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Abstract—Atrial fibrillation (AF) is a sustained arrhythmia
whose mechanisms are still largely unknown. A recent patient-
tailored AF ablation therapy is based on the use of a multipolar
mapping catheter called PentaRay. This new protocol targets
areas of spatiotemporal dispersion (STD) in the atria as potential
AF drivers. However, interventional cardiologists localize STD
sites visually through the observation of intracardiac electro-
grams (EGMs). The present work aims to automatically char-
acterize ablation sites in STD-based ablation. Recent research
suggests that the distribution of the time series of maximal voltage
absolute values at any of the PentaRay bipoles (VAVp) is affected
by the STD pattern. Motivated by this finding, we consider VAVp
as a key feature for STD identification. To our knowledge, this
work applies for the first time statistical analysis and machine
learning (ML) tools to automatically identify STD areas based on
VAVp time series. Experiments are first conducted on synthetic
data to quantify the effect of STD pattern characteristics (number
of delayed leads, fractionation degree and number of fractionated
leads) on engineered features of the VAVp time series like kur-
tosis, showing promising results. Then these features are tested
on a real dataset of 23082 multichannel EGM signals from 16
different persistent AF patients. Statistical features like kurtosis
and distribution (histogram) of VAVp values are extracted and
fed to supervised ML classifiers, but no significant dissimilarity
is obtained between the two categories. The classification of
raw VAVp time series is finally conducted using ML tools like
a shallow convolutional neural network combined with cross
validation and data augmentation, reaching AUC values of 96%.

Index Terms—persistent atrial fibrillation, spatiotemporal dis-
persion, ablation, PentaRay multipolar catheter, maximal voltage
absolute values, machine learning, classification, clustering.

I. INTRODUCTION

Atrial fibrillation (AF) is a sustained cardiac arrhythmia
whose drivers and mechanisms are complex and still unknown.
Hospitalizations related to AF represent nearly half million per
year. This disease is estimated to yield almost one-hundred
thousand deaths annually in the United States alone [1].
Among the existing therapies, ablation interventions prove
very efficient compared to drug treatment. Ablation consists in
applying radiofrequency (RF) energy using catheters to burn
atrial tissue areas thought to be responsible for triggering and
maintaining AF. A recent wholly patient-tailored AF ablation
therapy, giving 95% of procedural success rate, is based on
the use of a multipolar mapping catheter called PentaRay.

It targets areas of spatiotemporal dispersion (STD) in the
atria as potential AF drivers. STD is defined a as delay of
the cardiac activation perceived in intracardiac electrograms
(EGMs) across neighboring leads. In practice, interventional
cardiologists localize STD sites visually using the PentaRay
catheter. Guidelines for STD identification from visual inspec-
tion claim that the multichannel EGM signal acquired by the
PentaRay would exhibit a cardiac activation delay of 70% on a
minimum of three contiguous bipoles [2]. However the visual
identification of STD locations is prone to uncertainty due to
the subjectivity of the interventional cardiologist. It is worth
highlighting that thousands of cardiac sites are mapped in a
typical ablation procedure.

This work aims to automatically characterize and identify
ablation sites in STD-based ablation. Numerical simulations
in [2] suggest that the distribution of the time series of max-
imal voltage absolute values at any of the PentaRay bipoles
(VAVp) is affected by the dispersion pattern. Motivated by this
finding, we suggest to consider VAVp as a key feature for STD
identification. Two different approaches are investigated. First,
engineered and statistical features are extracted manually from
VAVp time series and fed to supervised classifiers like linear
discriminant analysis (LDA) [3], support vector machines
(SVM) [4] and a convolutional neural network (CNN) [5]. This
first approach is called feature engineering. In particular, we
study the kurtosis [6] and distribution (histogram) of VAVp
time series. Synthetic multichannel EGMs are generated to
mimic the STD pattern and to gradually evaluate its effect
on VAVp statistics. The histograms of VAVp samples from
both STD and non-STD real datasets are also clustered using
hierarchical clustering analysis (HCA) [7]. Experiments are
conducted on synthetic signals, through several Monte Carlo
(MC) simulations, and then on real datasets. The second
approach is called automatic feature extraction. It consists in
classifying raw VAVp recordings using supervised machine
learning (ML) tools. Besides, cross validation (CV) [8] is
used to avoid overfitting and data augmentation (DA) [9]
is applied to handle the highly imbalanced dataset issue.
Both approaches, feature engineering and automatic feature
extraction, are complementary. On the one hand, the statistical
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analysis is intuitive and easily interpretable although results are
strongly dependent on an appropriate choice of features. On
the other hand, even successful modern ML tools like CNN
can automatically extract classification features from raw data
through its deepest layers. However, these features are not
easily interpretable and validated from a medical perspective.
The study dataset of real signals includes a cohort of 23082
multichannel EGM recordings from 16 different persistent AF
patients.

To our knowledge, this is the first time that statistical metrics
and ML tools are used to automatically identify STD areas and
characterize AF drivers for wholly patient tailored ablation
protocols based on VAVp distribution.

II. AF ABLATION

A. Catheter Ablation of Persistent AF

AF is characterized by a disorganized activation in the upper
chambers of the heart called atria. The atria start quivering,
thus causing irregular fluctuations in the baseline, instead of
beating effectively to eject blood into the ventricles. This
results into a disorganized ventricular rate [1]. Motivated by
the limits of drug treatment to cure persistent AF, ablation is
an increasingly used therapy. It consists in burning the cardiac
myocytes (cells) displaying irregular activation patterns with
RF energy delivered through a catheter. A classical ablation
protocol, called stepwise approach, consists in isolating the
pulmonary veins, harboring the triggers thought to be re-
sponsible for initiating AF. Cardiac areas displaying complex
fractionated electrograms (CFAE) are then ablated. However,
a growing number of reports find little advantage in targeting
CFAEs alone after pulmonary vein isolation [10]. Instead,
alternative criteria have been developed to ablate potential
drivers throughout the atrial substrate [2].

B. STD-Guided Ablation

A breakthrough AF ablation therapy, giving 95% of pro-
cedural success rate, is based on the use of the PentaRay
mapping catheter. It targets areas of STD in the atria as
potential AF drivers [2]. The PentaRay is a 20-pole high res-
olution catheter (Biosense Webster Inc, Irvine, CA, USA). In
practice, the interventional cardiologist sequentially positions
the catheter in various regions of the atria before ablation.
Locations exhibiting a non synchronous cardiac activity ob-
servable on a minimum of three contiguous leads are called
dispersion points and are tagged for ablation. It is claimed that
dispersion areas represent clusters of electrograms, either frac-
tionated (CFAE) or nonfractionated, displaying interelectrode
time and space dispersion at a minimum of three contiguous
leads [2], as shown in Fig. 1. However, the identification
of STD areas is prone to errors and lack of reproducibility
since it is performed visually by the cardiologist. In order to
automatize STD identification, this work investigates statistical
and ML tools that characterize STD features.

Fig. 1: Dispersion areas delineated via a mapping approach [2].
A 1-2, A 3-4, B 5-6, B 7-8,C 9-10 and C 11-12 display STD.

III. VAVP ANALYSIS FOR STD IDENTIFICATION

A. VAVp Time Series

The one-dimensional VAVp time series is calculated as
follows: 1) the absolute values of each channel of the multilead
EGM recording are computed to form the VAV matrix; 2) the
maximal values of VAV over the leads dimension are computed
at each time sample to form the VAVp signal. Numerical sim-
ulations in [2] show that the histograms of VAVp distribution,
that we refer to as h(VAVp), depend on STD and that h(VAVp)
is peaky and concentrated around zero if the virtual PentaRay
is positioned in non-STD areas, at the periphery of a driver
with slow excitation for instance, but it gets more spread for
EGMs recorded in STD areas of the atria, like rotors as shown
in Fig. 2 (Fig. 7 in [2]).

(A) (B) (C)

Fig. 2: VAVp distribution (A) at the center of the driver,
reminiscent of patients’ dispersion areas, (B) at the periphery
of the driver and (C) in the interstitial fibrosis condition [2].

B. Kurtosis and Skewness

In statistics, kurtosis refers to a measure of peakedness
of a distribution. It quantifies whether the data are heavy-
tailed (high κ) or light-tailed (low κ) relative to a normal
distribution (κ = 0). Skewness is a measure of the asymmetry
of a variable’s probability distribution around its mean. We
compute unbiased estimates of kurtosis and skewness [6].

C. Histogram Clustering

Given a set of data samples, HCA partitions them into
agglomerations using a homogeneity criterion, so that points
within each cluster are similar and points from different
clusters are dissimilar. HCA treats each observation as a
singleton group at the beginning. Then it merges pairs of
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groups until all clusters are agglomerated. The linkage can
be presented by a dendrogram. A cutoff is then chosen and
the clusters are formed [7].

D. Classification Algorithms and Metrics

Supervised ML techniques, namely LDA [3], SVM [4] and
CNN [5], are trained on labeled datasets to classify samples
from STD and non-STD categories. The model learns a
classification rule then applies it to new data. The performance
of ML models is evaluated through the following metrics: 1)
accuracy; 2) area under the receiver operating characteristic
curve (AUC); 3) sensitivity (true positive rate), measuring the
proportion of actual STD samples that are correctly identified
as such; 4) specificity (true negative rate), measuring the pro-
portion of actual non-STD samples that are correctly identified
as such.

E. Data Augmentation

The real EGM dataset is highly imbalanced as detailed in
the next section. The insufficient amount of STD samples leads
to poor classification results in terms of sensitivity and AUC.
One way of dealing with this issue is applying a DA method
that is approved by cardiologists. DA consists in synthesizing
new samples belonging to the minority class. Oversampling
is a simple but effective DA option. It consists in forming a
balanced super-dataset by replicating randomly samples from
the minority class (STD) until they reach the number of the
majority class (non-STD) [9].

IV. STUDY DATASETS

During the mapping phase, the PentaRay catheter is
maintained stable for at least 2.5 s (sampling frequency
fs = 1000 Hz) at each atrial site then ten bipoles are simul-
taneously recorded per location. The recording can be stored
in a matrix with dimensions 10 × 2500. A typical AF cycle
length (AFCL) equals 250 ms.

A. Synthetic Data

To build a realistic synthetic EGM model, we simulate the
cardiac activation pattern as follows: 1) a one-dimensional
sawtooth activation with a fundamental frequency Fref = 50 Hz
and fs = 1000 Hz is synthesized; 2) from this full signal,
a unique sawtooth cycle (one “tooth”) is truncated; 3) the
pattern is padded with zeros to form a single cardiac cycle
of 250 samples; 4) this signal is replicated 10 times to form
a full synthetic EGM of length 2500 noted EGMsaw. In order
to include the fractionation pattern in EGMsaw recording, we
define d as the fractionation degree. The fractionated signal
EGMd

saw should contain in each AFCL interval d squashed
sawtooth waveforms, generated by truncating and padding a
sawtooth waveform of fundamental frequency equal to d×Fref,
as described previously. EGMd

saw is then multiplied by a
normalization factor ensuring that the energy of the time
discrete signal EGMd

saw is preserved for all values of d ∈ N∗.
The non fractionated signal corresponds to d = 1 and the
totally fractionated signal corresponds to d = 19. Finally, the

full synthetic multichannel EGM matrix is formed by stacking
the synthetic signals EGMd

saw in the rows of a (10×2500)
matrix. Each signal (channel) may have a different value of d
as illustrated in Fig. 3. The 10 leads are denoted `1 to `10. In
order to simulate the activation delay characteristic of STD, we
introduce a cyclic shift of 35% of AFCL over two successive
channels (matrix rows). As a result three consecutive leads
would have a total delay of 70%. Fig. 3 shows that the delay
slope may be positive (leads `3 `4, `5) or negative (leads `8,
`9, `10).

Fig. 3: Example of a synthetic multichannel EGM recording.

B. Real Data

The Cardiology Department of Nice University Hospital
Center (CHU) affords the multichannel EGM data of 16
patients with persistent AF. All patients were ablated after
analysis of the cartographies acquired with the PentaRay and
visual tagging of STD areas. The population is aged 64 years
in average and is composed of 80% male and 20% female.
The average initial AF cycle in left atrial appendage is 156 ms.
A phase of data acquisition, anonymization and cleaning was
needed. EGMs presenting spatiotemporal dispersion according
to the cardiologist are annotated as “STD”, while other labels
are merged into the “non-STD” class. The study dataset
includes a cohort of 23084 points composed of 1140 STD
and 21944 non-STD samples. The ratio of STD to non-STD
samples is equal to 5%. We recall that for each cartography of
each patient, 10 EGM bipoles are that recorded per location
and each acquisition can be stored in a (10 × 2500) EGM
data matrix.

V. EXPERIMENTS

Experiments including the analysis of VAVp statistics, his-
tograms clustering and classification belong to the feature en-
gineering approach, whereas the automatic feature extraction
approach consists in classifying the raw VAVp signals.

A. VAVp of Synthetic Data

As a first attempt, we investigate the effect of the num-
ber of consecutive delayed channels (Ndelay) on the VAVp
distribution. Fig. 4 shows that as Ndelay grows, the kurtosis
decreases which means that the distribution becomes flatter. In
absence of fractionation (d = 1) and for Ndelay = {1, 2, 3, 4}
we have κ > 0, the VAVp histogram approximates a normal
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distribution (κ ≈ 0) for Ndelay = {5, 6} but the kurtosis
becomes negative for Ndelay = {7, 8, 9}. This experiment is
repeated for different delay values in the set {40, 70, 100} ms.
The resulting curves almost coincide, which means that delay
range is not significant.

The combined effect of fractionation and delay of contigu-
ous leads is assessed. For each Ndelay, 100 MC simulations
are conducted. For each MC run, both the number (Nfrac) of
fractionated leads and their positions are selected at random.
Then, VAVp distribution statistics are computed. Finally, the
average values of kurtosis and skewness are obtained. The
curves in Fig. 4 show the resulting kurtosis for d = 8 and
d = 16 over the 100 MC runs. The values are presented as
mean ± standard deviation. We notice that similar behavior is
obtained for d = 1 and d = 8. However for more fractionated
signals (d = 16) the kurtosis decreases from 4 to 0. The
distribution passes smoothly from peaky to Gaussian as Ndelay
grows. Though not shown for lack of space, experiments also
demonstrate that skewness is a deceasing function of d which
means that the VAPp distribution gets symmetric around its
mean, as d grows. Besides, skewness is much less sensitive to
Ndelay compared to kurtosis.

Fig. 4: Effect of the delay on VAVp distribution.

In order to asses the effect of fractionation on VAVp distri-
bution, fractionated multichannel EGMs are generated. Each
synthetic matrix contains a growing number of fractionated
leads Nfrac ∈ [1, 10]. Fractionation degrees (d) are divided
into three ranges {[1, 6], [1, 12], [1, 19]}. For each range and
for each Nfrac, a series of 100 MC simulations is conducted
where the fractionation degrees are chosen randomly in that
range. The values of kurtosis are computed as in the previously
described experiment. Fig. 5 shows that the kurtosis is a
decreasing function of both Nfrac and d. The effect of Nfrac on
the distribution is less important than d regarding the slope of
the curves (Fig. 5).

To summarize, VAVp distribution gets flatter and its tail
lighter as the dispersion patterns represented by the number
of delayed leads, fractionation degree and fractionated lead po-
sitions are emphasized whether simultaneously or separately.

B. VAVp of Real Data

1) Kurtosis Analysis: We compute the kurtosis of multi-
channel EGM samples belonging to both STD and non-STD
datasets. The computed values lie in the following intervals:

Fig. 5: Combined effect of fractionation on VAVp distribution.

κSTD ∈ [2, 410] while κnon-STD ∈ [1, 621]. Mean and standard
deviations values are κSTD = 23± 34 and κnon-STD = 29± 41,
which means that in average both VAVp distributions have
sharp histograms but the STD is slightly flatter than the non-
STD VAVp distribution. As a result, we conclude that looking
at metrics related to the VAVp histograms like kurtosis is not
a significant hand-engineered feature in STD identification.

2) Histogram Clustering and Classification: We attempt
to analyze the VAVp histograms coming from both STD
(h(VAVp)STD) and non-STD (h(VAVp)non-STD) datasets. We
first cluster the histograms of each class separately using the
HCA [7] algorithm. We opt for Hellinger distance [11] as a
homogeneity criterion because it is a recommended metric to
measure the similarity between sparse data like histograms.
Cutoff values are chosen visually from the dendrograms. We
opt for 6 STD and 10 non-STD clusters of h(VAVp) then
we compute the averaged histograms of the representative
element of each cluster. No obvious dissimilarity in terms
of histogram sharpness nor flatness is obtained by comparing
STD to non-STD clusters as shown in Fig. 6. For instance,
clusters 4 and 5 belonging respectively to STD and non-STD
categories are both sharp, reflecting a synchronized cardiac
activation between the channels of the EGM sample. Similarly,
clusters 3 and 8 belonging respectively to STD and non-STD
categories are both flat, reflecting a non-synchronized cardiac
activation between the EGM channels. This finding rejects the
hypothesis that VAVp distribution is a key variable in STD
identification, as confirmed by both experiments on simulated
data in Sec. V-A added to Figures 7 and 8 in the medical
reference [2]. To confirm this finding, we try to classify the

Fig. 6: VAVp histograms of the STD (blue) and non-STD (red)
clusters.

labeled histograms into STD vs. non-STD using ML tools
like LDA, SVM with both linear and Gaussian filter and
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a shallow CNN but the classification performance is very
poor. Similar results are obtained with both balanced and non
balanced training sets. This result may be explained by the
two following reasons:
• First, the non-STD class contains a wide range of mul-

tichannel EGM types that certainly have different patterns
that would result in a wide range of kurtosis and VAVp
distributions.
• Second, the labels of STD samples do not contain detailed

information about the number of CFAE leads neither the
positions of delayed leads. As a result the STD dataset can be
assimilated to a bag containing samples with all possibilities
of delay values, Ndelay, Nfrac and d.

3) Raw VAVp Classification: Motivated by the poor results
obtained with the analysis of VAVp distribution, we propose in
this section to analyze the raw VAVp time series. To this end,
we train supervised ML models with the labeled dataset. The
classifiers used are: 1) LDA; 2) SVM with a Gaussian kernel
(experiments showed that the performance of a Gaussian
kernel is superior to the linear one); 3) a shallow CNN
composed of a 1D convolutional layer with 32 nodes followed
by a dropout layer with a dropout probability equal to 0.2
then a fully connected layer with a sigmoid (linear regression)
activation function. Dropout is a regularization technique [12].
We tried to add several types of pooling layers (max, average
and global average) to the CNN architecture but it degraded
the classifiers’s performance. In order to handle overfitting
and asses the ability of the trained ML models to generalize
the classification rule, we use 5-fold cross validation (CV)
technique [8] [13]. In order to train the CNN, we use ADAM
optimizer [14] with validation AUC as an early stopping
criteria. In each CV round, the test dataset is partitioned into
two equal-sized subsets that will form the new validation and
test sets. This guarantees that the model does not see the
test samples during the training phase. Classification results
on the test set are given in Tab. I. The values of accuracy,
AUC, sensitivity and specificity are around 90% and present a
very low variability of the order of 10−3. However, we notice
that the performance of LDA is inferior to that of non linear
classifiers (SVM and CNN). For instance, the AUC value of
the CNN is 96% while it is equal to 90% for the SVM and
87% for the LDA. The AUC informs about the combined true
classification rates of both STD and non-STD classes. The
superiority of the CNN may be explained by the ability of
this model to automatically extract key classification features
through its convolutional filters.

TABLE I: VAVp time-series classification performance.

Accuracy AUC Sensitivity Specificity
LDA 0.883 ± 0.007 0.866±0.006 0.848±0.020 0.885±0.008
SVM 0.927±0.004 0.905±0.009 0.880±0.022 0.930±0.005
CNN 0.917±0.005 0.964±0.009 0.867±0.015 0.922±0.004

VI. CONCLUSION AND PERSPECTIVES

Motivated by the finding [2] that the distribution of VAVp
signals is affected by the STD pattern, we propose to auto-

matically identify STD areas in multichannel EGM recordings
in persistent AF through two complementary approaches.
Preliminary experiments using synthetic signals in controlled
conditions demonstrate that VAVp engineered features like
kurtosis are indeed good indicators of STD in AF multipolar
EGMs. However, experiments on real AF data show that these
features do not allow STD identification. Likewise, VAVp
histograms of STD and non-STD datasets clustered using HCA
do not present significant dissimilarities. Modern ML tools
that automatically identify characteristic features from the raw
VAVp time series are more efficient, with AUC up to 96% for
CNN.

Further research will aim at designing optimized ML ar-
chitectures with higher performance rates. Building deeper
classifiers and interpreting, from a medical perspective, the
automatic features synthesized by the deep architecture would
bring knowledge to better characterize the persistent AF ar-
rhythmia. Another perspective is to increase the database of
persistent AF patients in order to provide more relevant clinical
results.
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