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Abstract

Predictability of catheter ablation (CA) outcome in per-
sistent atrial fibrillation (AF) is still an open issue. Predic-
tors in previous studies are mainly computed in only one
ECG lead, and neglect relevant information from the other
ones. In this study we investigate the role of interlead re-
lationships on the 12-lead ECG in CA outcome prediction.

Stepwise CA was performed in 36 AF patients. Standard
ECG was acquired at the beginning of the procedure. Spa-
tial relationships are assessed by joint entropy (JE) in each
possible pair of leads on an ECG subset (I, Il + V1-V). JE
quantifies the amount of information about AF patterns ob-
served on two distinct leads. Clinical outcome prediction
is assessed by area under curve (AUC).

Our analysis reveals that the best prediction is obtained
for pairs combining a frontal and a horizontal lead, as con-
firmed by the corresponding AUC values, e.g. leads I-Vs,
AUC=0.95. Conversely, contributions from the same heart
plane seem not to sufficiently characterize AF complexity
content, thus yielding a less accurate prediction perfor-
mance (e.g., leads V,-Vs, AUC=0.63).

Higher JE values denote a higher amount of interlead
global information and render a more organized AF ac-
tivity, which is more likely to be successfully treated by
CA. Simultaneous analysis by JE of pairs of standard ECG
leads from orthogonal heart planes enriches AF content
characterization and enhances outcome prediction for CA.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
arrhythmia encountered in clinical practice. [1]. However,
the mechanisms of its genesis and perpetuation have not
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been elucidated yet. Several theories have been but for-
ward in order to explain such phenomena. Some stud-
ies state that AF is triggered by one or multiple fibril-
latory reentrant sources, the so called ectopic foci [2].
Other lines of investigation rather focus on the role of self-
sustaining wavelets and re-entrant circuits [3]. Yet, un-
derstanding where AF sources are located and how the ar-
rhythmic wavefront propagates throughout the heart would
help determining the degree of chronification of the disease
and selecting a patient-tailored therapy in a more effective
way [3,4]. However, a unique definition of AF spatio-
temporal complexity has not been provided yet, and sev-
eral measures have been put forward in order to quantify
the level of chronification. Several factors contribute to
AF complexity, including age, additional pathologies and
effects of atrial remodeling due to disease chronification.
Standard 12-lead electrocardiogram (ECG) is widely
employed as a non-invasive and cost-effective diagnostic
tool. Its multilead character can be exploited for describ-
ing heart electrical activity at different leads’ orientations
S0 as to have a deeper understanding of this arrhythmia.
In [5-7] some noninvasive measures of AF organization
are assessed on surface recordings. Nevertheless, the anal-
ysis is limited to a single lead, therefore the spatial diver-
sity typical of multilead recordings is neglected. In [8] an
attempt to study AF spatial variability is also made on vec-
tocardiograms in the frequency domain. However, all these
studies only focus on AF pattern temporal variability and
its repetitiveness throughout the recording. Furthermore,
no clinical correlation with AF therapy has been estab-
lished. By contrast, relevant clinical information could be
provided by surface ECG spatial variability, thus allowing
for a more accurate and complete AF wavefront character-
ization, thanks to the different positions of the ECG leads.
The main goal of this work is providing a novel interpre-
tation of AF pattern diversity in terms of spatial correlation
between different ECG leads. Indeed, we demonstrate that
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valuable clinical information about AF treatment can be
obtained by examining the ECG at different orientations
and planes and investigating interlead relationships. We
assume that a more irregular and unpredictable AF activity
reflects on more fragmented patterns, whereas a more or-
ganized wavefront propagates in a more structured manner
as seen by multiple leads. AF content can be effectively
characterized at different planes through proper informa-
tion theory (IT) indices. Typically employed in telecom-
munications [9, 10], such theory is applied to AF analysis
for the first time as far as we are aware. We demonstrate
that looking at orthogonal ECG leads enables a more com-
plete characterization of this arrhythmia, and such infor-
mation can help selecting the most suitable therapy. Our
work focuses on radiofrequency catheter ablation (CA),
and demonstrates that AF spatial information improves the
quality of ablation prediction outcome.

2. Methods

2.1.  Atrial activity signal extraction

Since we are mainly interested in AF interlead spatial
correlation and we neglect the temporal variability, ven-
tricular activity is suppressed by removing the QRS com-
plexes from the input multilead ECG signal. R waves
are automatically detected by the Pan-Tompkins algo-
rithm [11]; Q wave onset and T wave offset are deter-
mined through the Woody’s method [12]. Noise is re-
moved through a fourth-order zero-phase type II Cheby-
shev bandpass filter with —3 dB attenuation between 0.5
and 30 Hz, as AF dominant frequency ranges between 3
and 12 Hz. Moreover, power line interference, baseline
wander and high frequency noise (e.g., myoelectric arti-
facts) are effectively removed. TQ intervals are finally
mean-corrected and concatenated, thereby representing the
atrial activity (AA) signal in an (L x N) matrix Yaa:

Yaa = [yaaq) - yaan) € RPN )]

where vector yaa(n) = [y1(n),...,yr(n)]T represents
the multilead AA signal at sample index n, L is the number
of leads used, and N the number of samples of the AA
signal y¢(n) foreachlead ¢ = 1,2, ..., L. In this study, we
examine a subset of L = 8 ECG leads which are linearly
independent from each other, namely, I, II, V;-Vg.

2.2. Information theory background

IT theory tries to model and quantify the amount of in-
formation exchanged between two systems, i.e., the level
of uncertainty of the message transmitted [13]. From a
mathematical point of view, we consider a generic contin-
uous random variable (r.v.) X that can take on any value

from a domain X, and that is characterized by a probability
distribution (pdf) function p(z), z € X.

We define the marginal entropy H (X ), which quantifies
the amount of information carried by X:

p(z) log p(z)dz.
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Entropy is always positive (H(X) > 0). The higher
its value, the higher the rate of information provided, the
lower the uncertainty about the message exchanged. As
all the IT measures, it is conventionally expressed in bits,
thus logarithm function is computed in base 2. Moreover,
H(X) is a functional of the pdf p(z), therefore it does not
depend on the actual values taken by X, but only on their
probabilities.

Just as with probabilities, entropy definition can be ex-
tended to a bidimensional domain by introducing another
r.v. Y with values in ) and probability density p(y). If
their joint probability distribution p(zx,y) is known, the
joint entropy (JE) can be expressed as:

H(X) = ~Ellogp(a)} = - [

reX

JE =H(X;Y) :—/

/ p(z,y)log p(z,y)dxdy
zeX Jyey

3)
In our application, AF spatial information is evaluated in
terms of mutual information observed in pairs of ECG
leads and quantified by the JE index. Furthermore, we
merely focus on two variables. Indeed, the multidimen-
sional counterpart of the JE descriptor introduced in Eq. (3)
is not a direct extension of the bidimensional definition and
intervariable relations are more difficult to evaluate [14].

2.3. Assessment of AF spatial distribution
on standard ECG

The JE index is computed through the algorithm pre-
sented in [14] as in Eq. (3). Accordingly, AA signal ampli-
tude PDF is determined first. In the ECG subset presented
in Sec. 2.1, all the possible pairs of leads are examined,
ie., 2,(LL7L2,) = 28 combinations, since our goal is inves-
tigating the JE descriptive power and its variability across
ECG leads. For a couple of [N-sample AA signals y; ; and
Yoo, b, € =1,...,L, L = 8, their 2-D histogram is deter-
mined in the range of values [y ryn — %, Yo kniax T g],
k = 1,2, where § = (N)~z is the histogram bin width.
By convention, if p(z) = 0, we set p(z)logp(xz) = 0.
JE predictive power is evaluated by the receiving operator
analysis (ROC), yielding the area under curve (AUC) in-
dex: the closer its value to 1, the more accurate prediction.

Our methods are tested on a database of 36 standard
ECG signals acquired right before CA. Each ablation has
been performed with the aid of Prucka Cardiolab and
Biosense CARTO electrophysiology measurement sys-



tems at the Cardiology Department, Princess Grace Hospi-
tal, Monaco. More precisely, ng = 29 subjects experience
durable SR restoration by CA in the long-term follow-up
(8 £ 4 months), whereas the remaining ones (np = 7)
do not. CA effects are studied through the ECG/Holter-
documented sustained AF recurrence (> 30 s) starting
from at least 6 months after CA performance [15].
Moreover, we compare the JE index with some classical
ECG descriptors of AF in the same pairs of ECG leads.
We thus examine the mean amplitude D(-) of the fibrilla-
tory waves (f-waves) in the mentioned subsets of the rank-
1 approximation to the 2-lead AA signal through principal
component analysis (PCA) as in [16]. To the same end,
the mean NMSE introduced in [7], denoted N M SE(+), is
computed in the same leads. The index is tuned as in [17].
Single-lead perspective is also investigated. Accord-
ingly, we computed the marginal entropy H (-) in each lead
of the aforementioned ECG subset. Another single-lead
non-linear measure, i.e., sample entropy Sampen(V7), is
also determined in V;. Setting parameters are tuned as
in [18], thus the length of the AA sequences to be com-
pared is Lg = 2 and the threshold for accepting matches
is equal to 0.10, where o is AA standard deviation in V7.

3. Results

The AUC values related to the JE index prediction per-
formance are reported in Table 1 for each couple of ECG
leads. Similarly, ROC analysis outcome for conventional
marginal entropy H (-) is shown in Table 2.

4. Discussion

Our study demonstrates the ability of the JE measure
to characterize AF content in preferential electrical planes,
in particular those which are more relevant for CA out-
come prediction. Therapy effects can be properly quan-
tified if the pair of ECG leads is properly chosen. The
higher the JE value, the higher the amount of information
observed in two leads. This evidence is confirmed by our
investigation, underlining that JE is globally higher when
ECG leads belonging to different planes are taken into ac-
count in all the subjects, regardless of CA outcome (e.g.,
JE =4.68£0.64in1-V3, JE =4.994+0.70in V3-V4, p
value= 0.05). The index is not too sensitive to amplitude
variations. Even though JE values depend on the r.v. scale,
classification results are not significantly affected. In-
deed, amplitude scaling invariance properties are verified
by comparing the JE values computed on the original sig-
nal with those obtained on the same signals normalized be-

tween 0 and 1 through the relation g, ,, = [ Fei—Eas

where yovin = MIN{y1 min, yomin} and yevax =
MAX{y1,max,¥y2,max}. The most discriminative sig-
nal components are clearly emphasized when information

Table 1. ROC analysis for CA outcome prediction in each
pair of ECG leads: comparison of the JE index with other
ECG descriptors. Leads examined are underlined by the
symbol x.

Leads | JE() | DC) [ NMSEC) [[ 1 [ ] Vi [ Vo[ Vs [ Va]Vs] Ve
[IVs] | 095 | 0.84 0.67 X X
Vi | 094 | 0.88 0.62 X X
V2] | 093 | 0.63 0.78 X X
MV, | 093 | 0.63 0.72 X X
MVs] | 0.91 | 0.83 0.70 X X
[IVs] | 091 | 0.62 0.92 X X
M Vel | 089 | 0.74 0.78 X X
Vel | 0.89 | 0.74 0.78 X X
Vil | 0.89 | 0.65 0.59 X X
MV, | 0.89 | 0.84 0.59 X X
V5] | 0.89 | 0.60 0.84 X X
VsVal | 0.79 | 0.75 0.54 X | X
Vo Vsl | 0.79 | 0.75 0.64 X X
ViVl | 0.78 | 0.70 0.85 X X
Vy] | 0.76 | 0.68 0.68 X| X
[V2Vil | 076 | 0.76 0.55 X X
[VaVsl | 074 | 0.72 0.72 X | X
Vs Vel | 0.74 | 0.77 0.74 X X
V2Vs] | 0.714 | 0.75 0.64 X | X
[VsVs] | 072 | 0.75 0.59 X X
[ViVsl | 0.72 | 0.66 0.59 X X
[V2Vs] | 0.72 | 0.80 0.62 X X
1 | 0.71 | 0.85 0.53 X | X
ViVi | 0.71 | 0.66 0.54 X X
[Vi Vo] | 0.70 | 0.68 0.67 X | X
[Vs Vgl | 0.70 | 0.39 0.75 X | X
[ViVel | 0.70 | 0.58 0.72 X X
[ViVs] | 0.63 | 0.61 0.67 X X

Table 2. AUC estimation in marginal entropy H (-).

Lead 1 11 V] V2 V3 V4 V5 V6
AUC || 0.93 | 0.82 | 0.58 | 0.73 | 0.70 | 0.67 | 0.61 | 0.56

about AF comes from different planes and orientations of
the heart electrical vector. Results in Table 1 confirm that
procedural AF termination can be effectively assessed by
the JE index when a frontal lead is examined in combi-
nation with a precordial lead, as proved by the related
high AUC values. By contrast, contributions coming from
the same planes seem not to be relevant to CA outcome
prediction, or they poorly cluster the groups of patient.
Moreover, conventional measures of AF content, such as
mean AA amplitude and spatio-temporal complexity, are
not able to provide such directional characterization of
CA outcome, and prediction performance is globally quite
poor, regardless of the couple of leads selected. Analysis
results in Table 2 also demonstrate the lack of robustness
of the single-lead assessment of entropy, as prediction re-
sults are variable and strongly influenced by the electrode
chosen. The single-lead index Sampen (V1) is not capable
neither to highlight significant differences between the cat-
egories of interest (AUC= 0.70). This evidence highlights
that limiting our analysis to only one electrode could ne-
glect useful predictive information coming from the other
ones. Moreover, AF characterization in V; seems rela-
tively incomplete. This idea is also supported by results



in Table 1, showing that it does not have a predominant
role in AF therapy outcome assessment, but other leads
seem to be more descriptive (e.g., AUC= 0.95 in [-Vg;
AUC= 0.89 in I-V;). Apart from JE, all the features ex-
amined are not able to quantify AF spatial content in or-
thogonal electrodes. Yet, our analysis shows the potential
role of AF spatial information in therapy management, as
the higher JE, the higher the amount of information car-
ried by the heart electrical wavefront at orthogonal planes,
the more likely AF termination by CA (e.g., in leads I-V3,
AUC= 0.95, AF termination: 7.17 £ 0.82, Non AF termi-
nation: 5.43 £+ 1.69, p value: 3.45 - 1079).

5. Conclusions

Our research demonstrates that IT measures are able to
emphasize AA signal predictive features and enhance ECG
spatial variability. Moreover, they enhance AF content
at orthogonal angles and orientations of the heart electri-
cal activity, thus enriching disease characterization. The
higher the JE index, the higher the amount of information
shared by two ECG leads, which correlates with more or-
ganized AF forms, more likely to be terminated by CA. To
our knowledge, the IT indices are applied to AF analysis
and therapy management for the first time. A more detailed
analysis of some IT theoretical properties should be car-
ried out, in particular for potential extensions to more than
two leads. Moreover, physiological interpretation of such
measures needs to be investigated in more detail. Finally,
further attention should be paid to some tuning parameters,
in particular those related to AA signal histogram. Despite
these limitations, our investigation corroborates the role of
interlead spatial information as a descriptor of AF content
on standard ECG, with no need for signal temporal char-
acterization. It opens new perspectives for AF complexity
evaluation and therapy assessment through ECG analysis.
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