(SR) subjects. Analysis of 36 patients affected by persis-
tent AF and 18 controls shows that RRI distributions are
more right-skewed and affected by higher variability dur-
ing AF (skewness of 0.63±0.29 in AF and of 0.17±0.16 in
SR, p=7.6 · 10�8; HR standard deviation of 18.73± 10.64
bpm in AF and 4.66± 4.75 bpm in SR, p=2.3 · 10�6). Our
results demonstrate that we can extract valuable informa-
tion associated with AF from RRI series by using a point
process framework.

1. Introduction

Atrial fibrillation (AF) is a supraventricular tach-
yarrhythmia characterized by uncoordinated atrial activa-
tion with consequent deterioration of atrial mechanical
function [1]. Ischaemic stroke episodes in association with
AF are more and more recurrent, and patients who survive
are more likely to experience a recurrence than patients

with other causes of stroke [2]. Hence, there is a need for a
prompt diagnosis and a suitable therapy to treat this pathol-
ogy. Despite the recent advances in understanding AF, its
electrophysiological dynamics have not been completely
clarified yet. One of the most common lines of research
focuses on ventricular response analysis based on knowl-
edge about heartbeat interval statistical properties.

Previous electrocardiogram (ECG) based studies have
pointed out that changes in atrioventricular (AV) node
function and its refractoriness during AF are reflected on
the irregularity of the RR interval (RRI) distribution [3].
Similarly, in [4] these properties are estimated from the
RRIs using maximum likelihood estimation and the RRI
Poincaré plot. In [5], heartbeat interval variability allows
the estimation of the effects of several pharmacological
therapies [5]. However, these results are merely based on
visual inspection of the RRI histogram, and no quantita-
tive assessment of the statistical features is presented. A
probabilistic analysis of RRIs has been attempted in [6],
although such approach is highly dependent on histogram
bin width, thus making it hard to generate univocal results.
In addition, all these methods prove their efficacy on long
ECG recordings (at least 10 minutes up to 24-hour Holter
recordings) not always available in daily clinical practice.

The present study puts forward a novel method which
models RRI probability distribution as a history-dependent
Gaussian (HDIG) point process [7]. Such dependence re-
sumes effects of sino-atrial (SA) node response to sym-
pathetic and parasympathetic inputs from the autonomous
nervous system, as well as changes in AV node refractory
period and effects of concealed conduction typical of AF.
This characterization enables the computation of heart rate
(HR) and heart rate variability (HRV) features which may
better distinguish AF from sinus rhythm (SR) conditions,
thus providing a more accurate characterization of this dis-
ease and a better comprehension of its dynamics.
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Figure 1. Examples of RRI time series (a.-b.) and the related histogram (c.-d.) and probability distribution (e.-f.). Top:
AF, subject 2; Bottom: SR, subject 14.

2. Methods

2.1. ECG Acquisition Protocol

We consider 36 patients (age 50 to 70 years) affected by
persistent AF. One-minute standard ECG was acquired at
a sampling rate of FS = 977 Hz. ECG recordings of 18
control subjects are taken from the MIT-BIH Normal Sinus
Rhythm Database. The group consists of 5 men, aged 26

to 45, and 13 women, aged 20 to 50.

2.2. Histogram Analysis of RRI

Preliminary analysis inspecting RR series and their re-
spective histograms highlights asymmetric RRI distribu-
tions around their mean value for AF patients. In contrast,
the histograms extracted in the SR control subjects appear
more symmetric, thus confirming previous findings. An
example is shown in Fig. 1. This can be explained by the
rapid firing of atrial activations throughout the AV node
typical of AF, inducing a correspondingly irregular ven-
tricular activation, as reflected on RRI duration on ECG.
Furthermore, as shown in Fig. 1a, during AF repetition rate
of RRIs seems considerably higher, and their length values
are more irregularly distributed, in contrast with SR where
RRIs seem more evenly spaced. We hypothesize that these
properties can be quantified more accurately by our point
process approach.

2.3. Point Process Model of RRI

As stated in previous works [7], ventricular contractions
(R waves on the ECG) can be effectively represented as
a history dependent inverse Gaussian (HDIG) point pro-
cess. Dependence on past RRIs reflect the sympathetic
and parasympathetic dynamic inputs from the autonomic
nervous system to the SA node, which can persist on the
following heartbeats for several seconds. This model al-

lows to explore if further effects due to AV node refrac-
toriness and concealed conduction can contribute to RRI
variability during AF. Within this framework, let us define
the time occurrence of the k-th R wave as uk and the k-th
RRI as wk = uk � uk�1. For any t > uk, we assume that
the probability density function of the RRI length follows
a HDIG distribution:

fRR(t,Huk , ✓) =

[

✓q+1

2⇡(t� uk)
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]
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where ✓ = [✓0, ✓1, . . . , ✓q+1] is a vector of model parame-
ters, and µRR and ✓q+1 stand for the first moment and the
shape factor of the distribution, respectively. According to
this model, each interval wk is regarded as dependent on
its previous history Huk = (uk, wk, wk�1, . . . , wk�q+1),
i,e., as a linear combination of the last q RRIs.

µRR(Huk , ✓) = ✓0 +

qX

j=1

✓jwk�j+1 (2)

In this analysis, since we focus attention on the statisti-
cal properties rather than sympatho-vagal modulation, we
fixed the regression order to q = 1 and the temporal win-
dow for local maximum likelihood estimates to 30 seconds
(about half length of each available ECG segments) [7].

Goodness-of-fit of the point process model is evaluated
by means of the time-rescaling theory and the KS test [7].
KS plots can be drawn by plotting the distribution function
of the RRI series rescaled to the interval (0, 1] against a
uniform distribution defined in the same interval. A repre-
sentative example is displayed for each group in Fig 2. We
measure the maximum KS distance from the KS plot: the
lower its value, the better the model fit.



Figure 2. KS plots for one AF (a) and one SR (b) subject.

2.4. Heart Rate and Heart Rate Variability
Feature Extraction

Several indices of HR and HRV are evaluated by both a
simple non-parametric approach (the straightforward fea-
ture extraction from the heartbeat interval series, with no
assumptions on its probability distribution) and the point
process approach.

In the non-parametric approach these indices are:
1. Mean RRI: defined as the average value of all RRI
lengths (RR = E{(wk}).
2. HR mean value: conventionally assumed as the recip-
rocal mean RRI (HR = cRR

�1
), scaled by the factor of

conversion from seconds to beats per minute c = 60min.
3. Skewness: it provides a measure of asymmetry of the
RRI distribution, defined as Skewness = E{(wk�RR)3}

E{(wk�RR)2}
3
2

.

4. RRI standard deviation: it assesses the level of RRI
length variability (�RR = E{(wk �RR)

2}).
5. HR standard deviation: defined as the standard devi-
ation of the reciprocal RRIs (�HR), adequately scaled by
the conversion factor c.

In the HDIG framework, the following features are in-
vestigated:
1. Mean RRI: it is equal to the first moment of the HDIG
distribution µRR.
2. HR mean value: µHR = c( 1

µRR
+

1
✓q+1

).

3. Skewness: Skewness = 3

q
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.

4. RRI standard deviation: �RR =

q
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.

5. HR standard deviation: �HR =

c
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q
2 +
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.

All parameters are averaged among each group (”AF”
vs ”SR”) and referred to as mean ± standard deviation for
each method (non-parametric vs point process approach).
Interclass statistical differences are assessed by the p-value
of the unpaired Student’s t-test under a confidence level
↵ = 0.05.

3. Results

Results of goodness-of-fit estimation are shown in Ta-
ble 1. The minimum and maximum KS distance, as well

Table 1. Assessment of Point Process Model Goodness-
of-fit: KS distance evaluation.

Mean ± Standard Deviation Minimum Maximum
AF 0.1045± 0.0626 0.0476 (subject 2) 0.3908 (subject 22)
SR 0.1051± 0.0400 0.0555 (subject 1) 0.1984 (subject 6)

as the mean ± standard deviation, are reported for each
category under examination. The low KS distance values
indicate a good agreement between our model and the con-
sidered heartbeat interval series. In 30 AF patients out
of 36 KS plots fall entirely within the 95% confidence
bounds. In patient 30 the model fit is also extremely ac-
curate, since the percentage of KS plot points lying within
the confidence bounds is considerably high (92.7273%).
Only in AF subjects 7 and 22 the model less accurately
describes RRI distribution. This is proven not only by the
high values of the maximum KS distance, but also by the
visual inspection of the related KS plot, as most of their
points lie outside the confidence interval (69.6721% and
55%, respectively). Accordingly, these patients are not
included in the statistical analysis of HRV features (thus
reducing mean KS distance to 0.0951±0.0393). Concern-
ing the control group, the KS plots are entirely within the
confidence interval in 15 subjects out of 18. However, in
the remaining SR subjects estimation is also highly accu-
rate, since deviations from the perfect fit are very limited
(subject 3 = 76.7442%, subject 5 = 93.4783%, subject 6
= 76.9231%). In Fig. 1 we show two representative exam-
ples (one for AF and one for SR) of the estimated HDIG
distribution functions.

Results of the unpaired statistical analysis are reported
in Table 2. In particular, of all the considered features, the
most discriminating ones were the skewness and the heart
rate variance computed from the point process model. Of
note, the respective non-parametric features are not signif-
icantly different between the two groups.

4. Discussion and Conclusions

In this work, we put forward a probabilistic approach
aiming at AF characterization by analysis of the ventricu-
lar contractions (RRIs). To this extent, we propose a previ-
ously developed HDIG point process model of heartbeat
dynamics. The model allows to compute instantaneous
HR and HRV indices, is independent from histogram bin
width, and proves to be effective also on short ECG record-
ing. The rigorous assessment of model goodness-of-fit, an
important feature of the point process framework, reveals
an excellent agreement with the RRI series derived during
AF, thus confirming its ability to accurately capture heart-
beat statistical properties also in this important pathologi-
cal state.

The point process approach enables an enhanced char-



Table 2. Unpaired Statistical Analysis of HR and HRV features (n.u.: normalized units).
Non-parametric Analysis HDIG Point Process

AF SR p-value AF SR p-value
RR� µRR [s] 0.74± 0.17 0.72± 0.13 6.6 · 10�1

0.75± 0.16 0.72± 0.13 5.7 · 10�1

HR� µHR [bpm] 85.45± 20.12 85.81± 14.74 9.5 · 10�1
89.95± 20.99 86.2± 15.3 5.1 · 10�1

Skewness [n.u.] 0.58± 1.08 0.76± 3.13 7.7 · 10�1
0.63± 0.29 0.17± 0.16 7.6 · 10�8

�RR [s] 0.16± 0.07 0.05± 0.02 3.8 · 10�7
0.16± 0.09 0.04± 0.04 2.2 · 10�6

�HR [bpm] 26.28± 55.92 7.75± 10.81 1.7 · 10�1
18.73± 10.64 4.66± 4.75 2.3 · 10�6

acterization of HR and HRV features based on RRI his-
togram properties, thus overcoming the limitations of more
standard approaches. More specifically, even though dif-
ferences in symmetry in RRI histogram between AF and
SR subjects can be visually detected, no studies have so
far quantitatively assessed such a difference. Indeed, our
research reveals that the standard non-parametric analy-
sis is not able to separate skewness characteristics of RRI
distribution between AF and SR (see Table 2). By con-
trast, the point process characterization significantly dif-
ferentiates such properties, thus confirming that during AF
several factors contribute to make ventricular contraction
more rapid and irregular, as reflected on the high propor-
tion of short RRIs on the ECG and the higher skewness
values. Of note, both methods do not underline significant
differences in the mean RR interval and the mean heart
rate, RR and HR, respectively.

RRI irregularity observed in presence of AF can be also
estimated by second-order statistics quantifying the degree
of scattering of data distribution, e.g., �RR and �HR. Here,
we can note that, while both parametric and point pro-
cess RR standard deviation can significantly differentiate
AF from SR (see p-values in Table 2), only the point pro-
cess HR standard deviation shows significant values. This
evidence confirms that RRI length distribution is affected
by higher variability during AF. This increased variability
is consistent with electrophysiological phenomena such as
AV node refractoriness and effects of concealed conduc-
tion, namely, the incomplete penetration of atrial impulses
into the AV node, resulting in a prolongation of the re-
fractory period, which may block or delay the passage of
subsequent atrial impulses during AF. In conclusion, dif-
ferences in asymmetry and dispersion indices between AF
and SR are significantly enhanced, and can be potentially
applied to perform automatic AF detection and recogni-
tion. Future studies will explore if more refined point pro-
cess HRV features can further improve AF characterization
and classification, and will consider experimental data col-
lected before and after radiofrequency catheter ablation in
order to investigate if our methods can help improve abla-
tion outcome prediction and therapy selection.
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