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Abstract: In the single-user scenario of data communications, the identification and equalization of the channel can be accomplished
blindly (i.e., without training sequences) using second-order statistics (SOS) if suitable diversity in the received signal is exploited.
Diversity can be temporal, spatial, or both. In this paper one well known SOS-based method for blind identification and equalization
(BIE) of communication channels is extended to the multi-input scenario. It is shown that the application of this SOS-BIE procedure
reduces the system to a problem of blind source separation (BSS) of instantaneous linear mixtures. The users’ signals can then be
recovered in a second stage through appropriate BSS techniques, typically requiring higher-order statistics.

1. INTRODUCTION ()=t and(-)" indicate the complex conjugate, transpose,
Hermitian, inverse and Moore-Penrose pseudoinverse op-
1.1. Problem definition and objectives erators, respectively. [f stands for mathematical expect-

ation. Symboby,, denotes the discrete-time Dirac’s delta
function, whereas? represents the Kronecker product.
If X € C™*™ andY e CP*1, their Kronecker product
X ®Y e CPx"1 s given by

In point-to-point digital communications, linear channel
distortion introduces intersymbol interference (ISI) in the
received signal, generating errors in symbol detection.
Traditional equalizers were based on training sequences,

while blind channel identification and equalization (BIE) 1Y Y ... x1,Y

methods do not require training sequences. 191 x95Y ... 9,
Original blind equalizers were based implicitly on the XY = .

higher-order statistics (HOS) of the received signal [1, 2, : e ' '

3]. However, due to the larger estimation error of HOS 1Y Tmz o TpnY

with respect to second-order statistics (SOS), these meth-

ods are computationally demanding. It is well known that 2. SIGNAL MODEL

when the input signal is stationary, SOS can only identify

minimum-phase channels. The groundbreaking paper [4] 2.1. Oversampling a single sensor
first proved that nonminimum-phase chanredaindeed

be identified using SOS if the received signal exhibits
cyclostationarity. SOS-based blind channel identification
and equalization is possible in the so-called single-input (Al) ¢ data sources simultaneously transmit mutually-

Consider a multi-user digital communication system com-
posed of a single-sensor receiver in which:

multiple-input (SIMO) systems [4, 5]. In multiple-user independent information-bearing symbéls, ,,, €
communication environments, i.e., in multi-input multi- C}H k =1,...,q, at a known ratef, = 1/T
output (MIMO) scenarios, interference from other users bauds. The information sequences fulfi[sE.] =
— so-called multiple access interference (MAI) — adds 0 and B|sy,.]*] = 1.

to the ISI caused by multipath.

In this paper, we extend the method of [4] to the multi-
user case. We prove that the direct extension of such pro-
cedure performs time equalization (i.e., removes ISI), but
is unable to disentangle the spatial mixture of the users’
signals. An instantaneous linear mixture of the transmit-
ted data remains, which can be tackled (thus eliminating
MAI) by means of suitable blind source separation tech- | Lnan/ T

(A2) Theimpulse responsés (¢) representing the prop-
agation between theth source and the sensor (in-
cluding the effects of the transmitter and receiver
filters) has finite time spad,,. For simplicity,
we will assume that’;,, = Lj, k = 1,...q,
spanning at most/ + 1 data symbols, withl/ =

niques. (A3) The additive measurement noig€t) is zero-mean
and uncorrelated with the data sequence.

1.2. Notations With the above assumptions, the continuous-time com-

C is the set of complex numbers(A);; is the (i, j)- plex baseband received signal can be expressed as:
element of matrixA. I,, refers to then x n identity mat- q o
rix, and0,, » ,, to the matrix composed of. x n zeros;0,, a(t) = Z Z Seanhi(t —mT) +w(t). (1)

is then-zero column vector. Superindicés*, ()T, ()1,

k=1m=—o00

In Proc. DSP-2002, 14th International Conference on Digital Signal ProcessBantorini, Greece, July 1-3, 2002, Vol. I, pp. 135-138.



Sampling at a ratgs, = 1/7s; = P/T from an initial
instantt, = 0 (without loss of generality) yields:

x(iTs +nT) = Z Z Skymhie (iTs 4+ (n —m)T)
=1m=—o0
+ w(iTs + nT)
qg M
=3 Y Skn-mhi(iTs + mT) + w(iT, + nT),
k=1m=0

i=0,...,P—1. (2)

Letus callz)) = «(iT, +nT), h{), = hi(iT, + nT),
andw!) = w(iTs +nT). Then:

S

Fractionally-spaced sampling effectively generates-

P virtual channels Symbolh( " denotes the discrete-
time impulse response characterizing the transfer through
theith virtual channel between thigh source and the re-
ceiving sensor. Stor® received samples of virtual chan-
neli in vectorx') = [{, ..., xSlN+1]T. Parameter

N is referred to as the smoothing factor [6] or stacking
level [7]. Similarly, gather théV samples of thd. virtual

M
Zskn m km+w'gzi)'

m=0

®3)

T T
channel outputs in vectot, = [x\ , ..., xZ7V T
With the notationssy ,, = [Sk.n, -+, Skn-N—a+1]"s
B N LIS R [h;g, e BTy =
0T -7
", ..,h; T
h=[h, ..., hy 4
hi) - D % 0
i 0 My I 0
=]
: TR
T T
Hyny=[H o HGD T (5)
Hy =[Hin, ..., HynN] (6)
WS) = [WELi)a ) SZ)N-H}T (7)
w, = (w0, L wEDTT ®

and relationship (3), we have the matrix model:

X, = Hys,, + W,

©)

Matrix H,E}V with dimensionsN x (N + M), is the
SO- caIIedﬁItermg matrix associated with the linear filter

hgj . Filtering matrix H;, which represents the overall
system, is of dimensionBN x ¢(N + M).

2.2. Multiple sensors

Alternatively, the receiver could exploit spatial diversity
by means of< sensors located at different points in space.
In such a case, Idtgj)(t) denote the impulse response

between théth source and thih sensor. The continuous-
time received signal at thigh sensor then reads:
q
RIOEDY Z seamhi? (t —mT) + w(t) (10)
k=1m=—oc0

i =1, ..., K. With obvious symbol redefinitions and
suitable restatement of assumptions (A1)—(A3), the equi-
valent matrix model of the received signals sampled at
the baud rate also shows the shape of (9). Now the num-
ber of virtual channels is equal to the number of sensors,
L = K. In addition, one can oversample the output of
each sensor by a factor @, giving rise toL. = PK
virtual channels. Sampling below the baud rasel
sampling is also feasible as long & > ¢ (as will be
justified in the next section). In any case, all these situ-
ations can be represented by (9), a linear system of di-
mensionL N x ¢(N + M). In the sequel, the subindéx
(e.g., inH y) will be dropped when no ambiguity exists.

2.3. Identifiability

Theobjectivesf blind identification and equalization are
to estimatef/ (blind channel identification) argd, (blind
channel equalization [ISI cancellation] and source separ-
ation [MAI cancellation]) from the only observation of
the received vectax,,. These tasks are tantamount to re-
covering the channel coefficient vectar[eqn. (4)] and
the source vector

S = [S1ms -vs Sqm)’ =

[sn(1),8,(N + M +1),..,

Sq,n

sn((g =DV + M) + )]
(11)

wheres,, (i) denotes théth element of vectos,,.

A necessary condition for blind identifiability is that
the filtering matrix be full column rank, which can only
happen ifLN > ¢(N + M). This conditions fixes lower
bounds on the sampling rate and/or the number of sensors.
The sufficient conditions providing a filtering matid,

with full column rank are [5]: 1) the ponnomiaH,ii)(z) =
Z%:O hﬁj)mzm share no common zero, 2y is greater
than the maximum degre¥ of the polynomialgd?

1, (2),
i.e., N > M, and 3) at least one polynomiﬂ,ﬁl)(z) has
degreelM.

3. EXPLOITING SOURCE TEMPORAL
WHITENESS

3.1. Introduction

Tonget. al.[4] were the first to realize that blind channel
identification of nonminimum-phase systems is possible
from the SOS alone in the single-user (SIMO) case. Their
approach was based on the decomposition of the autocor-
relation matrices of the observed vector at two different
time lags. Here, we extend this approach to the multi-
user scenario. The application of this extended proced-
ure leaves an ISI-free spatial mixture of the sources un-
resolved. An extra assumption that the information se-
guence is temporally white is used in Tong’s method.
This assumption is easily extended to the multi-user case:

DSP 2002 - 136



(A4) The autocorrelation function of symbol sequences
is given by:

Elsg mSknl =0m—m, k=1,...,q¢ (12)
Let us define the autocorrelation matrix of the observed
vector as:R,(m) = E[x,x!_, ]. Accordingly, the auto-

n-n—m

correlation matrix of the source vector process reads:

I, @Jm, m 20
Rs(m) - E[Snsn m] - I ® (JH)|m\ m<0
whereJ is the ‘shifting’ matnx

1, i=j+1

(J)ij = { 0,  otherwise
that is, a matrix of 1's along the first lower diagonal and
0’s elsewhere. We also calk = I, ® J. From model
(9), matricesR, and R, are related throughR,(m) =
HR,(m)H" + R, (m), whereR,,(-) is the autocorrel-
ation matrix of the noise vector, defined accordingly. To
simplify the following development, let us ignore the noise
for the moment.

(13)

3.2. Channel identifiability

Theorem 1. Suppose thaf{ ands,, satisfy the linear
model(9) and its constraints (A1)-(A4). Theii is de-
termined fromR,.(0) and R, (1) up to a post-multiplicative
factor of the formQ ® I ar, where@ € C1*9isaqg x g
unitary matrix.

Proof. Assume that the channel-source cougl&s s,,)
and (H, §,) fulfil the linear model (9) and constraints
(Al)~(A4). Then:R,(0) = HH" = HA" andR, (1) =
HJgH" = H.JgH™. The first equality implies thall =
HQ, with Q a unitary matrix of dimensiong N + M) x

g(N x M). The second equation implies thdg =
QJgQ", which corresponds to the Jordan chag) =
QJs. LetQ = [QW, ..., QW], with §* denoting
theith column vector of théth (N + M)-column block

QW) € CaONHMXNFM) fo =1, .. qi=1,..., N+
M. Due to the orthogonality af), we have
(615'“))“&;” = ijki- (14)

On the one handQ.Js = [Q(l)J . Q) J], the Ith
column ofQ(*) 7 being given byi; "), forl = 1,..., N+
M — 1, anqu(N+M), forl = N + M. That is, for
k=1,..., ¢

Jea (15)
< )

JeAnar = Og(N+M)- (16)

On the other hand, thigh column vector of théth (V +
M)-column block ofJz(Q is equal to

& (k)

=q;1 Il=1,..., N+ M-1

- k) - (k ~(k
Jqu( )= = [0, q§ l)’qé z)’ EXE! qg\fl]\lfl?l’ 0, ng)+M+1,l7
_(k
qJ(VJ)rJW+2,l7 KR qQ(J)\H-M)—l,l’ "-}T 17)
Whereq = (Q™),;. The combination of eqns. (16)

and (17) shows that vectqu\’,C ‘s is of the form

~ (k T T T
ng)+M =[Onypnr—15 @1 ks -+, Ongar—1s gkl (18)

with
q

D lanil” =

r=1
by virtue of orthogonality relationship (14). Now, accord-
ing to (15), JB(i]\lflM 1= qﬁéLM, which in combination

with (17) glves.qg\,)HVF1 =

(19)

T
[0N+M—2a a1k, bk, .. 0N+M 2, Qq,k; bg, k] (20)

with >°7_ (larx* + |brk|?) = 1. However, eqn. (19)
implies thatb, , =0, =1, ..., ¢. A similar reasoning
over the rest of the columns dgQ*) results in

Q™ =laik, ..., ags]" ® Inyur (21)

which holds fork =1, ..., ¢q. As aresult, we have that
Q=Q®Inin, with (Q)ij = aij.  (22)
Eqn. (14) implies tha}7_, a; ;a,; = 0, # j, which,

along with (19), proves tha is unitary:Q"Q = 1,. O

3.3. Channel identification

The following is a direct extension of the blind chan-
nel identification procedure presented in [4] and explains
how the channel can be estimated frén(0) andR,(1).
Let R, (0) have the singular value decomposition (SVD)
R.(0) = US?UH with U € CLN*alN+M) gnd 5 =
diagio1, ... ogv+nr)). SinceR,(0) = HH", H =
USV,with V e Ca(N+M)xa(N+M) ynitary.

Form the whitening matri} = S~1U". Then

R=WR,(1)W" =V JgV" (23)

which corresponds to the Jordan ch&l = V Jg. With

V=[O, ... v@] v representing théth column
of V(#), this chain can be decomposed into:
Rv(k):{vl(i)l’ l=1,..., N+ M—1
! q(N+M)7 I=N+M

for k = 1,...,¢q. AssumeR admits the SVDR =
URSRVEI. Then

RR" = UrSEUL. (24)

Also, from (23)

RRP =V JgJHVH = VI,V (25)

with I = I,®I5andly = JJ" = diag(0, 1,1,..., 1).
N——
N+M-1
From eqns. (24)—(25), itturns outthagf“), k=1,...,q,
can be identified as the left singular vectors associated

with the zero singular values of matrix. We can then
construct

v = [vi? rv?, . RVEM=DIR] (26)
Similarly,

RUR = VRSEVE (27)

RMR =V JgJgV" = VI V" (28)
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with Iy, = I,®Ipandly = JHJ = diag(1,1,..., 1, 0). out in Section 2.3 are fulfilled). This joint space-time
— equalization is possible due to the diversity introduced
by oversampling, which creates extra virtual sensors with
additional linear mixtures of the signals.
e The extension to the case of known noise autocor-
relation function can be done along the lines of [4].

N+M-1
Hence,vg\’,“er, k=1, ..., q, can be identified from the
right singular vectors associated with the zero singular
values of matrixR. We can then construct

vk — [(RT)(N-i-M—l)Vg\’;‘)

® k)
doags s BT ]

VN+M>» VN4 M
4. CONCLUSIONS AND FURTHER WORK
Remark that there are indeedlifferent (left and right)

singular vectors associated with the null singular vec- In this contribution, we have extended the SOS-based
tors of R. Effectively, ranKR) = ¢q(N + M) — ¢, and blind FIR-channel identification method of [4] from the
hencelim{Null(R)} = ¢; in other words, the eigenspace  single-input case for which it was originally designed to
associated with its zero eigenvalues is of dimensgjon the multi-input scenario. The solution provided by this
The orthogonality ofl” is guaranteed by the eigenstruc-  direct extension eliminates ISI, but MAI removal requires

ture of R, which makes the columns &f(*) orthogonal a further processing stage composed of a suitable BSS
and the matrix block® (*) possess mutually orthogonal  method for instantaneous linear mixtures. The existence
columns. of this situation for subspace—based approaches in the
multi-user environment was known. In this paper, we
3.4. Equalized outputs have seen that this is indeed the case for the particular

. o blind identification method of [4]. Further work com-
By using the above procedure, the channel matrix is thus prises the comparative performance analysis of the ex-
identified up to the indeterminacy shownin Theorem 1. if ~ tended method relative to other blind identification tech-
H represents the true channel, then the estimated channel hiques, such as that of [11], which is fully based on BSS.

will be H = H(Q® IN+ ), with Q an unknown(g x q) Acknowledgements V. Zarzoso is supported through a Postdoctoral
unitary matrix. Letz,, = = H tx,, represent the equalized Research Fellowship awarded by the Royal Academy of Engineering.

output vector. Them,, = HiHs,, = (Q @ Iniar)'sy,.
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