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Abstract— An objective function is presented to recover a
spectrally narrow band signal from multichannel measure-
ments, as in electrocardiogram recordings of atrial fibrillation.
The criterion can be efficiently maximized through the eigen-
value decomposition of some spectral correlation matrices of the
whitened observations across appropriately chosen frequency
bands. It is conjectured that the global optimum so attained
recovers the source of interest when its spectral concentration
around its modal frequency is maximal. Numerical experiments
on synthetic data seem to support the validity of this hypothesis.
Moreover, the components extracted from a patient data set
with known atrial fibrillation show the characteristics of the
associated f-wave as described in medical literature.

I. INTRODUCTION

Atrial Fibrillation (AF) and atrial flutter (AFL) are the

most prevalent cardiac arrhythmia encountered in clinical

practice and accounts for approximately one third of the

hospital admissions for cardiac rhythm disturbances. Its

prevalence is about 0.4-1.0% in the general population and

increases with age to reach up to 9% of the population aged

80 years and older. Amongst others, because of an aging

population and more frequent monitoring, during the past 20

years there has been an increase of hospitalization of about

66%. This trouble is also associated with an augmented risk

of stroke, heart failure and all-cause mortality [1].

Diagnostization and characterization of AF/AFL is mainly

based on the noninvasive electrocardiographic (ECG) signals

and has evolved from simple f-wave amplitude characteriza-

tion to the estimation of spectral parameters [2]. However,

the ventricular waveforms (QRS-T) have an amplitude many

times larger than the atrial wave to be characterized and thus

masks our signal of interest, as can be seen in Figure 1.

Proposed techniques to solve for this masking are based

on the cancellation of the ventricular contribution in the

ECG [3] or the decomposition into independent components

(ICA) [4], whether or not with some priors on the signal

of interest or its nullspace [5], [6]. Despite their popularity

they suffer from some major drawbacks. The cancellation

methods require a robust R-wave detection to synchronize the

waveforms. Moreover, they neither make use of the spatial

interdependencies of the leads, except for a possible rotation

of the main electrical axis of the heart, neither do they

account for individual waveform variations of the complexes.

On the contrary, the spatial ICA based methods do take
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into account the spatial dependencies of the signals and

are not affected by individual waveform variations, but they

are generally not well suited for sources whose distribution

parameters (higher order cumulants) are close to those of

a Gaussian, unless its sub-Gaussian character is taken into

account [5] or additional temporal information is used [6].
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Fig. 1. Example of normal sinus rhythm (upper) and atrial fibrillation wave
(lower)

However, the method of [5] deals only with the separation

of two observations into two signals in its original version,

namely the ventricular, respectively the atrial signal. The

method of [6] makes use of an empirical parameter to thresh-

old the cumulants of the signals obtained by ICA. The signals

having cumulants below the threshold are subsequently fed to

a spatiotemporal decorrelation method. However, the kurtosis

threshold is chosen empirically, and the method is bound

to provide poor results when the atrial activity cannot be

fully separated from the ventricular activity by the initial

ICA stage. All of the above methods are based on numerical

optimization and even if some of them are feasible under

multiple iterations of partial closed-form solutions, they all

lack a final solution that can be represented as a global

optimum for a well-defined function for AA estimation.

This contribution proposes the spectral concentration in-

dicator of [6] as an explicit criterion for the extraction of

an estimate of the AF/AFL source, and shows that it can be

cost-effectively maximized by the eigenvalue decomposition

of some well-chosen spectral correlation matrices of the

available data.

II. METHODS

A. Notation

Scalars, constants, column vectors and matrices are repre-

sented by thin face lower case, light face upper case, bold
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face lower case and bold face upper case, respectively. The

Fourier transform of a time series x[n] is represented by

x̃(ω).

B. Data and Preprocessing

We use 30 patient datafiles recorded at the Clinical Univer-

sity Hospital, Valencia, Spain, using a Prucka Eng. Cardiolab

system with 12-leads, sampled at fs = 1000 time samples per

second [6]. All patients were under treatment of amiodarone.

Baseline wander has been canceled out by a zero-phase 12th

order Chebychev filter with minimum passband ripple.

The simulated dataset is made up of 3 basis waveforms

(s[n]), namely a triangular waveform (s1[n]), an impulsive

waveform (s2[n]) and stochastic non-Gaussian noise (s3[n])
to simulate respectively AF/AFL, a QRS-wave complex and

noise1.

C. Linear Spatial Filtering

Consider N time samples taken from a 12-lead ECG,

y[n] ∈ IR12, n = 1 . . . N and a spatial mixing channel

a ∈ IR12, such that y[n] = as[n] + η[n], where s[n] ∈ IR
is the atrial (fibrillatory or flutter) activity and η ∈ IR12

is the activity in the recording y[n] that is not related to

the atrial activity. This model can be seen as a first order

approximation of a spatially fixed collection of oriented

dipoles whose activity is measured at the body surface,

assuming that the body tissues behave as a purely resistive

propagation medium in the frequency range of interest [7].

From the measurement setup, it can easily be seen that η
accounts for external noise and other physiological electrical

source contributions, amongst others the ventricular activity.

Our goal is to inverse the above system by finding the

linear filter w that recovers an estimate of the auricular

activity x̂[n] = wT y[n] at its output.

D. An objective function for AF/AFL

Consider now the spectral concentration (SC) indicator [6],

given as:

SC(x) =
1

Px

1.125fm
∫

0.872fm

|x̃(f)|2df (1)

where |·| denotes the absolute value of x̃(f), fm is the modal

frequency and Px is the total power of x, i.e.
∫ N

0
|x[n]|2dn.

Now, under the assumption that our AF/AFL signal is narrow

band around the modal frequency fm and x̃ has maximum

power in the frequency band [0.875fm, 1.125fm]Hz with

respect to any other linear combination of η and s, (1)

has a maximum for AF/AFL. Furthermore, the optimum

is available under a closed form expression of eigenvalues,

hence we call the method described next Eigenvalue-based

Spectral Optimization (ESO).

Remark that since in this work x[n] ∈ IR, we have

x̃(f1)x̃
⋆(f1) = x̃(fs − f1)x̃

⋆(fs − f1) = |x(f1)|2, where

x̃⋆ is the complex conjugate of x̃. We can thus use uniquely

positive frequency values without changing the value of (1).

1Matlab files containing the generators and the algorithm can be down-
loaded from http://users.ugent.be/∼rphlypo/software/

E. Prewhitening

Maximizing (1) can be done by maximizing the nominator

under a constant denominator constraint. Therefore, we will

subdivide our problem into two subproblems, as s[n] =
wT y[n] = qT VT y[n], where q ∈ IRm and ‖q‖2 = 1.

The matrix V ∈ IRm×m is a matrix which will guarantee

that the denominator in (1) will remain constant under unit

norm projections. Denote by z[n] the transformed variables

VT y[n], with E{zT z} = Im, where E{·} is the expectation

value and Im the unit matrix in IRm×m. The expectation

matrix can be reduced to the identity matrix by taking

the columns of V as ei/
√

λi, where ei is the eigenvector

associated to the eigenvalue λi of the expectation matrix

E{yyT }. For unit vectors q, we then have

Px = qT Φ(0,fs)
z

q = 1 , (2)

where Φ
(f1,f2)
z = Re

{

∫ f2

f1

z̃(f)z̃H(f)df
}

, where Re{·} is

the real part of its argument and (·)H is the Hermitian

transpose operator. The identity in (2) can directly be derived

from Parseval’s identity, E{z̃z̃T } = E{zzT }.

F. Spectral Optimization under Prewhitening

The only unknown that remains in the system is the vector

q. The vector q that is the solution to our problem is the

one which maximizes the nominator in (1), i.e. the quadratic

equation

Ψ(x) = Ψq = qT Φ(0.875fm,1.125fm)
z

q . (3)

The maximum of equation (3) can be found by looking for

the eigenvector associated to the largest eigenvalue of (3).

However, solving for the eigenvector requires the knowledge

of the modal angular frequency fm. In what follows we show

that the modal frequency can be estimated by solving two

maximum eigenvalue subproblems.

G. Estimation of f̂m

The modal frequency is not known a priori and should be

estimated from the set of observations. We will rely here on

the prior knowledge that the frequency of AF/AFL generally

lies in the interval 3-9Hz [1]. However, as can be seen from

Figure 2, this is also the frequency interval on which the

T-wave has its major power contribution. We thus need to

be able to distinguish between both activities. To this extent

we make use of the fact that notwithstanding their spectral

overlap, they do not share the same spectral parameters.

Figure 2 shows that the AF/AFL spectrum is much more

concentrated around the modal angular frequency than is the

T-wave spectrum and that its modal frequency differs, and

this is usually the case.

To separate the two activities, we propose to extract two

intermediate components x̂1 and x̂2 by applying the filters

according to the eigenvectors that are associated to the

largest eigenvalues of the spectral matrices Φ
(3,6)
z , respec-

tively Φ
(5,9)
z . For the two resulting estimates, x̂1 and x̂2,

we estimate their respective modal frequency f̂x1

m and f̂x2

m ,

together with their spectral concentration in the spectral band
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TABLE I

THE PERCENTILES OF THE SPECTRAL CONCENTRATION DIFFERENCES BETWEEN x1[n] AND s1[n]

percentile 0 1 25 50 75 99 100

ESO (%) -4.93 -0.18 0.01 0.03 0.08 0.48 1.31
ST-BSS (%) -26.20 -1.93 -0.27 -0.07 -0.01 0.20 2.10

ESO w.r.t. ST-BSS (%) -4.84 -0.22 0.04 0.10 0.33 2.21 26.18
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Fig. 2. Example of the power spectral density for the T-wave component
(left) and atrial fibrillation (right) as estimated by the COM2 ICA algo-

rithm [8] with SC (1) around f̂m = arg maxf x̃(f) [in %].

as defined in (1). Finally, we use the estimate f̂m = f̂xi

m ,

where i is associated with the intermediate component who

has the highest spectral concentration. We then optimize for

the spectral concentration around f̂m as described above

(section II-F).

III. RESULTS

A. Simulated Data

We will first show results on a simulated dataset, since

it allows to compare the algorithm objectively with existing

algorithms. The results over 1000 Monte Carlo realisations

have been taken to extract x1[n] from the observations (y[n])
generated through a full rank mixing (A) of the above three

sources s[n]. The parameters of the algorithm have been set

to look for the modal frequency in the 1-20 Hz frequency

band prior to optimizing the spectral concentration. We

compare it to a spatio-temporal blind source separation

method ST-BSS [6] where the time delay vector for joint

diagonalization has been adapted to include, next to 0 and 1,

all prime numbers in the interval [0, 100]. This guarantees a

lower susceptibility to the prior on the frequency band and is

valid in the simulation case since we know from the set-up

that there is only a single narrow banded source.

Results for the spectral concentration with respect to its

value for the simulated waveform s1[n] are given in Table I

for both the proposed method (ESO) and ST-BSS. The modal

frequency has been estimated correctly in both cases with

a mean value of zero and no significant outliers (p-value

is 1 for a Wilcoxon rank sum test against a Dirac Delta

distribution at zero with no rejection of the null-hypothesis at

a 10−6 confidence level). The mean and standard deviation of

the correlation coefficients between x1[n] and s1[n] amount

to 0.9994 ± 0.0010 for ESO, respectively 0.9991 ± 0.0011
for ST-BSS (minima 0.9928 and 0.9933, maxima 1.0000 and

1.0000, respectively).

B. Patient Data

To evaluate the algorithm’s performance we calculate the

spectral concentration and estimate the modal frequency of

the estimate obtained by the presented method optimized

around ω̂m (ESO), respectively in the full 3-9Hz frequency

band (ESO-fb), ST-BSS [6] (with the time delays as chosen

in the original paper) and a maximum likelihood based blind

source separation algorithm (ML-BSS) [5].

TABLE II

SC (1) AND f̂m = ω̂mfs FOR THE SOURCE SIGNALS ESTIMATED WITH

ESO AND TWO BSS METHODS (µ ± σ).

SC f̂m

ESO 51.11±17.25 5.31±1.22
ESO-fb 40.82±18.55 5.72±1.08
ST-BSS 42.21±17.15 5.13±1.39

ML-BSS 13.66±6.37 5.06±1.44

The results for the spectral concentration and the modal

frequency estimate are given in table II as their mean and

standard deviation obtained from the dataset.

Since the above results are unable to show the relation

between the parameters calculated on the estimates by the

different methods on the same data, we give the differences

of the spectral concentration and modal frequency between

the source x[n] estimated by ESO and x[n] as estimated by

the methods ESO-fb, ST-BSS and ML-BSS, respectively, in

Figure 3.

The correlation of the parameters over the methods is only

obvious for ESO and ST-BSS (ρSC = 0.88 and ρω̂m
= 0.85),

while the ESO-fb method correlates only slightly with ESO

and ST-BSS for the spectral concentration (ρSC = 0.52 in

both cases), whilst the modal frequency correlation is ρω̂m
=

0.14 with respect to both methods (and even negatively with

respect to ML-BSS). The parameters of ML-BSS have no

correlation that is beyond 0.25 for both spectral concentration

values and modal angular frequencies.
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Fig. 3. Box-Whiskers plots of the differences between the parameters of
the estimated sources with respect to the ESO method.

In Figure 4 we show a detail of an original data record

and the estimated sources by ESO, ST-BSS and ML-BSS.

The plots are given for illustrative purposes and show that

the solution is physiologically interpretable and in line with

medical expectations, namely a sawtooth wave with a modal

frequency in the 4-9Hz band [1].
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Fig. 4. Example of the AA source estimates on real data: (left) zoom on the
V1-lead potentials and the estimated time courses with (right) the absolute
values of their respective Fourier terms obtained by a FFT (all signals have
arbitrary units).

IV. DISCUSSION

The results obtained from the simulations show that the

presented method is able to extract a waveform with the same

modal frequency and similar spectral concentration as the

original waveform s1[n]. Differences are noticeable through

small changes in the spectral concentration value, because

our model assumes total orthogonality between s1[n] and

the other contributions η[n]. This orthogonality was not a

prerequisite in the simulation set up and thus some source

information might be wrongly estimated due to the mismatch

of the simulations with our assumed model. However, as one

can see from section III-A, the estimation is fairly close to the

original source when considering the correlation coefficient.

Results on real data show that the frequencies estimated

by the algorithm are in line with the results obtained by [6]

and with clinical knowledge [1]. From Figure 3, it can be

observed that the spectral concentration is greater almost

everywhere when calculated from the ESO estimate than for

the other two algorithms or the estimate in the whole 4-9Hz

band. This result may not be surprising, since our algorithm

optimizes explicitly for the spectral concentration.

Accordingly to this direct maximization of the spectral

concentration for the ESO estimate, we observe that for

the example given in Figure 4 the spectral noise floor is

lowered and the multi-modality, or harmonic structure of

the waveform, becomes more articulated. The former is a

property that follows directly from the definition of our

function (1) under a constant denominator, while the latter

is connected to the application of a spatial filter. Since we

optimize for the variance in the narrow band around the

estimated frequency f̂m, the constant variance constraint

assures that the variance outside this spectral band is kept

as low as possible, which explains the lower noise floor.

However, the spatial filter q requires that the estimated signal

stems from a fixed spatial origin (not necessarily a single

spatial point) and has a fixed orientation [7]. Because a

spatial filter makes no distinction in spectral content and acts

as a spatial band pass filter for all activity that stems from

its physical origin(s), the source of interest with maximum

spectral concentration in the band of interest (either 3-6Hz,

either 5-9Hz), will be recuperated at the output of the filter

q with its harmonics, even though they penalize SC (1).

In addition, the method is flexible and can easily be ex-

tended to optimize for non-stationary spectra, either through

direct optimization of the (weighted) sum of the time-varying

frequency covariance matrices around ω̂m[k] as defined

in (1), where k represents the frame index, or through a

joint diagonalization of these spectral covariance , along the

lines of [9].

V. CONCLUSION

We propose to estimate the atrial activity in ECG record-

ings of AF by maximizing the spectral concentration of

the linear extractor output signal. After prewhitening the

multichannel data and estimating the modal frequency f̂m,

the optimal spatial filter is found as the dominant eigenvector

of the spectral correlation matrix of the whitened obser-

vations around that frequency. The global optimum of the

criterion can be obtained by computationally efficient eigen-

vector analysis and, in experiments, is seen to extract the

targeted source if it presents maximal spectral concentration

around its modal frequency f̂m. The present technique is not

limited to the extraction of atrial activity in AF ECGs, but

can probably be extended with minor modifications to any

problem requiring the estimation of narrowband signals from

multichannel measurements, in biomedicine or other fields.

Current work aims at determining the conditions under which

the proposed criterion is indeed a contrast function for source

extraction.
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