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Abstract—This paper focuses on blind channel estimation in
multiple antenna systems that make use of the well known
Alamouti orthogonal space time code to attain full transmit
diversity. The channel matrix is estimated from the eigenvalue
decomposition of a square matrix formed by either second-
order statistics (SOS) or by fourth-order cumulants of the
observations. We will show that, unlike other coding strategies,
the orthogonality property of the Alamouti scheme allows to
estimate the channel using only SOS. Simulation results show
that the SOS-based approach needs less observation symbols to
obtain a good channel estimation.

I. INTRODUCTION

Wireless communication systems that employ multiple an-

tennas at both transmission and reception are commonly re-

ferred to as Multiple Input Multiple Output (MIMO) systems.

One of the major advantages of MIMO systems is their ability

to provide spatial diversity gains to decrease the Symbol-Error-

Rate (SER) in multipath fading channels [1]. Diversity gain

results from combining signals that experience independent

signal fades.

Achieving the promised performance gains, even in practical

operating conditions, requires for specific Space-Time Coding

(STC) techniques that spread the transmitted symbols over

the space and time dimensions. A large number of STCs

have been proposed in the literature (see [2] and references

therein). A remarkable example is orthogonal Space Time

Block Coding (STBC) because it is easy to encode and

decode [3]. The basic premise of orthogonal STBCs is the

encoding of the transmitting symbols into an unitary matrix to

spatially decouple their Maximum Likelihood (ML) detection.

Orthogonal STBCs are very attractive because they provide

full transmit diversity with linear decoding complexity.

For the case of two transmitting antennas, the orthogonal

STBC is known as the Alamouti code [4]. Alamouti coding

consists in transmitting a pair of symbols in a time-slot and the

same pair with a different phase in the next time-slot. Although

it does not provide any coding gain, Alamouti coding is very

attractive because it provides full transmit diversity with linear

decoding complexity and, for this reason, it is currently part

of both the W-CDMA and CDMA-2000 standards [5].

The performance of Alamouti’s coding scheme, as most

other coding strategies, depends on the accurate estimation

of the channel between the transmitter and the receiver. The

transmission of pilot symbols, referred to as training symbols,

is often used to perform channel estimation [6]. However,

training symbols reduce the throughput and such schemes are

inadequate when the bandwidth is scarce. Recently, a blind

technique has been proposed to estimate the channel directly

from the observations by using Higher Order Statistics (HOS)

[7]. The basic idea is to compute the eigenvectors of the

fourth-order cross-cumulant matrix of the observations. This

approach, however, requires that the channel remains constant

during a large number of symbol periods. In this paper, we will

show that the performance of this method can be improved by

averaging several cross-cumulant matrices.

We will also show that the channel matrix in the Alam-

outi’s coding scheme can be estimated by performing an

eigenvalue decomposition of the autocorrelation matrix of the

observations. The only condition is that the transmitted signals

have different powers. The advantages of this approach are

remarkable: SOS can be estimated with less symbols than

HOS, the computational cost is low and it presents a good

performance in block fading channels.

This paper is structured as follows. Section II presents

an overview of STC techniques, including a description of

the Alamouti’s codification scheme. Section III is devoted to

introduce the idea of blind algorithms as powerful solutions

to estimate the channel without using training sequences. In

Section IV we present a novel method based on performing

an eigenvalue decomposition of a square matrices contain-

ing SOS or HOS. Section V presents the results of several

computer simulations carried out to compare the algorithms

performance. Finally, section VI is devoted to the conclusions.

II. STC SCHEMES

Space-time Coding (STC) has recently emerged as a pow-

erful technique to exploit the spatial diversity in systems with

multiple elements at both transmission and reception (MIMO

wireless systems). In general, STC consists in transmitting

several (redundant) copies of the original data through several

transmitting antennas. The STC encoder must be designed in

order to maximize the diversity gain and to combat fading,

noise and interferences in MIMO channels [8], [2].



The development of the STC concept was originally pre-

sented in [9] with the form of trellis codes, so-called Space-

Time Trellis Codes (STTC), where the transmitting symbols

are obtained using a trellis (or convolutive) code. The STTC

provides a diversity gain equal to the number of transmitting

antennas in addition to a coding gain that depends on the

number of states in the trellis. The limitation of this scheme is

the high computational cost associated to the Viterbi algorithm

used at the receiver to recover the original data.

The other kind of STC is the called Space-Time Block

Codes (STBC) where different versions of the original data

are transmitted through several transmitting antennas across

several time-slots. Although STBC gives the same diversity

gain as the STTC for the same number of transmitting anten-

nas, they provides less coding gain. In contrast to STTC, the

decoding method used in STBC is very simple and it can be

performed using linear processing.

In addressing the issue of decoding complexity, Alamouti

has proposed in [4] a remarkable STBC scheme for transmis-

sion with two antennas, that is currently part of both the W-

CDMA and CDMA-2000 standards [5]. This code achieves

a transmission rate equal to one by transmitting a pair of

symbols in a time-slot and the same pair with a different

phase in the next time-slot. This scheme supports Maximum-

Likelihood (ML) detection based only on linear processing at

the receiver.

More recently, Tarokh et al. [10], [11] has developed a

theory to design STBC which also supports ML decoding with

linear processing. For any number of transmitting antennas,

these codes achieve the maximum possible transmission rate

when the symbols correspond to any arbitrary real constella-

tion and rate 1/2 for complex constellations. For the specific

case of three or four transmitting antennas, it is possible to

achieve 3/4 of the maximum transmission using any complex

constellation. The simulation results presented in [11] show

that significant gains can be achieved by increasing the number

of transmitting antennas with very little decoding complexity.

The most popular STBCs (including [4] and [10]) are

designed in order to guarantee that the transmission matrices

have orthogonal columns. However, in the literature [12] it

has been also proposed quasi-orthogonal STBCs where the

orthogonality holds between some columns of the transmission

matrix. Using this design it is possible to achieve full rate

for any constellation using, like orthogonal STBC, linear

processing at the receiver, although the decoding process is

slightly more complex than for orthogonal STBCs. Results

presented in [12] show that these quasi-orthogonal STBCs

outperform orthogonal STBCs over a wide range of Signal

to Noise Ratios (SNR). However, at high SNRs orthogonal

STBCs provide better performance.

A. Alamouti’s coding scheme

In this paper, we focus on the Alamouti’s coding scheme

proposed in [4]. Figure 1 shows the baseband representation

for Alamouti STBC with two antennas at the transmitter and

one antenna in the receiver. Each pair of symbols {s1, s2} is

transmitted in two adjacent periods using a simple strategy: in

the first period s1 and s2 are transmitted from the first and the

second antenna, respectively, and in the second period −s∗2
is transmitted from the first antenna and s∗1 from the second

one. In this paper, we will consider that the exact probability

density function of si is unknown. We also assume that

they are complex-valued, zero-mean, stationary, non-Gaussian

distributed and statistically independent.

The transmitted symbols arrive at the receiving antenna

through the fading paths h1 and h2, i.e, the signal received

in the first period has the form

x1 = s1 h1 + s2 h2 (1)

where hi denotes the path form the i-th transmitting antenna

to the receiving one. If the channel remains constant during

two periods, the observation in the second period is given by

x2 = s∗1 h2 − s∗2 h1 (2)

Alamouti’s coding scheme can be also expressed in matrix

form as follows
[

x1

x2

]

=

[

h1s1 + h2s2

−h1s
∗
2 + h2s

∗
1

]

+

[

n1

n2

]

(3)

where ni is additive white Gaussian noise. A more convenient

form of writing this coding strategy consists of considering

the observation vector x = [x1 x∗
2]

T . The relationship between

the observation vector x and the source vector s = [s1 s2]
T

is given by

x = H s + n (4)

where H is the 2 × 2 channel matrix,

H =

[

h1 h2

h∗
2 −h∗

1

]

(5)

It is interesting to note that H is an orthogonal matrix, i.e.,

H H
H = H

H
H = ||h||2 I2 (6)

where ||h||2 = |h1|
2 + |h2|

2 is the squared Euclidean norm,

I2 is the 2×2 identity matrix and H is the Hermitian operator.

As a result, the transmitted symbols can be recovered using

ŝ = H
H

x.

Although in this paper we only consider the Alamouti’s

coding scheme, it is straightforward to show that the model in

(4) is also adequate for the half-rate STBC schemes presented

in [10] where N complex-valued signals are transmitted in

2N time-slots.

B. Relationship between Alamouti’ scheme and BSS

It is interesting to note that the Alamouti’s coding scheme

corresponds to the classic problem in Blind Source Separation

(BSS) where a set of unknown signals s = [s1, s2, . . . , sN ]T

must be recovered from their observed mixtures x =
[x1, x2, . . . , xM ]T , which are typically measured at the output

of a sensor array [13], [14]. The mixtures can often be con-

sidered as instantaneous and linear, so that the mixing process

may be expressed mathematically as the matrix transformation

x = Hs + n (7)
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Fig. 1. Alamouti’s coding scheme

where n typically corresponds to additive Gaussian noise.

The goal of BSS is to estimate the mixing matrix H and

the realizations of the source vector s from the corresponding

realizations of the observed vector x. The term blind (or

unsupervised) refers to the fact that little or nothing is known

or assumed about the sources and the mixing matrix struc-

ture. This lack of prior knowledge may limit the achievable

performance, but makes the BSS approach more robust to

calibration errors (i.e., deviations of model assumptions from

reality) than conventional array processing techniques [15].

Since the seminal work of [16], [17], the arousing research

interest in BSS has been motivated by the great variety

of application areas where model (7) appears. In particular,

Alamouti’s coding scheme can also be cast in the BSS model.

Obviously, the linear inversion of H requires that M ≥ N .

In such a case, one deals with overdetermined, or undercom-

plete, mixtures. The so-called underdetermined or overcom-

plete mixture scenario, in which M < N , is certainly more

challenging, but has only begun to receive attention recently

(see, e.g., [18] and references therein).

Without further assumptions on the sources or the mixture,

the reconstruction of model (7) can at most be carried out

up to an ambiguity in the ordering and scale of the sources

and the associated columns of the mixing matrix. These

indeterminacies are inherent to blind techniques and are thus

considered as acceptable in BSS.

Most approaches to BSS are property recovering techniques:

an unmixing transformation (the inverse of the mixing matrix)

is sought such that it recovers a known property of the sources.

Under certain conditions, recovering the property amounts to

recovering the sources, and thus the mixing matrix, up to the

ambiguities mentioned above. A property commonly exploited

is the statistically independence of the sources. Depending on

the degree of independence considered, two main group of

techniques can be distinguished: SOS-based approaches and

HOS-based approaches. A number of techniques in both SOS

and HOS approaches are based on the eigen-decomposition

of certain matrix or tensor structures. Particular instances are

the techniques proposed and analyzed later in this paper to

perform blind channel estimation in the context of Alamouti’s

space-time coding.

III. DECODING ALGORITHMS FOR ORTHOGONAL STBC

The major advantage of orthogonal STBCs is that they

provides full diversity gain with a low decoding complexity. If

the Channel State Information (CSI) is available at the receiver,

the optimal ML decoder is a simple linear receiver followed

by a symbol-by-symbol detector. Although training approaches

[6] can be used to obtain the CSI at the receiver, training bits

degrade the transfer rate.

In those situations where CSI at the receiver is unavailable,

blind algorithms can be used to estimate the channel without

using training sequences. When the sources are temporally

white, like occurs in most digital communication applications,

it is needed to exploit higher-order independence of the

source signals. Independence is typically measured by means

of HOS such as the higher-order cumulants: the absolute

value of the marginal cumulants is to be maximized or,

equivalently, that of the cross-cumulants minimized, subject

to the appropriate constraints. Interestingly, very similar HOS

criteria are obtained from a variety of apparently disparate

information-theoretical principles such as negentropy, mutual

information or maximum likelihood [19], [20]. Totally anal-

ogous cumulant-based criteria such as kurtosis maximization

[21], [22] were developed years before in the context of blind

deconvolution [23], [24]. Indeed, this latter problem may be

seen as the blind separation of a single source from time-

delayed versions of itself.

In Comon’s pioneering BSS contribution [25], the initial

source estimates provided by SOS are further processed via

Givens rotations aiming at maximizing the 4th-order inde-

pendence of the transformed signals. The optimal rotation

angles are obtained by rooting a low-degree polynomial whose

coefficients are computed from the 4th-order cumulants of

the signal pair. Several sweeps over all signal pairs are

necessary for convergence. This pairwise scheme can be seen

as the generalization to 4th-order cumulant tensors (higher-

order arrays) of the well-known Jacobi technique for matrix

diagonalization.

Higher-order eigen-based approaches began to be investi-

gated since Cardoso’s early work on the so-called quadri-

covariance, a folded version of the 4th-order moment array

[26]. This line of research culminated with the popular method



known as joint approximate diagonalization of eigenmatrices

(JADE) [15].

Another strategy based on HOS has been proposed in [7]

by considering the specific properties of the channel matrix

in systems with orthogonal STBC. In this case, the channel

matrix is computed by performing an eigenvalue decomposi-

tion of matrices containing the fourth-order cross-cumulant of

the observations. The simulation results reported in [7] show

that a large number of symbols are needed to obtain a good

performance.

In general, HOS-based methods present a high computa-

tional cost and may require long streams of data to obtain ac-

curate channel estimates. For this reasons, SOS-based methods

are preferable in practice. Recently, reduced-complexity SOS-

based algorithms have been developed for blind channel esti-

mations in orthogonal STBC transmissions [27], [28]. These

methods are based on finding the eigenvectors of a matrix

computed from the SOS of the observations. The channel

matrix is identifiable when this matrix have distinct principal

eigenvalues. In practice, when the methods in [27], [28] are

used for the Alamouti’s coding scheme, the condition over

the principal eigenvalues is traduced in including a precoder

before the STBC encoder, which considerably increases the

complexity of both the encoder and the decoder.

IV. PROPOSED CHANNEL ESTIMATION METHOD

In this section, we will propose blind strategies to estimate

the channel matrix (see Figure 1). The basic idea is to find

a 2 × 2 matrix C that can be decomposed as C = H∆H
H

where ∆ = diag(δ1, δ2). Note that if δ1 6= δ2, the channel

matrix corresponds to the eigenvectors of C, up to a single

phase ambiguity [29].

A. SOS-based approach

First, we will consider the feasibility of using SOS to

estimate the channel matrix. In this case, the matrix C is the

autocorrelation matrix of the observations, i.e.,

CSOS = E[xx
H ] = H Rs H

H + σ2
nI2 (8)

where σ2
n is the noise power and Rs = E[ssH ] is the

correlation matrix of the transmitted signals. Since H is

orthogonal, from (6), we obtain

CSOS = H

(

Rs +
σ2

n

||h||2
I2

)

H
H (9)

Note that CSOS is diagonal when the two transmitted signals

have the same power, E[|s1|
2] = E[|s2]

2] = σ2
s , and the

system is not identifiable using an eigenvalue decomposition.

We will consider now that the transmitted signals have

different power,

E[|s2|
2] = γ2E[|s1|

2] = γ2 σ2
s , γ2 6= 1 (10)

where σ2
s = E[|s1|

2] is the power associated to the s1 symbols.

In this case, it is straightforward to obtain

CSOS = σ2
s H ∆SOS H

H (11)

where

∆SOS =

[

1 + σ2
h

0
0 γ2 + σ2

h

]

(12)

where σ2
h

=
σ

2

n

σ2
s
||h||2 . As a result, the matrix H is identifiable

if the transmitter adapts the signal power in order to guarantee

(10). The proposed approach can be used only when H is an

orthogonal matrix, as occurs in Alamouti’s coding scheme.

B. HOS-based approach

In [7], Beres and Adve have presented a method to identify

the channel matrix by computing the eigenvectors of the

fourth-order cross-cumulants of the observations vector given

by

C
[k]
HOS

= c4(x,x∗, xk, x∗
k) (13)

=

[

c4(x1, x
∗
1, xk, x∗

k
) c4(x1, x

∗
2, xk, x∗

k
)

c4(x2, x
∗
1, xk, x∗

k
) c4(x2, x

∗
2, xk, x∗

k
)

]

where k = 1, 2 denotes the time-slot and

c4(x1, x2, x3, x4) = E[x1x2x3x4] − E[x1x2]E[x3x4]

−E[x1x3]E[x2x4] − E[x1x4]E[x2x3] (14)

Assuming that s1 and s2 have the same kurtosis, ρ4 =
c4(s1, s

∗
1, s1, s

∗
1) = c4(s2, s

∗
2, s2, s

∗
2), in [7] it has been proved

that equation (13) can be written as

C
[k]
HOS

= ρ4H ∆k H
H (15)

where ∆k depend on the time-slot,

∆1 =

[

|h1|
2 0

0 |h2|
2

]

∆2 =

[

|h2|
2 0

0 |h1|
2

]

(16)

From equation (15) we conclude that the channel matrix H

can be identified by computing the eigenvectors of C
[1]
4 or C

[2]
4

when |h1| 6= |h2|. The simulation results reported in [7] show

that the channel must remain constant during a large number

of symbol periods to obtain an adequate estimation.

In order to improve the idea presented above, we propose

to compute the eigenvectors of the matrix

C
λ

HOS = C
[1]
4 + λ C

[2]
4 (17)

where λ is a real valued parameter. Using equation (15), it is

straightforward to obtain

C
λ

HOS = ρ4H ∆HOS H
H (18)

where

∆HOS =

[

|h1|
2 + λ|h2|

2 0
0 |h2|

2 + λ|h1|
2

]

(19)

Note that for λ = 1 the matrix C
λ=1
HOS

takes the form

C
λ=1
HOS = C

[1]
HOS

+ C
[2]
HOS

= ρ4 (|h1|
2 + |h2|

2) H H
H

= ρ4 ||h||2 I2 (20)
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As a consequence, the channel cannot be identified when λ =
1. On the contrary, when λ = −1, we obtain

C
λ=−1
HOS

= C
[1]
HOS

− C
[2]
HOS

= ρ4H

[

|h1|
2 − |h2|

2 0
0 |h2|

2 − |h1|
2

]

H
H

= ρ4(|h1|
2 − |h2|

2)H

[

1 0
0 −1

]

H
H (21)

In this case, the channel matrix corresponds to the eigenvectors

of C
λ=−1
HOS

. Again, this modification fails if |h1| = |h2|.

We note that using C
λ

HOS
instead of C

[k]
HOS

increases

the complexity of the algorithm. However, simulation results

show that the performance of the estimation is significantly

improved.

V. SIMULATION RESULTS

This section presents the results of several computer simula-

tions carried out to verify the estimation algorithms proposed

in Section IV. The experiments have been performed by

using QPSK signals and flat fading channels. We consider the

Rayleigh-distributed randomly generated channel and additive

white Gaussian noise. We assume block fading, i.e., the chan-

nel remains constant during the transmission of a block of K
symbols. The statistics in (8) and (13) have been calculated for

each block by sample averaging over the block symbols. The

performance has been measured in terms of the Symbol Error

Rate (SER). For comparison purposes we also present the SER

obtained with Perfect Channel Side Information (Perfect CSI).

In the first computer experiment, two QPSK signals have

been transmitted in blocks of K = 100 and K = 500 symbols.

The energy of the signal s2 has been adapted according to

(10) with γ2 = 0.3 and γ2 = 0.6. Figure 2 shows the SER

versus the SNR obtained by averaging the results over 100,000

different channel realizations. Note that the performance with
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Fig. 3. SER obtained with the SOS-based approach for QPSK signals varying
the parameter γ. The curves corresponds to SNR of 5, 10 and 20 dB. The
horizontal dashed lines represent the SER obtained with perfect CSI.

γ2 = 0.6 and K = 500 is closer to that obtained with Perfect

CSI.

We have also evaluated the performance of the SOS-

based approach for several values of γ. Figure 3 shows the

SER versus γ2 for SNR values of 5, 10 and 20 dB. The

autocorrelation matrix has been estimated with K = 500
symbols. This figure also plots the SER obtained with Perfect

CSI (horizontal dashed lines). It is apparent that the SOS-

based channel estimation approach fails for γ2 = 1 because

this case corresponds to signals with the same power. The

same occurs when γ2 = 0 which corresponds to the limiting

case where only s1 is transmitted. Note also that the best

performance is obtained with γ2 ≈ 0.6 which implies that

the power of s1 is approximately two times the power of s1,

i.e, E[|s2|
2] = γ2σ2

s ≈ σ2
s/2.

With these experiments we have evaluated the performance

in terms of averaged SER between s1 and s2. Figure 4

separately shows, for a SNR of 20 dB, the SER for s1, s2, the

mean SER and finally, the difference between the two SERs.

Obviously, SER of s1 is better than SER of s2 but we can see

that it is approximately between two and three times around

γ2 = 0.6. Note that it is important to choose an adequate

value of γ to have a good trade-off between mean SER and

the magnitude of decompensation for two signals. Figure 5

shows the SER for s1 and s2 for γ2 = 0.6 which is the value

that achieves lower mean error.

In order to validate the HOS-based method, two QPSK

signals with the same energy have been transmitted in blocks

of K = 500 and K = 5000 symbols. Figure 6 shows the

SER versus the SNR obtained for λ = 0 which corresponds

to the method proposed in [7] and for λ = −1. In this case, the

results have been obtained by averaging the SER obtained with

10,000 different channels. Note that the selection of λ = −1
improves the performance of the system.
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Figure 7 shows the dependence of SER versus λ for SNR

of 5, 10 and 20 dB SNR of 20 dB, and blocks of K = 5000
symbols. Note that the HOS are insufficient to estimate the

channel when λ = 1 because it corresponds to equation (20).

The best performance is achieved when λ ≈ −1.

Figure 8 compares the performance obtained with the two

approaches for blocks of 500 and 5000 symbols. The other

parameters have been: γ2 = 0.6 for the SOS-based approach

and λ = −1 for the HOS-based approach. From these results,

we conclude that the SOS-based approach needs less symbols

to achieve a good performance.

VI. CONCLUSIONS

This paper shows that the channel parameters of a multiple

antenna transmission system with Alamouti’s coding can be
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estimated by calculating the eigenvalue decomposition of a

square matrix formed by either second order statistics or

fourth-order cross-cumulants. The estimation is blind because

it is performed without the aid of training sequences. The SOS-

based approach consists of computing the eigenvectors of the

autocorrelation matrix of the observations. Since the channel

matrix is orthogonal, the eigenvectors directly correspond to

the channel matrix when the transmitted signals have different

power. In contrast, the system is not identifiable when both

signals have the same power because the autocorrelation

matrix is diagonal. Simulation results show that this approach

allows one to estimate the channel with a small number

of symbols (about 500 symbols for QPSK signals). As a
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Fig. 8. Comparison of SOS-approach and HOS-approach for QPSK signals
with 500 and 5000 symbols.

result, the computational cost is reduced and it is adequate

for flat-fading block channels. The other approach is based

on the algorithm proposed in [7]. The channel matrix is

determined by calculating the eigenvectors of an average of

fourth-order cross-cumulants matrices. Simulations show that

this approach presents a flooring effect for high SNR due to

higher finite-sample estimation errors in HOS. In addition, the

computational cost is considerably increased.
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