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Abstract— The accuracy in the extraction of the atrial activity
(AA) from electrocardiogram (ECG) signals recorded during
atrial fibrillation (AF) episodes plays an important role in the
analysis and characterization of atrial arrhythmias. The present
contribution puts forward a method for AA signal extraction
based on a blind source separation (BSS) formulation. The
latter exploits spatial information on the different components
in the ECG related or not to AF. The source directions or spatial
topographies of the components not related to AF are used to
determine the nullspace of the AA, so that the topographies
related to AA become more suitable to describe AF sources.
The comparative performance of the method is evaluated on
real data recorded from patients with noticeable AF. The AA
extraction quality of the proposed technique is comparable to
that of previous algorithms.

I. INTRODUCTION

Atrial Fibrillation (AF) represents the most common sus-

tained cardiac arrhythmia in adults. It consists of a mis-

function of the atria characterized by a modification of the

normal atrial activity (AA) pattern on the electrocardiogram

(ECG) signal. Its prevalence and incidence doubles with

each advancing decade beyond 50 years and has direct

impact on mortality and morbidity [1], [2]. There is an

increased risk of stroke and thromboembolism compared to

people not affected by it, associated physical impairments

and increasing age of the population highlight a problem

with steadily increasing social impact in the next decades.

A deeper understanding of AF requires advanced evaluation

tools for AA signal analysis and its relation to cardiac

electrophysiology before and after specific interventions. The

analysis and characterization of AF from the ECG recordings

requires the cancellation of the signal components associated

with ventricular activity (VA), that is, the QRS-T complex.

However, this is not a simple task, since many difficulties

hinder this operation. Among them, the much lower ampli-

tude of the AA signal compared to the ventricular one and

the spectral overlapping of the two phenomena, so that linear

filters in the frequency domain are unsuccessful [3].

There exist in the literature two different families of

methods to cancel out VA in the ECG. The first involves

methods that aim for a direct suppression of the QRS-T

complex, e.g., using an adaptive template in conjunction

with the correct spatio-temporal alignment of every QRS-T

complex [4], [5]. The second involves all the methods based
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on the direct estimation of the AA, e.g., by use of blind

source separation (BSS). All the methods belonging to the

first class share similar limitations such as high sensitivity

to QRS morphological changes over time and inability to

eliminate artifacts other than VA. Moreover, they do not

exploit the global spatial diversity of an ECG recording. BSS

techniques overcome these limitations, but they share other

drawbacks, such as possible decrease in perfomance of the

AA estimation due to the stationarity assumption made on the

process, even if some studies reveal that it can be considered

as pseudo-stationary in most patients (e.g., [6]). Another

limitation is that the desired components must be detected

among the estimated sources after the separation. However,

the automatic detection of the AA signal is facilitated by

measurable features such as its narrowband spectral character

(spectral concentration). Under the assumption that AA and

VA are decoupled [3], the AA extraction problem accepts

a formulation based on instantaneous linear BSS, in which

atrial and ventricular source contributions appear mixed at

the electrode outputs in the ECG. The method proposed by

Castells et al. in [7] used one complete independent compo-

nent analysis (ICA, a technique for signal decomposition into

independent components) of the observed signals, followed

by a second-order blind identification (SOBI). SOBI exploits

the time coherence of the source signals and relies on the

decorrelation measured by stationary second-order statistics.

The method proposed in this contribution divides the ob-

served data into different signal sets associated with the most

significant segments of the cardiac period. In each of these

segments, the most important signal components interfering

the AA (i.e., the QRS complex, the T wave, or both) are

missing, thus allowing a more accurate description of the

overall VA and AA present in the ECG recording and, in

particular, an enhanced estimation of the latter.

II. METHODS

A. Data and Preprocessing

A dataset composed of 22 recordings (all presenting AF)

was employed to analyze the proposed idea. All signals were

recorded and digitized at a sampling rate of 1KHz. Among

the segments employed in this analysis 20 were recorded

using a standard 12-lead system while 2 were recorded using

a 9-lead system. Pre-processing was done by applying a zero-

phase high pass filter with a -3dB cut off frequency at 0.5Hz

to remove physiologically irrelevant low frequency signal

variations (<1Hz) [8]. A zero-phase notch filter at 50Hz was

implemented to suppress power line noise [9].
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Fig. 1. Example of a Normal Sinus Rhythm ECG recording and of the
different sets used to define the observation model in (4); a.u., arbitrary
units.

B. Blind Source Separation

BSS consists of recovering a set of source signals from the

observation of linear mixtures of the sources. The term blind

underlines that little is known about the source signals or

the mixing structure, the only hypothesis being the sources’

mutual independence [10], [11]. The model used in this

paper is the linear instantaneous mixing model, wherein

N observations of n time series y(t) ∈ R
n, the observed

signals, can be written as a linear combination M ∈ Rn×m

of the original sources s(t) ∈ Rm (m ≤ n). In matrix form:

y(t) = Ms(t) (1)

where the ith column of M represents the source directions

or spatial topography that links the ith source si(t) with

the observed signals y(t). The spatial topography describes

the relative contribution of the source amplitude on the

different spatially separated electrodes, whatever the lead

system employed. Starting from the hypothesis of sources’

mutual independence, BSS can be carried out by ICA, a

technique used to transform multisensor signals into statisti-

cally maximally independent components [10]. ICA aims to

estimate the sources ŝ(t) and the separating matrix Ŵ such

that:

ŝ(t) = Ŵy(t) = ŴMs(t) (2)

with Ŵ ≈ M♯, and where symbol ♯ stands for the pseudo-

inverse operator. Compared to ICA, principal component

analysis (PCA) transforms multisensor signals into statis-

tically uncorrelated components. Each component contains

new information about the observation set, and is ordered

so that the components are in decreasing order of variance

accounted for in the observations. Spatial decorrelation (or

whitening) involves a linear transformation of the mean

corrected observed signals y(t), which produces a set of

uncorrelated waveforms with unit variance z(t):

z(t) = B−1y(t) = B−1Ms(t) (3)

The whitening matrix B−1 can be obtained, e.g., from

the singular value decomposition (SVD) of the observation
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Fig. 2. Example of an AF ECG recording and the different sets used to
define the observation model in (9); a.u., arbitrary units.

matrix Y = UΣVT, where B−1 =
√

N − 1Σ−1UT.

C. Observation Model

The ECG is a useful inexpensive non-invasive tool to

visualize the temporal evolution of the cardiac electrical

activity as measured by electrodes located on the thorax

and the limbs, wherein different waves or complexes related

to different cardiac events are recognizable. Among these,

the P-wave indicates the contraction of the atria, the QRS

complex the ventricular contraction and the T-wave the

ventricular relaxation (Fig. 1). During AF, the P-wave and

the equipotential line between two consecutive heart beats (T-

Q segment), are replaced by rapid oscillations or fibrillatory

waves (Fig. 2). Starting from the above observations, the

observed multichannel signal y(t) can be subdivided as

follows:

y(t) = yQ(t) + yT (t) + yA(t) + η(t) (4)

where yQ(t), yT (t), yA(t) and η(t) represent the QRS, T,

AA and noise components, respectively, in the observed data.

The three sets yQ(t), yT (t) and η(t) do not contain AA at

all (Fig. 1), that is localized in yA(t). Therefore, the linear

mixture model (1) can be divided into three sub-problems.

Hence, the linear instantaneous mixing model now becomes:

y(t) = MQsQ(t) + MT sT (t) + MAsA(t) + η(t) (5)

in which mixing matrices for each problem are respectively

sought such that:

∀t /∈ QRS : E{(M̂♯
Qy(t))2} is minimal (6)

∀t /∈ T : E{(M̂♯
T y(t))2} is minimal (7)

∀t : M̂
♯
Ay(t) ≈ ŝA(t) (8)

However, coping with the inability to get the two sets yQ(t)
and yT (t) completely free from AA, model (5) is rethought

to be:

y(t) = ỹQ(t) + ỹT (t) + ỹTQ(t) + η(t) (9)

where ỹQ(t) contains both QRS and AA components, ỹT (t)
contains both T and AA components and ỹTQ(t) contains
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only AA component accounting for the AA present in the

T-Q segments on the ECG (Fig. 2).

D. Spatial Topographies and Atrial Fibrillation Estimation

The two subsets ỹQ(t) and ỹT (t) are exploited to get more

precise estimates of the QRS and T components in (5).

Thereto, first of all the whitening of the total observation

set is derived:

ẑ(t) = B̂−1y(t) (10)

After that, the detection of R-wave fiducial points, Q-wave

onsets and T-wave offsets from the ECG, allows us to

define the two subsets ẑQ(t) = B̂−1ỹQ(t) and ẑT (t) =
B̂−1ỹT (t). Secondly, the ICA model is derived for the

uncorrelated set ẑ(t):

ŝ(t) = M̂♯y(t) = M̂♯B̂ ẑ(t) (11)

while the PCA models are derived for subsets ẑQ(t) and

ẑT (t):
ŝQ(t) = Ĥ−1

Q ẑQ(t) (12)

ŝT (t) = Ĥ−1

T ẑT (t) (13)

Then, a specific set of spatial topographies describing each

one of the three subsets in (5) is extracted from each

corresponding model (11)-(13). The sets are obtained as

follows.

• In (11) AA is compressed on a low-dimensional sub-

space (associated to the highest singular values of the set

ẑ(t)), and the estimated source which best describes the AF,

ŝA(t), is searched inside the set ŝ(t). The criterion adopted

is the spectral concentration (SC) of the AA around its main

peak, computed according to the following expression [7]:

SC =

∫

1.17fc

0.82fc

PAA(f) df
∫ fs/2

0
PAA(f) df

(14)

That is, a measure for the compactness of the spectrum

around the central frequency fc (modal frequency in the 3-

12Hz interval). The column m̂′

A of the estimated mixing

matrix M̂ associated to the selected source is chosen as the

only topography describing the AA component.

• The QRS and T spatial topography sets are obtained

from models (12) and (13), respectively. Only the topogra-

phies in ĤQ associated to the i highest eigenvalues and those

in ĤT associated to the j highest eigenvalues are chosen to

describe the QRS, respectively T, component, so that:

ẑQ(t) =
i

∑

k=1

ĥk
QŝQ(t) (15)

ẑT (t) =

j
∑

k=1

ĥk
T ŝT (t) (16)

and they are collected as follows:

M̂′

Q = B̂
[

ĥ1

Q · · · ĥi
Q

]

(17)

M̂′

T = B̂
[

ĥ1

T · · · ĥj
T

]

(18)

The transformation for B̂ allows to work directly with

matrices M̂g (where g stands for “general model”) on the

full recording space y(t).
The number of principal components representing the QRS

and T waveforms varies from subject to subject, due to

their elevated patient-to-patient and beat-to-beat variability.

Hence, it is not possible to define a general and suitable

number of principal components. For that reason, the number

of i and j topographies to store inside matrices M̂′

Q and M̂′

T ,

respectively, are estimated for each subject in an exhaustive

way, selecting the pair (i, j) that produces the AF source

estimate with the highest SC.

Once all the topographies are estimated, define G as

follows:

G =
[

M̂′

Q, M̂′

T , m̂′

A

]

(19)

and orthonormalize it, obtaining:

G⊥ =
[

G⊥

Q, G⊥

T , g⊥

A

]

(20)

Orthonormalization can be achieved using different methods,

and we chose QR factorization. Bearing in mind that VA

and AA can be properly supposed uncorrelated activities,

the purpose in orthonormalizing matrix G is to make the

QRS and T topographies linearly independent from the AA

ones, i.e.
[

G⊥

Q, G⊥

T

]

forms a nullspace for g⊥

A .

Retaining the last column vector in matrix G⊥, that is

g⊥

A , it can be used to define the weight vector of a spatial

filter applied to the set y(t) of observed signals (original

waveforms) for VA and noise removal, as in the following

model:

ŝA(t) = g⊥T
A y(t) (21)

where ŝA(t) is the output of the filter, that is, the estimated

AF signal.

III. RESULTS

The proposed method is named Orthogonal Topographies

ICA (OTICA) and was applied to a dataset of 22 recordings.

Its performance is compared to those of a conventional ICA

(COM2) [10], a spatio-temporal cancellation approach (ST-

Canc) [5] and a spatio-temporal BSS approach (ST-BSS) [7].

SC of the estimated AA source around its main peak, excess

kurtosis (k) of the estimated source and characteristic AF

modal frequency (fc) are chosen as performance indices.

Indices’ values are presented in terms of mean value µ and

standard deviation σ (Table I).

Fig. 3 shows the box-and-whisker plot of the SC parame-

ter. Finally, a zoom on an example of final OTICA estimation

of the AF source ŝA(t) (projected back on lead V1) is shown

in Fig. 4.

IV. DISCUSSION

This work points out the possibility of using well defined

spatial topographies related to the components describing VA

and AA when the extraction of the AF signal is addressed.

The proper AA topography estimate can be obtained by

projecting the AA topography estimated by ICA into the
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TABLE I

MEAN PERFORMANCE INDICES FOR THE DIFFERENT METHODS UNDER

ANALYSIS (µ ± σ).

SC (%) k (n.u.) fc (Hz)

COM2 52.00 ± 14.69 -0.0951 ± 0.5587 5.5154 ± 1.29
OTICA 58.28 ± 10.89 0.0172 ± 0.7359 5.5098 ± 1.2547

ST − BSS 60.82 ± 9.21 -0.1391 ± 0.4967 5.3711 ± 1.3255
ST − Canc 57.01 ± 11.98 0.5511 ± 2.8898 5.4321 ± 1.2159

COM2 OTICA ST−BSS ST−Canc

30

40

50

60

70

80

SC
 (%

)

Fig. 3. Box-and-whisker plot of the Spectral Concentration (SC) values
for different methods.

nullspace of the VA. This can be done through an orthonor-

malization of these topographies, to make them linearly

independent. The suitability of the final AA topography

estimate can be noticed from Table I and Fig. 3 and 4, where

the ability of OTICA to get almost the same performance

as other methods suitable for the extraction of the AF is

shown. This is an important result. Indeed, OTICA offers a

simple alternative to classical methods in solving the hard

task to get rid of the ventricular components from ECG

recordings for the AA signal estimate, simply exploiting the

statistical decoupling between AA and VA. Due to the quasi-

Gaussianity of the component of interest, the AA estimate by

ICA is sometimes suboptimal. In such cases, its topography

is not suitable to describe AF and may yield poor results if
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Fig. 4. Segment from V1 lead for one patient: original recording (thin solid
line) and estimated Atrial Fibrillation signal (dashed line); a.u., arbitrary
units.

applied directly as a spatial filter. This calls for a correction

of the initial estimate with a method such as OTICA. All

these facts underline the need to define proper subsets from

the original recording, thus enabling the application of the

proposed method.

V. CONCLUSIONS AND FUTURE WORKS

A new method for the extraction of AA signals in ECG

recordings of AF has been presented. The method is based

on an estimation of the AA, QRS and T source directions

or spatial topographies from the whole original set, a QRS-

wave specific set and a T-wave specific set, respectively. The

hypothesis that VA and AA are decoupled is exploited to

make the AA uncorrelated from the VA, under the constraint

of linearly independent topographies. Results obtained on

real data show the comparative performance of the proposed

technique relative to classical methods.

Future work aims to define a criterion for the automated

selection of the proper VA topography number for each

specific subject under analysis.

VI. ACKNOWLEDGMENTS

The authors would like to express their gratitude to Leif Sörnmo
and Francisco Castells for providing the real data. The work of
Pietro Bonizzi is supported by the EU by a Marie-Curie Fel-
lowship (EST-SIGNAL program: http://est-signal.i3s.unice.fr) under
contract No MEST-CT-2005-021175.

REFERENCES

[1] W. K. Kannel, R. D. Abbott, D. D. Savage, and P. M. McNamara.
Epidemiologic features of chronic atrial fibrillation: the Framingham
study. N Engl J Med, 306:1018–22, 1982.

[2] A. D. Krahn, J. Manfreda, R. B. Tate, F. A. Mathewson, and T. E.
Cuddy. The natural history of atrial fibrillation: incidence, risk factors,
and prognosis in the Manitoba Follow-Up Study. Am J Med, 98:476–
84, 1995.

[3] J. J. Rieta, F. Castells, C. Sánchez, V. Zarzoso, and J. Millet. Atrial
activity extraction for atrial fibrillation analysis using blind source
separation. IEEE Trans on Biomed Eng, 51, No. 7:1176–86, July
2004.

[4] L. Sörnmo M. Stridh. Spatiotemporal QRST cancellation techniques
for analysis of atrial fibrillation. IEEE Trans. Biomed. Eng., 48:105–
111, January 2001.

[5] O. Meste and N. Serfaty. QRST cancellation using bayesian estimation
for the auricular fibrillation analysis. In Engineering in Medicine and

Biology, 2005.
[6] Rieta, J.J. and Sánchez, C. and Sanchis, J.M. and Castells, F. and

Millet, J. Mixing matrix pseudostationarity and ECG preprocessing
impact on ICA-based atrial fibrillation analysis. Lecture Notes in

Computer Science, 3195:10791086, 2004.
[7] F. Castells, J. J. Rieta, J. Millet, and V. Zarzoso. Spatiotemporal

blind source separation approach to atrial activity estimation in atrial
tachyarrhythmias. IEEE Transactions on Biomedical Engineering,
52(2):258–267, February 2005.

[8] Leif Sörnmo and Pablo Laguna. Bioelectrical Signal Processing in

Cardiac and Neurological Applications. Elsevier Academic Press,
2005.

[9] S. K. Mitra. Digital Signal Processing: A computer-based approach,

2nd ed. McGraw-Hill, 2001.
[10] P. Comon. Independent component analysis: a new concept? Signal

Processing, 36:287–314, 1994.
[11] V. Zarzoso and A. K. Nandi. Blind source separation. In A. K. Nandi,

editor, Blind Estimation Using Higher-Order Statistics, chapter 4,
pages 167–252. Kluwer Academic Publishers, Boston, MA, 1999.

1870


	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

