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Abstract— Atrial fibrillation (AF) is the most common car-
diac arrhythmia encountered in clinical practice. Radiofre-
quency catheter ablation (CA) is becoming one of the most
widely employed therapies. Yet selection of patients who will
benefit from this treatment remains a challenging task. Previous
works have examined several electrocardiogram (ECG) param-
eters as potential predictors of CA success, such as fibrillatory
wave (f-wave) amplitude. However, they require a manual
computation and consider only a subset of electrodes, so inter-
lead spatial variability of the 12-lead ECG is not fully exploited.
The present study puts forward an automatic procedure for
f-wave amplitude computation to non-invasively predict CA
outcome. An extension of this quantitative measure to the whole
set of leads is also proposed, based on Principal Component
Analysis (PCA). We show that exploiting the spatial diversity
present in the surface ECG not only improves the robustness
to electrode selection but also increases the predictive power of
the amplitude parameter.

I. INTRODUCTION

Atrial fibrillation (AF) is often regarded as the “last great
frontier of cardiac electrophysiology”. Neither its natural
history nor its response to therapy are sufficiently pre-
dictable by clinical and echocardiographic parameters [1].
Nonpharmacological approaches based on radiofrequency
catheter ablation (CA) are becoming increasingly popular
and effective. During the procedure, radiofrequency energy
is delivered through a catheter tip around the connections
of the pulmonary veins (PVs) to the left atrium, known
to be an important source of spontaneous electrical activity
initiating AF [2], [3], so that sinus rhythm can be restored
[4]. More recently, ablation based on the so-called Complex
Fractionated Atrial Electrograms (CFAE) has also shown its
efficacy in terminating AF [5], but clinical results reported
by different centers performing the treatment are rather
disparate [6]. These discrepancies have pointed out the need
for strategies to select patients most likely to benefit from
the therapy.

Previous studies have examined several parameters to
predict CA outcome and select candidate patients for the
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treatment from the analysis of the fibrillatory waves (f-
waves) observed in the surface ECG. In particular, the role
of f-wave amplitude as an effective predictor of procedural
AF termination has been assessed in [7]. Nonetheless, these
methods rely on manual measurement of parameters in
the recorded ECG, which increases subjectivity and error
probability. Secondly, only individual leads (such as V1 and
II) are selected for this analysis, so inter-lead variability is
not taken into account.

To overcome these drawbacks, the present study aims at
a fully automatic acquisition of the f-wave amplitude on the
surface ECG. We first propose an algorithm to quantify the f-
wave peak-to-peak amplitude on a single lead. This algorithm
is based on cubic spline interpolation of the local extrema
of the atrial signal observed in surface recordings. Using
Principal Component Analysis (PCA), the algorithm is then
extended to multilead recordings, so that the spatial diversity
of the ECG can also be exploited. CA prediction results on
a persistent AF ECG database prove consistent with those
obtained by manual measures in [7] and show the advantages
of considering more than one lead in the amplitude analysis.

II. METHODS

A. ECG Data and Acquisition System

A dataset of 18 male patients suffering from persistent
AF was employed in this study. They all underwent CA,
performed with the aid of Prucka Cardiolab and Biosense
CARTO electrophysiology measurement systems at the Car-
diology Department of Princess Grace Hospital in Monaco.
Surface ECG signals were acquired in several crucial mo-
ments of the treatment, namely, at the beginning, after PV
isolation and at the end of the surgery, through a standard 12-
lead system at a sampling rate of 1 kHz. Fourteen patients
experienced AF termination, either spontaneously obtained
after the operation or externally induced by electrical car-
dioversion or drug treatment. The study endpoint was short
term procedural success, defined as AF termination by CA
either directly to sinus rhythm or to intermediate atrial
tachycardia(s) within a 3-month blanking period.

B. ECG Preprocessing and Atrial Activity Segmentation

Firstly, input signals were filtered by using a forth-order
zero-phase Chebyshev bandpass filter with a −3 dB at-
tenuation at 0.5 Hz and 30 Hz cut-off frequencies. This
passband retains the most significant AF content, wose
dominant frequency ranges between 3 and 12 Hz, while
suppressing baseline wandering and high frequency noise
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Fig. 1: Example of ECG recording during AF and its characteristic waves.
Dotted boxes highlight TQ intervals which are concatenated to form the AA
signal YAA in Equation (1).

like myoelectric artifacts and 50 Hz power line interference.
Then, R wave time instants were located on lead V1 by
means of Pan-Tompkins’ algorithm [8]. Afterwards, Q wave
onset and T wave offset were detected with an improved
version of Woody’s method [9], so as to properly segment
the TQ intervals. These segments were subsequently mean-
corrected and concatenated to form the signal representing
atrial activity (AA), as in Fig. 1. This preprocessing stage
was justified by our interest in studying f-wave amplitude
properties, regardless of their temporal location or time
coherence. In this manner, an (L × N) data matrix YAA
can be defined as:

YAA = [yAA(1) · · · yAA(N)] ∈ RL×N (1)

where vector yAA(t) = [y1(t), . . . , yL(t)]T represents the
multilead AA signal measured at time instant t, L denotes
the number of leads considered (e.g., L = 12 for the standard
ECG), and N the number of samples of the AA signal y�(t)
for each lead � = 1, 2, . . . , L.

C. Automatic f-wave Amplitude Computation

Previous works have demonstrated that the higher is f-
wave peak-to-peak amplitude on the surface ECG, the more
likely is the procedure to be successful [7]. However, the
computation of this parameter is not always a trivial task,
as waveform patterns can be quite irregular and complex.
To surmount these difficulties, we propose an automatic
algorithm consisting of the following steps. Given a signal
y(t), e.g., one of the atrial ECG leads y�(t), � = 1, 2, . . . , L,
an upper envelope eMAX(t) is first estimated by piecewise
cubic spline interpolation between the detected local maxima
points. The same operation is repeated for the minima to
generate a lower envelope eMIN(t). This technique was
designed to detect f-wave local extrema, without involving
spurious peaks or signal artefacts into the computation.
The two curves allow us to depict their main peaks and
troughs, so their difference outlines the general trend of
the most significant oscillations. Further extrema are added
by mirror symmetry with respect to the extrema close to
the end points of the whole recording, so as to prevent
the propagation of numerical artifacts due to finite length
observations. Then, another curve eDIFF(t) is computed as
the difference eDIFF(t) = eMAX(t)−eMIN(t), and its values
are finally averaged over the AA signal length N , yielding

D(y) as final output parameter D(y) = 1
N

N�
t=1

eDIFF(t). The

operator D(·) that we have just defined fulfills the property:

D(ky + α) = |k|D(y), ∀k, α ∈ R. (2)

One advantage of our method is that index D condenses
the information about f-wave variability over the whole
recording and its peak-to-peak amplitude pattern in a single
objective parameter.

D. Extension to Multilead Recordings

Another drawback of previous works is that f-wave am-
plitude is computed on single leads (e.g., V1 or II), so its
estimation is subject to the intrinsic variability of the surface
ECG across different leads. To increase robustness to such
variability, we propose to extend the method presented in
the previous section to compute an average amplitude over
more than one lead. The basic idea behind this extension is
to exploit the ability of Principal Component Analysis (PCA)
to decompose a given multivariate observation into sources
or components with maximum variance [10]. Since variance
is closely related with amplitude, the dominant principal
components are expected to provide a sensible measure of
the average amplitude of the atrial signal over the leads
considered.

Mathematically, PCA obtains the following bilinear de-
composition for the multilead recording stored in ma-
trix YAA:

yAA(t) = Mx(t) =
L�

k=1
mkxk(t). (3)

In this expression, xk(t) is the kth principal component (PC)
of the multilead recording. The principal direction stored in
the column mk of M represents the relative contribution
of xk(t) to the leads in yAA(t), k = 1, 2, . . . , L, and so
it can be considered as its propagation direction or spatial
topography [11], [12]. In the sequel, we make the hypothesis
that the dominant PC condenses the global amplitude of the
AA present in the leads considered, as it is characterized
by the maximum variance. Truncation of Equation (3) at
the first PC results in the rank-1 approximation ŷAA(t) =
m1x1(t), which exclusively accounts for the contribution of
the first source to the selected leads. Its waveform pattern
is then examined and the average of peak-to-peak amplitude
envelope values are computed on each lead as described in
the previous section. This results in the L-component vector
DL defined as:

DL = [d1, d2, . . . , dL]T d� = D(m�1x1) (4)

where m�1 = [m1]� is the �th element of vector m1. DL

entries are finally averaged to provide index DL given by:

DL =

L�
�=1

d�

L
=

L�
�=1

|m�1|D(x1)

L
= �m1�1

L
D(x1). (5)

where �m1�1 is the L1-norm of m1. Hence, the spatial
distribution of f-wave amplitudes over the observed leads
is condensed into a single index [Equation (5)] made up of
the amplitude of the dominant principal component and the
L1-norm of its spatial topography.



TABLE I: Interpatient statistical analysis
AF Non AF

p-valuetermination termination
D(V1)START 0.072 ± 0.021 0.053 ± 0.021 0.128

D(V1)PV 0.068 ± 0.020 0.046 ± 0.015 0.073
D(V1)AFTER 0.068 ± 0.019 0.049 ± 0.017 0.090

RMS(V1)BEFORE 0.037 ± 0.008 0.041 ± 0.023 0.766
RMS(V1)PV 0.037 ± 0.010 0.034 ± 0.013 0.617

RMS(V1)AFTER 0.042 ± 0.018 0.030 ± 0.006 0.063
(D12)START 0.035 ± 0.016 0.018 ± 0.010 0.034

(D12)PV 0.035 ± 0.015 0.025 ± 0.005 0.087
(D12)AFTER 0.035 ± 0.017 0.024 ± 0.006 0.087

E. Statistical Analysis

Values of the aforementioned parameters have been ex-
pressed as mean ± standard deviation for each of the
clinical cases “AF termination” and “non AF termination”.
CA outcome classification performance was evaluated by
determining ROC curve parameters, such as the Area Under
Curve (AUC) and the p value under a test confidence
level α equal to 0.05. First, data Gaussianity was verified
through Lilliefors’ test. Differences between successful and
failing CA procedures were statistically assessed by an
unpaired Student’s t-test for parametric data and a two-
sample Kolmogorov-Smirnov test for non-parametric data.
The statistical analysis was performed under the assumption
α = 0.05. Subscripts START, PV and END correspond to
different CA phases, namely, before starting the procedure,
after PV ablation and after completing the procedure.

III. RESULTS

For the sake of comparison with previous works, D(y)
was evaluated on lead V1. Parameters were computed for
each CA step and for every patient. Results are reported
in Table I, together with p values of each unpaired test.
For comparison, we also consider a standard method for
amplitude computation, namely, the root mean square (RMS)
value. The AUC values are shown in Table II. The mul-
tilead perspective of Section II-D was also tested and its
performance compared with the single-lead approach. To this
end, our algorithm was executed several times by exploiting
different ECG lead subsets of increasing size L, ranging
from 1 up to 12. At each subset dimension L, every possible
L-lead subsets present in the ECG was considered, a total
of 12!/((12 − L)!L!) possible combinations. Parameter DL

in Equation (5) was computed for each possible L-lead
subset for each patient. Prediction performance was then
assessed for each lead combination from the corresponding
values of DL. In this manner, the minimum, maximum and
mean AUC values over all L-lead subsets were obtained as
a function of the subset dimension L. The same analysis
steps were repeated for each CA phase. AUC results are
plotted in Fig. 2, while the lead combinations providing the
best prediction performance for each subset dimension are
shown in Table III. Tables I–II also compare the single-lead
and 12-lead ECG analysis (D12).

IV. DISCUSSION

F-wave amplitude is regarded as a CA outcome predictor.
Recent works manually compute this parameter on a single
ECG lead. The present study aimed at an innovative approach
to predict CA short-term outcome by computing this parame-
ter automatically and exploiting the spatial variability offered

TABLE II: CA outcome prediction performance

AUC p value
D(V1)START 0.75 2 · 10−2

D(V1)PV 0.80 3 · 10−3

D(V1)AFTER 0.79 8 · 10−3

(D12)START 0.84 4 · 10−4

(D12)PV 0.73 4 · 10−2

(D12)AFTER 0.80 3 · 10−3

TABLE III: ECG lead subsets maximizing AUC

Number of Leads Before CA PV isolation After CA
1 V3 V1 V2

2 II,V3 V1,V3 III,V2

3 II,aVL,V3 aVL,V1,V3 aVL,aVF ,V2

4 II,aVL,V3,V4 III,V1,V3,V5 III,aVL,V3,V6

5 II,aVL,V3, III,V1,V2, III,aVL,aVF ,
V4,V5 V4,V5 V1,V2

6 I,II,III, I,II,III, I,III,aVL,
V3,V4,V5 V3,V4,V5 aVF ,V1,V2

7 II,aVR,aVL,aVF , aVL,aVF ,V1,V2, III,aVR,aVL,aVF ,
V3,V4,V5 V3,V4,V5 V1,V3,V4

8 II,III,aVR,aVL, III,aVL,aVF ,V1, I,III,aVL,aVF ,
V3,V4,V5,V6 V2,V3,V4,V5 V1,V3,V4,V5

9 I,II,III,aVR,aVF , II,III,aVL,aVF ,V1, I,II,III,aVR,aVF ,
V3,V4,V5,V6 V2,V3,V4,V5 V1,V2,V3,V4

10 I,II,III,aVR,aVL, I,II,III,aVF ,V1, I,II,III,aVR,aVF ,
aVF ,V2,V4,V5,V6 V2,V3,V4,V5,V6 V1,V2,V3,V4,V5

11 I,II,III,aVR,aVF , I,II,III,aVR,aVL, I,II,aVR,aVL,aVF ,
V1,V2,V3,V4,V5,V6 aVF ,V1,V2,V3,V4,V5 V1,V2,V3,V4,V5,V6

The most II,V3 V1 III,aVF ,V2recurrent leads

by the surface 12-lead ECG through source separation by
PCA. The existence of a relation between the atrial wave
amplitude on the surface ECG and AF clinical outcome
has been confirmed by our work. Higher D values can
be associated with AF termination by CA, regardless of
the procedural moment considered, as shown in Table I.
Even though statistical significance is not demonstrated for
D(V1), experimental results are consistent with state of the
art studies, which reported a mean amplitude value equal
to 0.08 ± 0.03 mV on lead V1 in patients experiencing
procedural success, 0.05±0.03mV otherwise (AUC = 0.77,
p < 1 · 10−3) [7]. Nonetheless, unlike previous works,
our analysis is completely automatic, and so able to output
more objective results. Table II shows that parameter D
can effectively predict CA clinical outcome, with results
similar to those reported in [7]. In order to demonstrate the
superiority of D over other parameters proportional to signal
amplitude, in Table I a comparison with RMS values is
drawn as well. Not only p values related to the unpaired tests
are considerably higher than those computed for D (except
for the post-operative phase), but RMS numerical results
strongly differ from those presented by previous works [7].
In consequence, the hypothesis that higher amplitude values
predict procedural AF termination cannot be evinced by such
values, so it emerges that RMS is not capable of capturing
the predicting properties of f-wave amplitude.

As far as D12 is concerned, classification of successful and
failing cases before CA application is statistically significant,
as shown in Table I. Figure 2 shows the classification
performance of DL, which improves as the number of leads
increases. The best results were obtained before performing
CA. Our classifier improves its performance when using
more than one lead, as AUC is generally maximum if L
ranges between 2 and 8. These results demonstrate that a
deeper insight into the pathology can be gained by adopting
a multilead approach. Identical remarks can be made after
CA execution. On the contrary, as far PV isolation step is
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Fig. 2: AUC values describing DL performance during each CA phase:
(a) Before CA; (b) After PV isolation; (c) After CA.

concerned, it seems that the classifier best performs when 6
or 7 (and not 12) ECG leads are exploited. This phenomenon
could be explained by the redefinition of electrical pathways
subsequent to PV isolation and its transitory dynamics, in
contrast with stable configurations typical of pre-operative
and post-operative phases.

Table III shows that some leads recur in each subset: in
most cases, the optimal L-lead subset is the same as that
obtained at (L − 1), but with a further electrode introduced.
As well as leads typically employed for AF analysis, e.g., V1
and II, we can remark the presence of leads that are different
from the precordial ones and describe heart electrical activity
on the frontal plane. This evidence confirms the hypothesis
that clinical information coming from multiple electrode
locations can help ablation outcome prediction.

These results show that multilead ECG signals provide a
broader overview of the atrial waveform pattern as compared
to single leads, and that DL can discriminate between
successful and failing surgery actions in every moment of
the procedure. Moreover, the multilead procedure described
in Section II-D proves more robust to electrode selection than
the single-lead approach of Section II-C. This feature may
become particularly useful in scenarios where some leads
do not provide an effective contribution to the recording,
which could happen, e.g., if they get accidentally loose or
disconnected from the patient’s body.
A. Limitations of the Study

One of the main limits of this preliminary analysis is
by the limited size of our persistent AF database. Sec-
ondly, validation of our results is affected by the lack of
comparison with endocardial recordings. Actually, multilead
ECG recordings provide a global outlook of heart activity,
whereas endocardial signals account for local information.
However, our attention was rather focused on surface signals,
as we aimed at accomplishing our investigation with a non-
invasive approach, so this context was not contemplated at
all. The superiority of our atrial amplitude measure relative
to more classical definitions such as the RMS value has
been demonstrated in the context of non-invasive ablation-
outcome prediction. Nevertheless, its performance in the
presence of noise and interference not suppressed by the

preprocessing filter remains to be investigated in more detail.
Moreover, our analysis is not founded on a standard defini-
tion of CA clinical success. On the contrary, AF termination
is assessed immediately after the treatment, neglecting pos-
sible recidive fibrillatory episodes beyond the temporal limit
given in the "Methods" section. Finally, exclusive evaluation
of the surgery could be hampered by several confusing
factors, e.g., effects of cardioversion and/or drugs, post-
operative oedemas, which can give their own contribution
to the procedural outcome.

V. CONCLUSIONS

This work has put forward an automatic algorithm to
compute f-wave amplitude that considerably reduces the
subjectivity of manual analysis. In addition, a multilead
extension based on PCA has been introduced and its superi-
ority over single-lead perspective has been demonstrated. We
have discriminated between successful and failing treatments
before the therapy thanks to a new quantitative parameter
depending on f-wave amplitude and taking into account all
derivations. We have demonstrated that the spatio-temporal
properties of the surface multilead ECG can quantitatively
describe AF evolution and help in CA patient selection.
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