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Abstract— In this work we show how one can make use of
priors on signal statistics under the form of cumulant guesses
to extract an independent source from an observed mixture.
The advantage of using statistical priors on the signal lies in
the fact that no specific knowledge is needed about its temporal
behavior, neither about its spatial distribution. We show that
these statistics can be obtained either by reasoning on the
theoretical values of a supposed waveform, either by using
a subset of the observations from which we know that their
statistics are merely hindered by interferences. Results on an
electro-cardiographic recording confirm the above assumptions.

I. INTRODUCTION

The use of blind source separation (BSS) algorithms,

and more specifically the independent component analysis

(ICA) [1] algorithms, are nowadays widespread in biomed-

ical signal processing. Being able to separate the observed

signals into a set of independent random variables is close

to reality, when the considered signals are generated by

physiologically distinct entities [2], [3]. One of the examples

is the reduction of eye blinking artifacts in electroencephalo-

graphic recordings, where the electrical source of the eye is

physiologically distinct from the electrical processes which

take place in the brain. In this case, the application of tradi-

tional ICA methods gives rather good results concerning the

separation [2] but the identifiability of the signal of interest

requires human interaction or well-adapted methods [4], [5].

A. Conventions

In this contributions all scalars, vectors and matrices will

be represented by a lower case light face, lower case bold

face and upper case bold face, respectively. Constants will be

represented by an uppercase light face. All random variables

are supposed i.i.d. Marginal cumulants of order r for a ran-

dom scalar w will be denoted by Cw
r . Likewise, Cγ

r denotes

the r-th order cumulant of a distribution characterized by

the parameter(vector) γ. The fourth order cumulant is also

referred to as the excess kurtosis.

B. Independent Component Analysis with priors

Our linear, noiseless ICA model is defined as:

y = As , ps = Πn
i=1psi

, (1)
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where the equation on the left denotes the linear mixing

model which transforms the source signals s ∈ IRn through

a linear instantaneous mixture A ∈ IRm×n into the ob-

servations y ∈ IRm,m ≥ n. The equation on the right

in (1) shows the independence of the source signals si.

The independence is characterized by the fact that the joint

probability density function (pdf) ps can be factorized into

the product of marginal pdf’s psi
. ICA - given our model -

aims at estimating the mixing process A and the sources s

as x
∆
= B−1y = B−1As ≈ Gs, given only the observations.

Any scaling and/or permutation of the variables si in s will

not affect their independence. Additional information is thus

needed in order to extract the source(s) of interest without a

posteriori variable selection, which is known to be prone to

errors [6].

To extract a source (say s1, without loss of generality)

from a mixture y by using the above model (1) and a

priori source information, the literature mentions a range

of algorithms based either on reference signals [7], [8], [9],

[10] or on the distribution over the (physical) sensors [11],

[4], [5], [12], [6]. However, all of these techniques stand

or fall with the availability of an accurate enough reference

signal (respectively a reference spatial distribution). In this

contribution, we follow a quasi maximum likelihood (ML)

approach to extract the source of interest among a set of

independent sources when only few of its (higher order)

statistics can be estimated.

C. Likelihoods in ICA

The normalized log-likelihood [13] of our observations y

can be expressed with respect to a distribution parameter θ
as

Lθ(x) =

∫

IRn

px(u) log pθ(u)du

s
= −KL(px(x)||pθ(x)) − H(px(x)) , (2)

where KL is the Kullback-Leibler divergence defined as

KL(x, y) =
∫

IR
x log(x/y), H the Shannon (differential)

entropy,
s
= denotes the sample equivalent and pθ(x) is

the distribution of x conditioned on θ. In this work, the

parameter vector θ contains the prior information αi, the

respective cumulant approximations of si, characterizing the

source distributions.

Finding the maximum of Lθ(x) is done by maximiz-

ing −KL(Πipxi
(xi)||Πipαi

(xi), because the differential en-

tropy in (2) remains constant under an invertible basis change

B [1], i.e. H(x) = H(y). As already noted in [13], the

ML (up to a constant) can be subdivided into two separate
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contributing terms, namely the mutual information and the

marginal mismatch.

1) The Mutual Information (MI) term: MI(x) is given

by

MI(x) = KL(px(x)||Πipxi
(xi)) , (3)

and is a direct measure of independence, since MI(x) ≥
0 with equality if and only if the entries xi are mutually

independent. Note that this term does not depend on the

priors αi.

2) The marginal mismatch (MM) term: A measure for

the gap between the hypothesized source distribution and

the marginal distributions of the (supposedly independent)

estimates. It is the likelihood term Lθ(x) when the entries

of x are supposed to be independent and is equivalent to

MM(x, θ) =

n
∑

i=1

KL(p(xi)||p(xi|θi)) . (4)

In what follows, we combine both criteria when guesses of

some output statistic(s) of only a single si is available, such

that xi is an appropriate estimate for si. In that case, one can

not use the maximum likelihood approach from [14] which

supposes all marginal cumulants to be known, neither can

ordinary ICA algorithms [1], [15] alleviate the permutation

ambiguity.

II. METHODS

A. Orthogonal Contrasts

Since independence is equivalent to the cancellation of all

cross-cumulants, we subdivide our problem into a two-stage

process. At first, we cancel all second order cross-cumulants

and subsequently we will minimize the cross-cumulants of

a given order. This reduces the computational load since it

allows for a reduced search space in the second stage.

Consider the centered version of the observations ỹ = y−
E{y} and its associated covariance matrix Cỹ = E{ỹỹT },

where E{·} denotes mathematical expectation. If both E{y}
and E{ỹỹT } are perfectly known we can standardize ỹ,

yielding decorrelated random variables z = C
−1/2
ỹ

ỹ, with

E{zzT } = In, the identity matrix in IRn. Transformations

of z are guaranteed to preserve the decorrelation if they

are restricted to x = QT z, with Q ∈ SO(n), the special

orthogonal group in IRn. Our system then reduces to x =

QT z = QT C
−1/2
ỹ

ỹ, where the unknown Q is now in

SO(n) ⊂ GL(n).

B. The Connection Between Orthogonal ML and Standard-

ized Cumulants

The ML term in (2) is the divergence between the marginal

pdf’s of the estimates and those of the envisaged sources.

We thus need to compare individually each pxi
(xi) to its re-

spective hypothesized distribution pαi
(xi). Since estimating

a distribution from observed variables is a highly complicated

task, we will compare two distributions by comparing the re-

spective expansions around their closest normal distribution,

in terms of their Edgeworth Type A series [16], [1], [14]. The

Edgeworth expansion for a density function of a standardized

variable (zero-mean, unit variance) is given by

p(u|γ) =
1√
2π

exp(−u2/2)
∞
∑

j=1

kj(γ)Hj(u) , (5)

where kj(γ) are functions of the cumulants of the distri-

bution characterized by γ and Hj(u) are the Chebychev-

Hermite polynomials [16, §6.20]. If we further suppose that

the distributions are symmetric (odd cumulants vanish) and

standardized (C1 = 0, C2 = 1) and we consider our expansion

until the term in u4 (the parameters associated to higher

orders of u are less accurate with increasing order when

estimated from population samples of a distribution), then

all polynomial coefficients of kj(xi) [kj(αi)] depend solely

on the cumulants Cxi

4 [Cαi

4 ]. If we further consider that

the expansion is valid in the neighbourhood of the origin

(|f(u)| ≪ 1), then log 1 + f(u) ≈ f(u),. By putting (5)

in (4), we then get

ML(x, θ) =
∏

i

Cxi

4 − Cαi

4

24

(
∫

IR

pxi
(ui)u

4
i dui − 6

)

.

(6)

The distance between the cumulant of our outputs xi and the

hypothesized distributions parameterized by αi is minimized

(cumulant matching) through maximizing

φML =

p
∑

i=1

−(Cxi

4 )2 + αiCxi

4 . (7)

C. Mutual Information

To express the mutual information (3) between variables,

one can fall back onto the information theoretic equality

that the mutual information is minimized when the KL-

divergence of the marginal distributions with respect to a nor-

mal with equal first and second moments are maximized [1].

As above in the case of the ML, we can show that

under the same assumptions of standardized distributions and

truncation of the polynomials at u4, there is a connection

between the optimization of the mutual information and the

optimization of φMI =
∑n

i=1(Cxi

4 − CN
4 )2 =

∑n
i=1(Cxi

4 )2,

where N denotes the standardized normal distribution, where

we use the fact that all higher order cumulants of a normal

distribution vanish, i.e. CN
4 ) = 0.

D. ICA with Cumulant Priors

Define now a function φξ(Q) = ξ · φML(Q) + (1 −
ξ)φMI(Q), where ξ ∈ [0, 1] is a weighting factor. If we

have no priors on the cumulants of the sources, we can

set ξ = 0 and obtain φ0 = φMI , which is the standard

squared cumulants ICA contrast (COM2) [1]. However, if

all sources would have a prior on their cumulants we obtain

by setting ξ = 1/2 the contrast φ1 =
∑n

i=1 αiCxi

4 , the

contrast as proposed in [17]. Setting ξ = 1/2, we obtain

φ1/2 = 1/2
∑n

i=1 αiCxi

4 + (Cxi

4 )2 which is equivalent to the

orthogonal ML contrast [14].
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Consider now the function

φ = αCx1

4 +
n

∑

j=2

(Cxi

4 )2 , (8)

which is a hybrid function of the ML (for x1) and the mutual

information xj 6=1. We thus have a function that can be used

when prior knowledge is available for a single source only.

E. Optimizing the Objective Function by Planar Rotations

Since the optimization of the contrast φ is over SO(n),

we can define the optimal rotation matrix Q⋆ through a

chain of rotations Q⋆ = limp→∞ Q⋆(p) where Q⋆(p) =
Πp

r=1q
⋆(r). Optimization can be done iteratively by taking

at each iteration (k) a pair (x
(k−1)
i , x

(k−1)
j 6=i ) of the output

x(k−1) = (Q⋆(k−1))T z and rotating it in its plane as x
(k)
ij =

q(k)x
(k−1)
ij . If the matrix q(k) is taken as q

(k)
ii = q

(k)
jj =

1/
√

1 + t2, q
(k)
ij = −q

(k)
ji = t/

√
1 + t2 (Givens rotation),

the sole parameter on which φp(Q
(k)) depends, is t = tanϕ.

An interesting by-product of an optimization scheme using

planar rotations is that it can easily be adapted to source

extraction by defining the update sequence as an iteration

over all pairs including xi, where xi is the source of interest

with prior αi [?]. Without loss of generality we can take

i = 1. In this paper we will only make use of this source

extraction mode. The contrast for each of these pairs can

thus be reduced to φ(x1,xj) = 2αCx1

4 + (Cxj

4 )2. Rooting

the first derivative of this contrast (a polynomial in t) and

retaining the real root t⋆ = arg maxt φp(q
(k)) gives the

optimal solution q⋆(k) = q(k)(t⋆) at each iteration. The

polynomial of degree 8 to be rooted is given in A.

III. RESULTS

We applied our method onto an ECG fragment with known

atrial fibrillation of which the high-pass, centered version is

shown in figure 1. Two experiments are set up where we

envisage the extraction of the source associated to 1)the QRS

complex and 2) the atrial activity. To have an estimator αQRS

(respectively αAA) for the cumulant of the envisaged source,

we use an empirical estimate. For the estimator αAA we also

introduce two theoretical values based on prior knowledge

of the waveform/distribution for comparison.
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Fig. 1. The original ECG fragment after high pass filtering at 1Hz.

1) Extracting the QRS component: Hereto, αQRS has

been chosen larger than the largest cumulant of s accordingly

to the assumption that there is no waveform with a larger

cumulant in the set. Since we have no knowledge of the

kurtosis values in the set s, we set αQRS arbitrarily high,

namely αQRS = 100. Figure 2 shows the so extracted

source x1 together with the manually selected estimate of

an ordinary ICA algorithm (COM2). The absolute value of

the correlation coefficient between both is 1.0000.

0 0.5 1 1.5 2 2.5 3

COM2

high

time (s)

Fig. 2. The estimates x1 of the proposed algorithm at order 4 (αQRS =

100) and of a regular ICA algorithm (COM2), where the estimate with
largest kurtosis has been selected a posteriori.

2) Extracting the AA component: In figure 3 we show

the results when the AA source is envisaged. We tried three

different values of α: The empirical prior αAA was obtained

by calculating the statistics on isolated AA-waves from the

observed dataset (αAA
AA = −0.2213). Theoretical estimates

take the value of the cumulant of a stationary sinusoidal

(αsin
AA = −3/2) or triangular (αtri

AA = −6/5) waveform.

The so obtained estimated source x1 has a kurtosis value of

−0.2038, respectively −0.2091 and −0.2138. As a compar-

ison, we give the estimate for a spatiotemporal BSS method

(STBSS [18], Cx1

4 = −0.0000) and a regular ICA method,

where the kurtosis value was −0.1483.

0 2 4 6 8 10 12

COM2

STBSS

sin

tri

AA

time (s)

Fig. 3. The estimated source x1 when using the prior derived from the
dataset (AA) or a prior on the waveform (αtri

AA (tri) or α
sin
AA (sin)), and the

estimate from a spatio-temporal BSS (ST-BSS), where a posteriori variable
selection has been performed.

IV. DISCUSSION AND CONCLUSION

From the above results, we can see that the estimated

source is in line with the independent sources estimated

by more general ICA algorithms, such as COM2 [1], and

with more specific signal extraction techniques, such as ST-

BSS [18] for temporally correlated, non-impulsive signals.

Whereas in the latter two, selection takes place a posteriori,

our method solves for the permutation ambiguity within the

algorithm itself, reducing it to a single stage, and thus making

it less prone to errors in the previous stages of the algorithm.
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This is especially the case in deflation algorithms where the

source of interest is not the first source to be extracted and the

algorithm thus propagates and accumulates the errors made

in previous stages [19].

Another advantage of our method, this time with respect

to algorithms using sampled references (either temporal

or spatial), is its robustness to prior mismatches. Since

generally a constraint is put on the maximally allowed

distance between the reference and the source to extract,

the waveforms (both in phase and frequency) have to be

aligned to be non-orthogonal, a problem that is not present

in our proposed extraction algorithm. The approximation of

a distribution by its higher order statistics also omits the

difficulty of adaptation of the score function (a nonlinear

function that is ideally the cumulative density function of

the source to extract) to the source distribution [20], [21] or

to solve a maximum a posteriori problem through stochastic

optimization [22]. We reduce the prior information on the

source distribution to a single set of cumulants.

Remarks: 1) When the excess kurtosis is not discrimina-

tive over the set (i.e. the kurtosis is not a sufficient statistic),

then the algorithm can be extended to priors on a set of

cumulants of different order. 2) Since we do not restrict

ourselves to φMI , the polynomial ∂φp(Q
(k))/∂t = 0 has no

symmetry and hence the roots cannot be found algebraically

(the roots of a fourth order polynomial can be found by

the method of Ferrari, but this is also the highest order for

which an algebraic solution exists). Therefore, we need to

turn to numerical algorithms to solve for the roots, e.g. by

calculating the eigenvalues of its associated matrix [23].
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APPENDIX

A. Optimization of αCx1

4 +
∑n

j=2 C
xj

4

The coefficients of the polynomial ∂φ/∂t are listed here.

Define the output cumulants of order 4 of the pair (x1, xj 6=1)
as κpq where p and q denote the occurences of x1, re-

spectively xj in C4(x1x1 . . . xjxj . . .) and the priors on the

marginal cumulant of x1 as α = Ĉs1

4 . The polynomial can

then be given in the form
∑8

i=1 ait
i with the ai given by

a8 = ακ13 − κ40κ31

a7 = κ2
40 + ακ04 − 4κ2

31 − 3κ22(κ40 + α)

a6 = (3κ31 − κ13)α + (7κ31 − 3κ13)κ40 − 18κ31κ22

a5 = c1 + 9κ40κ22 + 12κ2
31 + α(2κ04 − κ40 − 3κ22)

a4 = 5(6κ22 + α)(κ31 − κ13) + 5(κ13κ40 − κ31κ04)

a3 = −c1 − 9κ04κ22 − 12κ2
13 − α(2κ40 − κ04 − 3κ22)

a2 = (κ31 − 3κ13)α + (3κ31 − 7κ13)κ04 + 18κ13κ22

a1 = −κ2
04 − ακ40 + 4κ2

13 + 3κ22(κ04 + α)

a0 = −ακ31 + κ04κ13 ,

where c1 = −18κ2
22 − κ40κ04.
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