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Abstract— Atrial fibrillation (AF) is a progressive arrhythmia
which causes time dependent impairing of the cardiac muscle.
This makes that proper therapeutic interventions depend on
the degree of AF progression, i.e., on the temporal decrease
of the organization of the electrical patterns observed during
AF. Standard effective treatments are still lacking nowadays,
and this calls for suitable noninvasive analysis of AF. In this
sense, an appropriate therapy relies on the knowledge of AF
characteristics, as its degree of organization. To this purpose,
fast and accurate imaging of cardiac electrical activity can be
helpful. Relying on the results of previous work on noninvasive
assessment of the complexity of AF, we put forward a method
to obtain visual maps of the topographic projection of the main
atrial activity (AA) component given by principal component
analysis, which is shown to provide detailed information about
AA potential pattern distributions on the body surface. Differ-
ent AA potential pattern distributions can then be identified,
depending on the underlying degree of AF organization. An
automated way to assess AF organization degree is then
proposed, based on topographic projections. Similarities with
previous studies suggest its usefulness for determining uniform
distributions in the activation patterns on the body surface.

I. INTRODUCTION

Atrial fibrillation (AF) severity increases with time and
so does the consequent impairment of the cardiac function,
causing several electro-structural changes in the myocardium
which may lead to serious complications. AF progression
is the reason why a widely accepted successful treatment
strategy for this pathology is still lacking nowadays. Thus,
in relation to the duration of its episodes, AF is differently
treated [1]. Moreover, inconsistent success rates of different
therapies underline that AF treatment is challenging, when
it comes to avoiding unnecessary and risky procedures.
A proper noninvasive diagnosis would make AF treatment
more effective in selecting good candidates for a certain
procedure. An appropriate therapy relies on the knowledge of
AF characteristics, as its degree of organization, a marker of
AF progression. To this purpose, fast and accurate imaging
of cardiac electrical activity could be helpful to provide
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detailed information about the exact electrical functioning
of the heart, which is essential for a correct diagnosis.

A detailed information on AF organization can be obtained
by intravenous approaches, but such an invasive approach
is nowadays considered too drastic for diagnostic purposes.
Hence, more recent works have attempted a noninvasive
evaluation of AF organization through body surface potential
maps (BSPM) [2], which have the advantage over the con-
ventional ECG of a much higher spatial resolution. Guillem
et al. [3] have demonstrated the possibility of visually eval-
uating different activation patterns in AF patients. Moreover,
we have recently shown that the spatio-temporal organization
in the AA during AF can be noninvasively and quantitatively
evaluated from BSPM recordings [4]. This has been carried
out looking at the reflection on the surface ECG of the spatio-
temporal complexity of the recorded atrial activity (AA)
in the BSPM recording, by means of principal component
analysis (PCA). Complexity is meant as the amount of
disorganization observed on the ECG, and is supposed to
be directly correlated to the number and interactions of si-
multaneous atrial wavefronts. However, BSPMs suffer of the
smoothing effect of the torso volume conductor which smears
the body surface distribution of the potentials, and thus it is
still limited by a low spatial resolution to resolve and localize
multiple simultaneous active myocardial electrical events.

In this paper, we introduce a way to partially overcome
this problem. The spatial topography related to the most
important component given by the PCA of the AA in the
BSPM recording is retained and its topographic projection
on the ensemble of electrodes is obtained. This is justified
by the fact that the global perspective on the underlying AA
given by surface ECG recordings can be supposed to mainly
reflect the behavior of the atrial areas characterized by an AF
type similar to the predominant one observed on the body
surface. A visual inspection of the obtained maps suggests
the presence of differences among the analyzed patients.
These differences turn out to be correlated to the level of AF
organization of each patient, as previously identified in [4].
Hence, this visual representation allowed us to focus on
discriminating among patients in terms of their organization
in time and space, unlike in [4] where the discrimination
was based on the reconstruction error of the projections of
the different AA segments over a reference segment. The to-
pographic projections associated with organized AF seem to
show uniform distribution in their maps, while disorganized
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Fig. 1. (a) Arrangement of the electrodes and belt used for their attachment
to the patient. Electrode positions are represented as open circles while V1
and V1post are denoted by black and grey circles, respectively. Electrodes
were placed around V1 and V1post as a uniform grid. (b) Definition of
the different cardiac waves and intervals of interest. At the top, example of
normal sinus rhythm ECG recording (NSR), showing the different cardiac
waves. At the bottom, example of ECG recording during AF, showing a TQ
interval (off:offset; on:onset).

AF patients do not show any particular trend. Thus, after a
suitable transformation, these differences can be exploited
to distinguish among organized and disorganized AF. An
automated way to achieve this classification is then proposed,
which provides comparable results as those obtained in [4].

II. METHODS

A. Data and acquisition system

The same dataset composed of 14 patients as the one
introduced in [4] was employed in this study (10 males, 4
females; age 68±14 years; AF duration 12±18 months). One
BSPM signal was recorded for each patient. All recordings
presented persistent AF. The acquisition system consisted
of a total of 56 leads (anterior: 40, posterior: 16) acquired
simultaneously for each subject, as shown in Fig. 1(a).

Signals were acquired at a sampling frequency of 2048 Hz
and preprocessed by applying a third-order zero-phase
band-pass Chebyshev filter with frequency band between
[0.5, 100] Hz, to remove baseline wandering and high fre-
quency noise.

B. Atrial activity description through principal component

analysis and topographic projections

As in [4], only TQ segments in the BSPM recording
were analyzed, where no ventricular activity is present. Each
recording was split in 6 consecutive 10s-length intervals, and
an AA signal was obtained for each interval concatenating

only the TQ segments inside it (see Fig. 1(b) for the
definition of the different cardiac waves and intervals). Thus,
each lead l in the sth AA recording (with s = 1, . . . , 6) is
represented by a row vector:

y
(s)
l = [y(s)l (1), . . . , y(s)l (N)] (1)

where N is the number of samples inside the interval. Then,
the entire ensemble of leads is compactly represented by the
56×N matrix:

Y(s) =
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The interested reader is referred to [4] for further details
about the procedure to generate Y(s).

One manner to analyze the information about AA inside
matrix Y(s) is to transform it in a set of components
by minimizing the redundancy among them. This can be
achieved by PCA. Indeed, spatial uncorrelation provided by
PCA involves a linear transformation of the mean corrected
observed signals Y(s) ∈ Rn×N (n = 56, in this study),
which produces a set of mutually uncorrelated waveforms
with unit variance X(s) ∈ Rm×N with (m ≤ n), so that:

Y(s) = M(s)X(s) (2)

where X(s) =









x
(s)
1
...

x
(s)
m









is an estimate of the true vector of

the unknown components, and M(s) = (n×m) is the transfer
matrix. In this model, the transfer matrix accounts for both
the volume conductor properties and the solid angle under
which the single component contributes to the potential on
each lead. Thus, the ith column of M(s) represents the spatial
topography (ST) that links the ith component of X(s) with
the observed signals Y(s). The spatio-temporal stationarity
of the AA potential field is to be reflected in the coefficients

stored in each ST. Thus, the ST M
(s)
1:n,1 associated with the

first principal component (PC) x
(s)
1 is the one best reflecting

the main distribution of the AA potential field on the body
surface. Its entries provide information about the relative
contribution of the first PC to the potential of each electrode,
and on which electrodes that PC is mainly reflected. The
relative locations of these electrodes may inform us on the
presence of uniform distributions of the activation patterns.
For this purpose, a topographic projection of the weights
stored in the first ST is obtained so as to produce a visual map
of the importance of each electrode in observing the first PC.
Weights’ values are linearly reassigned by a suitable color
coding, as defined below, so that the higher the weight stored
in the ST the lighter the color associated with the correspond-
ing electrode (the more tends to red). Conversely, the lower
the weight the darker the associated color (the more tends
to dark blue). Extremely noisy leads have been discarded
and appear as white electrodes. The reassignment is carried
out as follows. Firstly, a color map matrix H = (M × 3)



is obtained (e.g., using colormap function in MatLab, with
default setting JET, and a coding based on M = 64 colors),
organized so that the first rows describe darkest colors, while
the last rows describe lightest colors. Then, for each AA
segment, a linear mapping is produced so as to assign each

weight in the first topography M
(s)
1:n,1 to a specific color (a

row in matrix H). This is carried out by means of a linear
model as

l(s) = a(s)M
(s)
1:n,1 + b(s) (3)

where parameter a is set so that

a(s) =
M − 1

max(M(s))−min(M(s))
(4)

and b(s) derived, e.g., as

b(s) = 1− a(s) min(M(s)) (5)

Vector l(s) is thus the vector of reassigned positions (rows)
in H. Thus, electrodes are colored so as to be scaled with
respect to the value of the corresponding coefficient in the
projected ST.

C. Automated analysis of uniform distributions and AA po-

tential pattern organization

After obtaining the topographic projection of M
(s)
1:n,1,

as in the previous section, the corresponding vector l(s)

of reassigned positions was clustered into two bins. This
was conducted in MatLab environment exploiting function
histc, with an optimal step equals 40, which provided the
highest similarities with [4]. This analysis was separately
carried out for the 40 electrodes in the front and the 16
in the back. Thus, the first bin, corresponding to lower
rows in matrix H, describes mainly dark colors, that is,

less significant weights in M
(s)
1:n,1, while the second mainly

describes light colors, that is, more significant weights in

M
(s)
1:n,1. Hence, the number of reassigned positions falling

in each bin was considered, providing an information on the
mean trend of each AA segment (either predominance of
dark or light colors, or resemblance). The degree of the AF
potential pattern organization was then analyzed in terms of
similarities (uniform distributions) in the clustering over the
different segments on the same patient. Due to physiological
considerations (see Section IV), this analysis was mainly
based on back electrodes, while front electrodes were used
to solve indeterminacies. Finally, the linear reassignment
presented in the previous section is a transformation which
allows a normalization of the STs, so as to perform auto-
mated analysis of their distributions.

III. RESULTS

A. Visual inspection of the topographic projections

Topographic projections of the first PC of each of the 6 AA
segments on the ensemble of electrodes produce visual maps
as those shown in Figs. 2(a)-2(c). Investigating the different
projections for the 14 patients in the dataset, interesting re-
marks appear. When focusing on the topographic projections
obtained for the electrodes on the back, three different kind

of distributions along the 6 segments seem to be present:
unimodal, bimodal, multimodal:

1) unimodal: all back electrodes show uniform intensity
(almost same color) over a certain segment; this uni-
modal distribution is kept over all segments for a
certain patient. An example is depicted in Fig. 2(a);

2) bimodal: all back electrodes show two main intensities
(two different colors) over a certain segment; this
bimodal distribution is kept over all segments for a
certain patient. An example is depicted in Fig. 2(b);

3) multimodal: absence of any recursive structure of the
back electrode intensities over all segments. An exam-
ple is depicted in Fig. 2(c).

B. Automated analysis of uniform distributions in the topo-

graphic projections

As introduced in Section II-C, the number of reassigned
positions in each bin over the different segments was ex-
ploited to estimate the level of AF organization in a certain
patient, as follows: a patient showed a unimodal distribution
if over all the segments all the back electrodes were clustered
in one bin. Conversely, if the number of elements in each bin
was equal, or equal but one, the patient was said to present
a bimodal distribution. In both cases the patient was said
to present an organized AF. Otherwise, in every other case
the patient was said to present a multimodal distribution,
and so characterized by a disorganized AF. We obtained
strong similarities with the spatio-temporal identification
previously found in [4], with 12 out of 14 patients labeled
in the same way by both methodologies (6 patients showed
organized AF, and 8 patients showed disorganized AF). If
information from front leads was also properly included
in the analysis, correlation between the two methodologies
improved. Indeed, exploiting the reassigned positions on
front leads in order to estimate the dispersion of the signal on
the chest, 14 out of 14 patients have been labeled in the same
way by both methodologies (8 patients showed organized AF,
and 6 patients showed disorganized AF). In order to do that,
we considered as organized AF patients those who, besides
showing a back unimodal distribution, presented all anterior
position mainly classified in the same bin over all segments.

IV. DISCUSSION AND CONCLUSIONS

An effective treatment of AF asks for proper noninvasive
analysis of the AF temporal progression in terms of AF de-
gree of organization. To this extent, fast and accurate imaging
of cardiac electrical activity is demanded. Thanks to their
high spatial resolution, BSPM recordings can be exploited
to partly solve this problem. This work proposed a method
to obtain a spatial representation of the main AA component
given by PCA, which after a suitable normalization provided
a detailed information about AA potential pattern distribu-
tions on the body surface. Particularly, three main structures
have been identified. Unimodal and bimodal distributions,
which present a relative recursive structure, that can be
interpreted as uniform distributions in the main activation
patterns on the body surface. Patients showing these kind of
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Fig. 2. Visual projection of the weights stored in the first spatial topography
derived from segments 1 to 6, respectively, of patient 2 (a), patient 9 (b),
and patient 13 (c), on the associated surface electrodes.

behaviors generally corresponded to those identified in [4] as
characterized by an organized AF. Conversely, multimodal
distributions do not show any particular recursive structure,
underlining a more disorganized distribution in the wavefront
propagation inside the atria, as reflected on the body surface.
Patients showing this kind of behavior corresponded to those
identified in [4] as characterized by a disorganized AF.
Moreover, in [4] we exploited the reconstruction error of the
projections of the different AA segments over a reference
segment to achieve AF organization estimation, focusing
on lead V1 only. However, we did not represent data in
space, while this representation at the present time allowed
us to focus on discriminating among patients in terms of
their organization in time and space, by looking at the maps
generated by the projection of the first ST. These preliminary
results may pave the way for a possible estimation of more
detailed information about simultaneous activations (AA
vector direction and activation areas’ locations), especially
for patients showing more organized AF. For instance, patient
9 (Fig. 2(b)), characterized by organized AF, showed a first
PC direction which keeps quite constant over time. This
underlines a relative stationarity of the main AA potential
pattern, which shows a bimodal distribution and seems to
be located mainly in the left atrium. This is in line with the
pathophysiology of AF, since the pulmonary veins have been
revealed to be an important source of spontaneous electrical
activity that initiates AF [5]. Their position close to the
left atrium makes back leads suitable to observe them, also
explaining why back leads reveal to be more significant in an
automated analysis of uniform distributions. The automated
classification presented in Sec. III-B may be affected by
being strongly data driven. Further work is demanded in
order to make it more robust, and in this sense a wider
dataset is needed, possibly including simultaneous invasive
electrograms in order to have an objective reference for a
classification of the patients in different AF classes. Finally,
these results may be useful to improve AF diagnosis and a
priori efficient treatment selection.
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