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Abstract: In the single-user scenario of data communications, the identification and equalization of the channel can be accomplished
blindly (i.e., without training sequences) using second-order statistics (SOS) if suitable diversity in the received signal is exploited.
Diversity can be temporal, spatial, or both. In this paper one well known SOS-based method for blind identification and equalization
(BIE) of communication channels is extended to the multi-input scenario. It is shown that the application of this SOS-BIE procedure
reduces the system to a problem of blind source separation (BSS) of instantaneous linear mixtures. The users’ signals can then be
recovered in a second stage through appropriate BSS techniques, typically requiring higher-order statistics.

1. INTRODUCTION

1.1. Problem definition and objectives

In point-to-point digital communications, linear channel
distortion introduces intersymbol interference (ISI) in the
received signal, generating errors in symbol detection.
Traditional equalizers were based on training sequences,
while blind channel identification and equalization (BIE)
methods do not require training sequences.

Original blind equalizers were based implicitly on the
higher-order statistics (HOS) of the received signal [1, 2,
3]. However, due to the larger estimation error of HOS
with respect to second-order statistics (SOS), these meth-
ods are computationally demanding. It is well known that
when the input signal is stationary, SOS can only identify
minimum-phase channels. The groundbreaking paper [4]
first proved that nonminimum-phase channelscanindeed
be identified using SOS if the received signal exhibits
cyclostationarity. SOS-based blind channel identification
and equalization is possible in the so-called single-input
multiple-input (SIMO) systems [4, 5]. In multiple-user
communication environments, i.e., in multi-input multi-
output (MIMO) scenarios, interference from other users
— so-called multiple access interference (MAI) — adds
to the ISI caused by multipath.

In this paper, we extend the method of [4] to the multi-
user case. We prove that the direct extension of such pro-
cedure performs time equalization (i.e., removes ISI), but
is unable to disentangle the spatial mixture of the users’
signals. An instantaneous linear mixture of the transmit-
ted data remains, which can be tackled (thus eliminating
MAI) by means of suitable blind source separation tech-
niques.

1.2. Notations

C is the set of complex numbers.(A)ij is the (i, j)-
element of matrixA. In refers to then × n identity mat-
rix, and0m×n to the matrix composed ofm×n zeros;0n

is then-zero column vector. Superindices(·)∗, (·)T, (·)H,

(·)−1 and(·)† indicate the complex conjugate, transpose,
Hermitian, inverse and Moore-Penrose pseudoinverse op-
erators, respectively. E[·] stands for mathematical expect-
ation. Symbolδk denotes the discrete-time Dirac’s delta
function, whereas⊗ represents the Kronecker product.
If X ∈ Cm×n andY ∈ Cp×q, their Kronecker product
X ⊗ Y ∈ Cmp×nq is given by

X ⊗ Y =


x11Y x12Y . . . x1nY
x21Y x22Y . . . x2nY

... . . .
...

...
xm1Y xm2 . . . xmnY

 .

2. SIGNAL MODEL

2.1. Oversampling a single sensor

Consider a multi-user digital communication system com-
posed of a single-sensor receiver in which:

(A1) q data sources simultaneously transmit mutually-
independent information-bearing symbols{sk,m ∈
C}, k = 1, . . . , q, at a known ratefb = 1/T
bauds. The information sequences fulfil: E[sk,·] =
0 and E[|sk,·|2] = 1.

(A2) The impulse responseshk(t) representing the prop-
agation between thekth source and the sensor (in-
cluding the effects of the transmitter and receiver
filters) has finite time spanLhk

. For simplicity,
we will assume thatLhk

= Lh , k = 1, . . . q,
spanning at mostM + 1 data symbols, withM =
bLhmax/T c.

(A3) The additive measurement noisew(t) is zero-mean
and uncorrelated with the data sequence.

With the above assumptions, the continuous-time com-
plex baseband received signal can be expressed as:

x(t) =
q∑

k=1

∞∑
m=−∞

sk,mhk(t − mT ) + w(t). (1)
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Sampling at a ratefs = 1/Ts = P/T from an initial
instantt0 = 0 (without loss of generality) yields:

x(iTs + nT ) =
q∑

k=1

∞∑
m=−∞

sk,mhk

(
iTs + (n − m)T

)
+ w(iTs + nT )

=
q∑

k=1

M∑
m=0

sk,n−mhk(iTs + mT ) + w(iTs + nT ),

i = 0, . . . , P − 1. (2)

Let us callx(i)
n = x(iTs + nT ), h

(i)
k,n = hk(iTs + nT ),

andw
(i)
n = w(iTs + nT ). Then:

x(i)
n =

q∑
k=1

M∑
m=0

sk,n−mh
(i)
k,m + w(i)

n . (3)

Fractionally-spaced sampling effectively generatesL =
P virtual channels. Symbolh(i)

k,· denotes the discrete-
time impulse response characterizing the transfer through
theith virtual channel between thekth source and the re-
ceiving sensor. StoreN received samples of virtual chan-
nel i in vectorx(i)

n = [x(i)
n , . . . , x

(i)
n−N+1]

T. Parameter
N is referred to as the smoothing factor [6] or stacking
level [7]. Similarly, gather theN samples of theL virtual

channel outputs in vectorxn = [x(0)
n

T
, . . . , x(L−1)

n

T
]T.

With the notationssk,n = [sk,n, . . . , sk,n−N−M+1]T,

sn = [sT
1,n, . . . , sT

q,n]T, h(i)
k = [h(i)

k,0, . . . , h
(i)
k,M ]T, hk =

[h(0)
k

T
, . . . , h(L−1)

k

T
]T

h = [hT
1, . . . , hT

q ]T (4)

H
(i)
k,N =


h

(i)
k,0 . . . h

(i)
k,M . . . . . . 0

0 h
(i)
k,0 . . . h

(i)
k,M . . . 0

...
...

...

0 . . . 0 h
(i)
k,0 . . . h

(i)
k,M


Hk,N = [H(0)

k,N

T
, . . . , H

(L−1)
k,N

T
]T (5)

HN = [H1,N , . . . , Hq,N ] (6)

w(i)
n = [w(i)

n , . . . , w
(i)
n−N+1]

T (7)

wn = [w(0)
n

T
, . . . , w(L−1)

n

T
]T (8)

and relationship (3), we have the matrix model:

xn = HNsn + wn. (9)

Matrix H
(i)
k,N , with dimensionsN × (N + M), is the

so-calledfiltering matrixassociated with the linear filter
h(i)

k . Filtering matrixHN , which represents the overall
system, is of dimensionsLN × q(N + M).

2.2. Multiple sensors

Alternatively, the receiver could exploit spatial diversity
by means ofK sensors located at different points in space.
In such a case, leth(i)

k (t) denote the impulse response

between thekth source and theith sensor. The continuous-
time received signal at theith sensor then reads:

x(i)(t) =
q∑

k=1

∞∑
m=−∞

sk,mh
(i)
k (t − mT ) + w(i)(t) (10)

i = 1, . . . , K. With obvious symbol redefinitions and
suitable restatement of assumptions (A1)–(A3), the equi-
valent matrix model of the received signals sampled at
the baud rate also shows the shape of (9). Now the num-
ber of virtual channels is equal to the number of sensors,
L = K. In addition, one can oversample the output of
each sensor by a factor ofP , giving rise toL = PK
virtual channels. Sampling below the baud rate (sub-
sampling) is also feasible as long asL > q (as will be
justified in the next section). In any case, all these situ-
ations can be represented by (9), a linear system of di-
mensionLN ×q(N +M). In the sequel, the subindexN
(e.g., inHN ) will be dropped when no ambiguity exists.

2.3. Identifiability

Theobjectivesof blind identification and equalization are
to estimateH (blind channel identification) andsn (blind
channel equalization [ISI cancellation] and source separ-
ation [MAI cancellation]) from the only observation of
the received vectorxn. These tasks are tantamount to re-
covering the channel coefficient vectorh [eqn. (4)] and
the source vector

s = [s1,n, . . . , sq,n]T =

[sn(1), sn(N + M + 1), .., sn((q − 1)(N + M) + 1)]T

(11)

wheresn(i) denotes theith element of vectorsn.
A necessary condition for blind identifiability is that

the filtering matrix be full column rank, which can only
happen ifLN > q(N + M). This conditions fixes lower
bounds on the sampling rate and/or the number of sensors.
The sufficient conditions providing a filtering matrixHk,N

with full column rank are [5]: 1) the polynomialsH(i)
k (z) =∑M

m=0 h
(i)
k,mzm share no common zero, 2)N is greater

than the maximum degreeM of the polynomialsH(i)
k (z),

i.e.,N > M , and 3) at least one polynomialH
(i)
k (z) has

degreeM .

3. EXPLOITING SOURCE TEMPORAL
WHITENESS

3.1. Introduction

Tonget. al. [4] were the first to realize that blind channel
identification of nonminimum-phase systems is possible
from the SOS alone in the single-user (SIMO) case. Their
approach was based on the decomposition of the autocor-
relation matrices of the observed vector at two different
time lags. Here, we extend this approach to the multi-
user scenario. The application of this extended proced-
ure leaves an ISI-free spatial mixture of the sources un-
resolved. An extra assumption that the information se-
quence is temporally white is used in Tong’s method.
This assumption is easily extended to the multi-user case:
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(A4) The autocorrelation function of symbol sequences
is given by:

E[sk,ms∗k,n] = δm−n, k = 1, . . . , q. (12)

Let us define the autocorrelation matrix of the observed
vector as:Rx(m) = E[xnxH

n−m]. Accordingly, the auto-
correlation matrix of the source vector process reads:

Rs(m) = E[snsH
n−m] =

{
Iq ⊗ Jm, m > 0
Iq ⊗ (JH)|m|, m < 0

whereJ is the ‘shifting’ matrix

(J)ij =
{

1, i = j + 1
0, otherwise

(13)

that is, a matrix of 1’s along the first lower diagonal and
0’s elsewhere. We also callJB = Iq ⊗ J . From model
(9), matricesRx andRs are related through:Rx(m) =
HRs(m)HH + Rw(m), whereRw(·) is the autocorrel-
ation matrix of the noise vector, defined accordingly. To
simplify the following development, let us ignore the noise
for the moment.

3.2. Channel identifiability

Theorem 1. Suppose thatH and sn satisfy the linear
model(9) and its constraints (A1)–(A4). ThenH is de-
termined fromRx(0) andRx(1) up to a post-multiplicative
factor of the formQ⊗IN+M , whereQ ∈ Cq×q is aq×q
unitary matrix.

Proof. Assume that the channel-source couples(H, sn)
and (H̃, s̃n) fulfil the linear model (9) and constraints
(A1)–(A4). Then:Rx(0) = HHH = H̃H̃H andRx(1) =
HJBHH = H̃JBH̃H. The first equality implies that̃H =
HQ̃, with Q̃ a unitary matrix of dimensionsq(N +M)×
q(N × M). The second equation implies thatJB =
Q̃JBQ̃H, which corresponds to the Jordan chainJBQ̃ =
Q̃JB. Let Q̃ = [Q̃(1), . . . , Q̃(q)], with q̃(k)

i denoting
theith column vector of thekth (N + M)-column block
Q̃(k) ∈ Cq(N+M)×(N+M), k = 1, . . . , q, i = 1, . . . , N+
M . Due to the orthogonality of̃Q, we have

(q̃(k)
i )Hq̃(l)

j = δijkl. (14)

On the one hand,̃QJB = [Q̃(1)J, . . . Q̃(q)J ], the lth
column ofQ̃(k)J being given bỹq(k)

l+1, for l = 1, . . . , N+
M − 1, and0q(N+M), for l = N + M . That is, for
k = 1, . . . , q:

JBq̃
(k)
l = q̃(k)

l+1, l = 1, . . . , N + M − 1 (15)

JBq̃
(k)
N+M = 0q(N+M). (16)

On the other hand, thelth column vector of thekth (N +
M)-column block ofJBQ̃ is equal to

JBq̃
(k)
l = [0, q̃

(k)
1,l , q̃

(k)
2,l , . . . , q̃

(k)
N+M−1,l, 0, q̃

(k)
N+M+1,l,

q̃
(k)
N+M+2,l, . . . , q̃

(k)
2(N+M)−1,l, . . . ]T (17)

whereq̃
(k)
i,j = (Q̃(k))ij . The combination of eqns. (16)

and (17) shows that vector̃q(k)
N+M is of the form

q̃(k)
N+M = [0T

N+M−1, a1,k, . . . , 0T
N+M−1, aq,k]T (18)

with
q∑

r=1

|ar,k|2 = 1 (19)

by virtue of orthogonality relationship (14). Now, accord-
ing to (15),JBq̃

(k)
N+M−1 = q̃(k)

N+M , which in combination

with (17) gives:q̃(k)
N+M−1 =

[0T
N+M−2, a1,k, b1,k, . . . , 0T

N+M−2, aq,k, bq,k]T (20)

with
∑q

r=1(|ar,k|2 + |br,k|2) = 1. However, eqn. (19)
implies thatbr,k = 0, r = 1, . . . , q. A similar reasoning
over the rest of the columns ofJBQ̃(k) results in

Q̃(k) = [a1,k, . . . , aq,k]T ⊗ IN+M (21)

which holds fork = 1, . . . , q. As a result, we have that

Q̃ = Q ⊗ IN+M , with (Q)ij = ai,j . (22)

Eqn. (14) implies that
∑q

r=1 a∗r,iar,j = 0, i 6= j, which,
along with (19), proves thatQ is unitary:QHQ = Iq.

3.3. Channel identification

The following is a direct extension of the blind chan-
nel identification procedure presented in [4] and explains
how the channel can be estimated fromRx(0) andRx(1).
Let Rx(0) have the singular value decomposition (SVD)
Rx(0) = US2UH with U ∈ CLN×q(N+M) and S =
diag(σ1, . . . σq(N+M)). SinceRx(0) = HHH, H =
USV , with V ∈ Cq(N+M)×q(N+M) unitary.

Form the whitening matrixW = S−1UH. Then

R = WRx(1)W H = V JBV H (23)

which corresponds to the Jordan chainRV = V JB. With
V = [V (1), . . . , V (q)], v(k)

l representing thelth column
of V (k), this chain can be decomposed into:

Rv(k)
l =

{
v(k)

l+1, l = 1, . . . , N + M − 1
0q(N+M), l = N + M

for k = 1, . . . , q. AssumeR admits the SVDR =
URSRV H

R . Then

RRH = URS2
RUH

R. (24)

Also, from (23)

RRH = V JBJH
B V H = V I0BV H (25)

with I0B = Iq⊗I0 andI0 = JJH = diag(0, 1, 1, . . . , 1︸ ︷︷ ︸
N+M−1

).

From eqns. (24)–(25), it turns out thatv(k)
1 , k = 1, . . . , q,

can be identified as the left singular vectors associated
with the zero singular values of matrixR. We can then
construct

V (k) =
[
v(k)

1 , Rv(k)
1 , . . . , R(N+M−1)v(k)

1

]
. (26)

Similarly,

RHR = VRS2
RV H

R (27)

RHR = V JH
B JBV H = V I0BV H (28)
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with I0B = Iq⊗I0 andI0 = JHJ = diag(1, 1, . . . , 1︸ ︷︷ ︸
N+M−1

, 0).

Hence,v(k)
N+M , k = 1, . . . , q, can be identified from the

right singular vectors associated with the zero singular
values of matrixR. We can then construct

V (k) =
[
(R†)(N+M−1)v(k)

N+M , . . . , R†v(k)
N+M , v(k)

N+M

]
.

Remark that there are indeedq different (left and right)
singular vectors associated with the null singular vec-
tors of R. Effectively, rank(R) = q(N + M) − q, and
hencedim{Null(R)} = q; in other words, the eigenspace
associated with its zero eigenvalues is of dimensionq.
The orthogonality ofV is guaranteed by the eigenstruc-
ture ofR, which makes the columns ofV (k) orthogonal
and the matrix blocksV (k) possess mutually orthogonal
columns.

3.4. Equalized outputs

By using the above procedure, the channel matrix is thus
identified up to the indeterminacy shown in Theorem 1: if
H represents the true channel, then the estimated channel
will be Ĥ = H(Q⊗ IN+M ), with Q an unknown(q× q)
unitary matrix. Letzn = Ĥ†xn represent the equalized
output vector. Thenzn = Ĥ†Hsn = (Q ⊗ IN+M )†sn.
Also, (Q ⊗ IN+M )† = (Q ⊗ IN+M )H = QH ⊗ IN+M .
Hence, the relationship between the equalized outputs
and the original data signals reads:

zn = (QH ⊗ IN+M ) sn. (29)

Now definez =

[zn(1), zn(N +M +1), . . . , zn

(
(q−1)(N +M)+1

)
]T

(30)
wherezn(i) denotes theith element of vectorzn. With
this notation, system (29) becomes

z = QHs (31)

wheres is given by (11). In conclusion, the application
of the extended Tong’s method is able to eliminate ISI,
but a unitary instantaneous linear mixture of the source
data remains, as shown in eqn. (31). MAI elimination
requires further processing in the form a BSS algorithm
for instantaneous linear mixtures.

Remarks:
• If the source data is i.i.d. (as assumed by Tong’s

method — assumption A4), the separation of the spatial
mixture requires a HOS-based BSS method, such as the
well-known JADE [8] or ICA-HOEVD [9].

• The extended Tong’s method resolves ISI and ‘ex-
hausts’ all second-order information, including that of the
spatial mixture, which then becomes unitary [10].

• The BSS problem has sizeq× q, which is consider-
ably reduced compared withLN×q(N+M), the original
dimension of the BIE system (9).

• With the application of the extended Tong’s method
followed by BSS, we can perform channel equalization
(ISI removal) and source separation (MAI removal) with
asingle sensor(providing the identification conditions set

out in Section 2.3 are fulfilled). This joint space-time
equalization is possible due to the diversity introduced
by oversampling, which creates extra virtual sensors with
additional linear mixtures of the signals.

• The extension to the case of known noise autocor-
relation function can be done along the lines of [4].

4. CONCLUSIONS AND FURTHER WORK

In this contribution, we have extended the SOS-based
blind FIR-channel identification method of [4] from the
single-input case for which it was originally designed to
the multi-input scenario. The solution provided by this
direct extension eliminates ISI, but MAI removal requires
a further processing stage composed of a suitable BSS
method for instantaneous linear mixtures. The existence
of this situation for subspace–based approaches in the
multi–user environment was known. In this paper, we
have seen that this is indeed the case for the particular
blind identification method of [4]. Further work com-
prises the comparative performance analysis of the ex-
tended method relative to other blind identification tech-
niques, such as that of [11], which is fully based on BSS.
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