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ABSTRACT
The present contribution deals with the statistical tool
of Independent Component Analysis (ICA). The fo-
cus is on the deflation approach, whereby the inde-
pendent components are extracted one after another.
The kurtosis-based FastICA is arguably one of the most
widespread methods of this kind. However, its features,
particularly its speed, have not been thoroughly eval-
uated or compared, so that its popularity seems some-
what unfounded. To substantiate this claim, a simple
quite natural modification is put forward and assessed
in this paper. It merely consists of performing exact
line search optimization of the contrast function. Speed
is objectively measured in terms of the computational
complexity required to reach a given source extraction
performance. Illustrative numerical results demonstrate
the faster convergence and higher robustness to initial-
ization of the proposed approach, which is thus referred
to as RobustICA.

1. INTRODUCTION

Independent Component Analysis (ICA) transforms an
observed random vector into mutually statistically inde-
pendent components [1]. Its numerous applications have
spurred an increasing research interest in this technique;
for instance, ICA is the basic statistical tool to perform
Blind Source Separation (BSS) [1, 2, 3]. In its original
definition (see [1, 4], among other early works), ICA ex-
tracts all the sources jointly or simultaneously; this is
the so-called “symmetric” approach. ICA can also be
performed by estimating the sources sequentially or one
by one. This alternative procedure, referred to as defla-
tion, was originally proposed in [5], and used successfully
in the separation of convolutive mixtures [6]. Deflation
has later been widely promoted in the machine learning
community [3]. Joint algorithms are usually thought to
outperform deflationary algorithms due to errors accu-
mulated in successive subtractions (regressions) of the
estimated source contribution to the observation. This
shortcoming is generally claimed to be compensated by
a significant gain in computations, although this claim
still requires closer examination.

The FastICA [7, 8], originally put forward in defla-
tion mode, features among the most popular ICA algo-
rithms. Although it appeared when many other ICA
methods had already been proposed, the deflationary
FastICA has never been compared by the authors of [3]
with earlier joint algorithms such as COM2 [1], JADE
[4], COM1 [9], or the deflation methods by Tugnait [6]
or Delfosse-Loubaton [5]. In fact, to our knowledge,

FastICA (both in its deflation and symmetric imple-
mentations) has only been compared with neural-based
adaptive algorithms and principal component analysis
(PCA), that most ICA algorithms are known to outper-
form. Its popularity has been justified on the grounds of
the satisfactory performance offered by the method in
several applications, as well as its simplicity. However,
these features, and in particular its speed, have never
been substantiated by a thorough comparison with other
techniques. A first serious attempt has been made in
[10], where FastICA is found to fail for weak or highly
spatially correlated sources. In spite of its comprehen-
siveness, the comparative analysis of [10] is perhaps un-
fortunate in contrasting the deflationary FastICA with
joint methods such as COM2, JADE and COM1. On
the other hand, recent studies have put in evidence some
deficiencies of FastICA, such as the detrimental effects
of saddle points on its performance [11].

Given the assiduous attention the method has re-
ceived over the last decade, these gaps are somewhat
surprising. Indeed, it does not seem difficult to envis-
age a very simple, quite natural deflation algorithm that
would outperform FastICA. The goal of this work is to
put forward such a method, which we refer to as Robus-
tICA, and compare it with FastICA. The new method
simply consists of carrying out exact line search of the
contrast function, the normalized kurtosis [12]. Exact
line search is achieved at low cost, since the optimal
step size (OS) leading to the global maximum along the
search direction can algebraically be found at each iter-
ation among the roots of a low-degree polynomial. The
OS methodology, which has already been proposed in
the time equalization context [13, 14, 15, 16], can be
used in conjunction with a variety of alternative crite-
ria such as the constant modulus [17] and the constant
power [14, 18]. As part of our experimental study, we
evaluate the computational complexity required to reach
a given source extraction performance. The algorithms’
speed and efficiency can thus be compared objectively.

It is now generally acknowledged that adaptive (also
known as on-line, recursive or sample-by-sample) al-
gorithms are not always computationally cheaper than
block (off-line, windowed) algorithms, and that they are
rarely better in terms of precision. On this account,
block implementations are the focus of this paper.

2. MODEL AND NOTATION

Let an L-dimensional random vector x denote the ob-
servation, which is assumed to stem from the linear sta-

In Proc. EUSIPCO-2006, Florence, Italy, Sept. 4-8, 2006.



tistical model:
x = Hs + v. (1)

The source vector s = [s1, s2, . . . , sK ]T is made of K sta-
tistically mutually independent components. The noise
term v will be ignored throughout, except in the nu-
merical experiments. In fact, its distribution is assumed
to be unknown, so that it can at most be considered as
a nuisance; otherwise, a maximum likelihood approach
could be employed, which is beyond the scope of the
present comparison. The goal of ICA can be expressed
as follows: given a sensor-output signal block composed
of T samples, estimate the corresponding T -sample re-
alization of the source vector.

Vectors and matrices will be typeset in boldface low-
ercase and boldface uppercase symbols, respectively; su-
perscripts (T), (H), and (∗) denote respectively transpo-
sition, conjugate transposition, and complex conjuga-
tion. Unless otherwise specified, the components of ran-
dom vectors x, s and v take their values in the complex
field.

3. OPTIMALITY CRITERIA

The deflation approach to ICA consists of searching for
an extracting vector w so that its scalar output

z
def= wHx (2)

maximizes some optimality criterion or contrast func-
tion. A widely used contrast is the normalized kurtosis
of the separator output:

K(w) =
E{|z|4} − 2E2{|z|2} − |E{z2}|2

E2{|z|2}
. (3)

This criterion is easily seen to be insensitive to scale, i.e.,
K(λw) = K(w), ∀λ 6= 0. This scale indeterminacy is in-
herent in BSS, and we can thus impose ‖w‖ = 1 for nu-
merical convenience. Other criteria are the widespread
constant modulus (CM) [17]:

C(w) = E{
(
|z|2 − 1

)2} (4)

and the constant power (CP) [14, 18]:

Pr(w) = E{|zr − 1|2}. (5)

Another type of objective functions need the data to
be prewhitened, so that the sensor outputs are assumed
to have an identity covariance matrix, Rx

def= E{xxH} =
I. One criterion that we shall be particularly interested
in is the separator-output fourth-order moment:

M(w) = E{|z|4}. (6)

This criterion must be optimized under a constraint to
avoid arbitrarily large values of z. Assuming ‖w‖ = 1,
it is simple to realize that (6) is equivalent to (3) after
prewhitening in two cases: if all sources and mixtures
are real-valued, and if the sources are complex-valued
but second-order circular, i.e., the non-circular second-
moment matrix Cx

def= E{xxT} is null. For instance,
in the case where the mixture and noise are complex
but the sources are real, criteria (6) and (3) are not
equivalent.

4. KURTOSIS-BASED FASTICA

The stationary values of the kurtosis contrast K(w) are
given by the cancellation of its gradient, which is pro-
portional to:

E{xzz∗2} − (wTC∗
xw)Cxw∗

− (wHRxw)−1
[
E{|z|4} − |wHCxw∗|2

]
Rxw. (7)

Under the constraint ‖w‖ = 1, the stationary points
of M(w) are obtained for the collinearity condition on
E{xzz∗2}:

E{(wHxxHw)xxH}w = λw (8)

where λ is some Lagrangian multiplier. It is easy to
verify that the same result is obtained by performing
the unconstrained optimization ofM(w)/‖w‖4.

Equation (8) is a fixed-point equation as claimed in
[7] only when λ is known, which is not the case here; λ
must be determined so as to satisfy the constraint, and
thus unfortunately it depends again on x and w. In
[3, 7], λ is arbitrarily set to a deterministic fixed value,
which allows to spare computations. For this reason,
as eventually pointed out in [8], FastICA is actually an
approximate standard Newton algorithm rather than a
fixed-point algorithm. As a result of the Hessian matrix
approximation carried out under the prewhitening as-
sumption, the kurtosis-based FastICA reduces to a con-
ventional gradient-descent algorithm with a fixed step
size, and is hence a particular case of [6]. In the real-
valued scenario, FastICA’s update rule reads:

w+ = w − 1
3

E{x(wTx)3} (9)

w+ ← w+/‖w+‖. (10)

The Hessian matrix approximation is somewhat for-
tunate in that, under the source statistical indepen-
dence assumption, it theoretically endows the result-
ing method with global cubic convergence. It is likely
that the algorithms described in the next section in-
herit analogous convergence properties. Nevertheless,
the FastICA algorithm sometimes gets stuck at saddle
points, particularly for short sample sizes [11].

5. OPTIMAL STEP SIZE: ROBUSTICA

As we have just recalled, FastICA attempts to maxi-
mize the normalized kurtosis of the extractor output by
means of a approximate Newton algorithm. The Hessian
simplification reduces the Newton update to a gradient-
based update with fixed step size. For the kurtosis as
well as analogous contrast functions commonly encoun-
tered in blind signal processing, a more efficient opti-
mization method exists that can improve performance
while accelerating convergence. This method, theoret-
ically straightforward yet effective in practice, is exact
line maximization.

Line maximization of a generic cost function J (w)
consists of finding its global maximum along a given
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search direction:

µopt = arg max
µ
J (w + µg). (11)

The direction is typically (but not necessarily) the gra-
dient: g = ∇wJ (w). Exact line search is in general
computationally intensive and presents other limitations
[19], which explains why, despite being a well-known
optimization method, it has largely been disregarded.
However, for criteria such as the kurtosis, the CM and
the CP contrasts, J (w + µg) is a low-degree rational
function in µ. As a result, the optimal step size µopt

can be found algebraically (in closed form) among the
roots of a simple polynomial of degree D:

p(µ) =
D∑

k=0

akµk. (12)

At each iteration, optimal step size (OS) optimiza-
tion performs the following steps:

S1) Compute OS polynomial coefficients

S2) Extract OS polynomial roots {µk}Dk=1

S3) Obtain µopt = arg max
k
J (w + µkg)

S4) Update w+ = w + µoptg. (13)

The application of the OS methodology on the kurtosis,
the CM and the CP criteria results in the OS kurtosis
maximization algorithm (OS-KMA), the OS CM algo-
rithm (OS-CMA), and the OS CP algorithm (OS-CPA),
respectively. Note that the above procedure also applies
when the contrast function is to be minimized: the min-
imization of the CM and CP criteria can be achieved
through the maximization of −C(w) and −Pr(w), re-
spectively. Some important aspects of OS optimization
are briefly developed next.

Coefficient computation (step S1). The polynomi-
als associated with the OS-KMA has degree D = 4.
The derivation of its coefficients is tedious but other-
wise straightforward. As summarized in the Appendix,
they can be obtained at each iteration from the observed
signal block and the current values of w and g. An al-
ternative version is based on the sensor-output statis-
tics computed once before starting the iterations. This
statistics-based version becomes more costly than the
data-based version for large values of L. The expressions
for the OS-CMA polynomial, which has degree D = 3,
can be found in [15, 16].

Root extraction and selection (steps S2–S3). The
roots of polynomial at orders 3 and 4 can be found with
standard algebraic procedures such as Cardano’s and
Ferrari’s formulas, respectively [19]. Preliminary exper-
iments point out that, although complex-valued roots
may appear as favourite in the sense of the maximiza-
tion of J (w+µkg), the best real-valued candidate root
should typically be preferred.

Normalization. To improve numerical conditioning
in the determination of µopt, the normalized version of
the gradient vector should be used in the above steps.

Table 1: Computational complexity per iteration of the
deflationary ICA algorithms compared in this paper, for
signal blocks of T samples observed at the output of
L sensors, assuming real-valued sources and mixtures.
The figures in the second row are for the simulation
scenario of Sec. 7 and Figs. 1–2.

RobustICA
FastICA OS-KMA OS-CMA

(L, T ) 2(L + 1)T (5L + 12)T (3L + 10)T
(4, 150) 1500 4800 3300

As observed in Sec. 3, the kurtosis criterion is scale in-
variant, so that the new extracting vector w+ should be
normalized as in (10) after each OS-KMA iteration.

Computational complexity. The computational cost
per iteration of FastICA and the two OS methods (data-
based versions) presented above is shown in Table 1.
Only the most significant terms have been retained.
These dominant terms are of order O(T ), and provide
accurate approximations of the exact cost for sufficient
sample size T . Complexity is measured in floating point
operations (flops). A flop is considered as a real product.

The OS technique in the blind and semi-blind equal-
ization context is fully developed in [14, 15, 16]; de-
tails are omitted here due to space limitations. By de-
sign, and as confirmed by simulations, OS optimization
provides some robustness to local extrema and reduced
overall complexity relative to conventional fixed step-
size optimization. In the ICA context, the OS method-
ology naturally gives rise to what could be referred to as
RobustICA algorithms. Indeed, improved faster conver-
gence and increased robustness to the initial value of the
extracting vector will be illustrated in the experiments
of Sec. 7.

6. DEFLATION

After convergence, output signal z contains an estimate
ŝk of source component sk. In most deflation algorithms
(except, e.g., [5]), the extracted-source contribution to
the sensor output is estimated by linear regression as
x̂k = ĥkŝk, with

ĥk = E{xŝ∗k}/E{|ŝk|2}. (14)

This contribution is then subtracted from the observa-
tions, producing a new observed vector

x← x− x̂k. (15)

From the ‘deflated’ observations, the next source is esti-
mated by running again the same extraction procedure.
The deflation procedure is repeated until no sources are
left. In practice, the expectations in (14) are substituted
by sample averages over the signal block, which accept
efficient matrix-vector product formulations.

7. NUMERICAL EXPERIMENTS

Since FastICA heavily relies on the whitening assump-
tion, only real orthogonal mixtures are considered in the
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following numerical study, as if prewhitening had been
previously carried out. By contrast, a feature of defla-
tion algorithms in general, and RobustICA in particular,
is that they can directly operate on the observed sen-
sor output without prewhitening. Hence, the orthogonal
mixture scenario benefits the FastICA implementation.

A mixture of K = 4 independent unit-power BPSK
sources is observed at the output of a L = 4 element
array in signal blocks of 150 samples. Isotropic additive
white real Gaussian noise is present at the sensor output,
with signal-to-noise ratio:

SNR =
trace(HHT)

σ2
vL

=
1
σ2

v

. (16)

Equivalent thresholds on the separating vector variation
and a higher limit of 100L = 400 iterations are employed
as convergence tests. Once all sources have been esti-
mated, they are optimally scaled and permuted to allow
a meaningful comparison with the original sources. The
signal mean square error (SMSE), defined as

SMSEk = E{|sk − ŝk|2} (17)

is used as separation quality index. The minimum mean
square error (MMSE) receiver, which jointly estimates
the separating vectors assuming that all transmitted
symbols are used for training, provides a performance
bound. Computational complexity is measured in terms
of the number of floating point operations (flops) re-
quired to reach a solution. Performance parameters are
averaged over 1000 independent random realizations of
the sources, the noise and the mixing matrix.

A single-tap initialization, w0 = [0, 1, 0, 0]T, is used
for all sources to be extracted. Fig. 1(a) shows the
SMSE performance variation as a function of SNR. The
first source extracted by OS-KMA and OS-CMA attains
the MMSE bound, whereas the first source by FastICA
can only achieve the performance of the second source by
the other two methods. As expected, performance de-
grades for subsequent extractions. On average, the Ro-
bustICA algorithms clearly outperform FastICA, which
shows a worse finite sample-size flooring effect due to
the increased misadjustment introduced by its constant
step size.

The algorithms’ computational complexity is dis-
played in Fig. 1(b). Flop counts are obtained as the
number of iterations times the number of flops per iter-
ation (Table 1). OS-CMA’s cost decreases as the SNR
increases and as more sources are extracted. The OS-
KMA shows a similar trend except for the last source,
but its average complexity lies just below OS-CMA’s.
FastICA is only efficient when extracting the first source
in sufficient SNR, and often goes over the iteration-count
limit for the remaining sources. On average, FastICA
turns out to be well over an order of magnitude more
expensive than RobustICA in these experiments, even
though its cost per iteration (Table 1) is less than a half
and a third of OS-CMA’s and OS-KMA’s, respectively.

To assess their efficiency, the three methods’ average
extraction quality as a function of complexity is summa-
rized by the ‘+’-marked plots in Fig. 2. RobustICA’s

higher efficiency is remarkable, despite its heavier cost
per iteration (Table 1). Note that the MMSE is not an
iterative method, and so its cost is irrelevant here; its
SMSE value is shown in Fig. 2 for reference only. Also
displayed in that figure is the average performance for
other initial values of the extracting vector: canonical
basis and random. In the former, the separating vector
aiming to extract the kth source is initialized with the
kth canonical basis vector, ek = [0, . . . , 0︸ ︷︷ ︸

(k−1)

, 1, 0, . . . , 0︸ ︷︷ ︸
(L−k)

]T,

k = 1, . . . ,K. In the latter, the initial values of the
extracting vector taps are independently drawn from a
normalized Gaussian distribution. As observed in these
plots, RobustICA’s consistent behaviour contrasts with
FastICA’s sensitivity to initialization.

8. CONCLUSIONS

The main purpose of this contribution was to show that
FastICA is probably not the best ICA algorithm, and
that its popularity is not based on a solid scientific com-
parison with earlier algorithms. Its fair simplicity is ap-
pealing, but its satisfactory fast performance has long
been taken for granted by many researchers in the field.
The superior efficiency and increased robustness to ini-
tialization of the simple RobustICA technique demon-
strate that FastICA can indeed be easily improved. The
OS methodology giving rise to RobustICA is not exclu-
sive to the kurtosis criterion, but is applicable to any
contrast function that can be expressed as a rational
function in the step size. Further work will consider the
use of the OS strategy for simultaneous ICA, and its
comparison with other techniques.

9. APPENDIX: OS-KMA POLYNOMIAL

The OS polynomial of contrast K at w along direction
g has coefficients:

a0 = −2h0i1 + h1i0, a1 = −4h0i2 − h1i1 + 2h2i0

a2 = −3h1i2 + 3h3i0, a3 = −2h2i2 + h3i1 + 4h4i0

a4 = −h3i2 + 2h4i1

with

h0 = E{|a|2} − 2E2{|a|} − |E{a}|2

h1 = 4E{|a|d} − 8E{|a|}E{d} − 4IRe(E{a}E{c∗})
h2 = 4E{d2}+ 2E{|ab|} − 8E2{d} − 4E{|a|}E{|b|}

−4|E{c}|2 − 2IRe(E{a}E{b∗})
h3 = 4E{|b|d} − 8E{|b|}E{d} − 4IRe(E{b}E{c∗})
h4 = E{|b|2} − 2E2{|b|} − |E{b}|2

i0 = E{|a|}, i1 = 2E{d}, i2 = E{|b|}
a = y2, b = g2, c = yg, d = IRe(yg∗)

y = wHx, g = gHx.
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