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ABSTRACT

We present a general theory for the closed-form para-
metric estimation of the unitary mixing matrix after pre-
whitening in the blind separation of two source signals from
two noiseless instantaneous linear mixtures. The proposed
methodology is based on the algebraic formalism of bicom-
plex numbers and is able to treat both real and complex val-
ued mixtures indiscriminately. Existing analytic methods
are found as particular cases of the exposed unifying for-
mulation. Simulations in a variety of separation scenarios
— even beyond the noiseless two-signal case — compare,
assess and validate the methods studied.

1. INTRODUCTION

The present contribution addresses the blind separation of
statistically independent source signals when instantaneous
linear mixtures of the sources are observed. Second-order
processing (pre-whitening) of the observed mixtures yields
normalized uncorrelated components. In the noiseless case
it is well known [1, 2, 3, 4] that the whitened sensor output
z ∈ Cr is related to the zero-mean unit-variance sources
x ∈ Cr through a unitary mixing transformationQ ∈ Cr×r:

z = Qx. (1)

The generalr > 2 environment can rely on the solution to
the elementaryr = 2 case by proceeding iteratively over the
signal pairs [2]. We may thus focus on the latter scenario, in
which the unitary transformation exhibits the general shape:

Q = Q(θ, α) =
[

cos θ −e−jα sin θ
ejα sin θ cos θ

]
. (2)

Blind source separation (BSS) then reduces to a paramet-
ric estimation problem, the unknown parameters being the
couple(θ, α).
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The parameterization of matrixQ offers certain benefits.
Closed-form (or analytic) expressions for the non-iterative
estimation of the parameters ofQ can be developed, based
on the higher-order statistics of the observed signals. The
main advantages of these closed-form estimators are their
simplicity and mathematical tractability. In addition, it is
usually possible to find further closed-form expressions that
accurately predict the asymptotic (large-sample) perform-
ance of these methods.

In the case real-valued mixtures are observed,α = nπ,
n ∈ Z (integers), and onlyθ is relevant to the source separ-
ation. Although apparently different closed-form solutions
are found departing from a variety of disparate criteria, con-
nections exist among them. Nulling the output 4th-order
cross-cumulants [1] offers a non-uniform performance with
the unknown parameter [5]. The approximate maximiza-
tion of the observation truncated likelihood produced the
analytic solution of [3] for sources with equal kurtosis, and
was later extended (extended maximum likelihood, EML)
to cater for a range of source distributions wider than origin-
ally designed [6]. Maximum likelihood reduces to a similar
expression [7] (alternative EML, AEML) when the sources
present opposite kurtosis values. In [8] another approximate
maximizer of the truncated log-likelihood was found (ap-
proximate ML, AML). Maximization of the sum of squared
output cumulants proves also fruitful at third (MaSSTOC)
and fourth (MaSSFOC) orders [9, 10]. Some of these res-
ults were unified in [11]: a fourth-order estimation family
(weighted estimator, WE) was developed from the linear
weighting of the EML and AEML, and shown to origin-
ate MaSSFOC and AML as well at particular values of the
weight coefficient.

By defining a new set of numbers (so-called bicomplex
numbers) in accordance with the structure of matrixQ, some
of these results were extended to complex-valued mixtures,
evidencing a remarkable connection between the real and
complex scenarios in the context of their analytical solu-
tions [12]. This paper elaborates on the bicomplex-number
theory to provide a generic framework for the analytic solu-
tions to BSS. A common notation is developed to tackle
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both the real and the complex cases indiscriminately, thus
allowing a unified derivation of closed-form estimators in
both domains.

In the sequel, the cumulants of complex vectorz =
(z1, . . . , zr) are defined as

Cumz
i1i2i3... = Cum[zi1 , z∗i2 , zi3 , . . . ], 1 6 ik 6 r,

(3)
symbol∗ denoting complex conjugation. The convention is
adopted, in the the two-component case, that

κz
n−p, p = Cumz

1...1︸︷︷︸
n−p

2...2︸︷︷︸
p

. (4)

2. SOLUTIONS IN REAL MIXTURES

The closed-form estimation of parameterθ in the real case is
facilitated through the so-called complex centroids. These
are complex-valued linear combinations of the whitened-
sensor cumulants with the property that their phase is dir-
ectly related to the parameter of interest. In fact, all the
methods for real mixtures referred to in the previous section
can be expressed in this form. The asymptotic variance of
each method is linked to the quality of the source waveform
recovery.

TheEML estimator is based on the 4th-centroid [6]:

ξ4 = (κz
40 − 6κz

22 + κz
04) + j4(κz

31 − κz
13) = γej4θ, (5)

whereγ = (κx
40 + κx

04) andj =
√
−1. The source kurtosis

sum (sks) can be estimated from the sensor output as

γ = κz
40 + 2κz

22 + κz
04. (6)

Therefore, ifγ 6= 0, angleθ may be determined as:

θ̂EML = 1
4∠(ξ4γ), (7)

in which ∠a represents the principal value of the argument
of a ∈ C.

AEML relies on [7]:

ξ2 = (κz
40 − κz

04) + j2(κz
31 + κz

13) = ηej2θ, (8)

with η = (κx
40 − κx

04). The value of the source kurtosis dif-
ference (skd) is not important (as long as it is different from
zero), since it can only introduce a±π/2-rad bias which
does not affect the source recovery.

AML andMaSSFOC, together with the two previous es-
timators, can all be derived from the weighted centroid [11]:

ξWE = wγξ4 + (1− w)ξ2
2 , w ∈ [0, 1]. (9)

Effectively, the AML is obtained forw = 1/3 whereas
MaSSFOC results fromw = 1/2. EML and AEML are de-
duced fromw = 1 andw = 0, respectively. The asymptotic

variance of the angle estimated from centroid (9) is given
by [11]:

σ2
WE =

E
{[

wγ(x3
1x2 − x1x

3
2) + (1− w)η(x3

1x2 + x1x
3
2)

]2}
T

[
wγ2 + (1− w)η2

]2 ,

(10)
whereT is the number of samples and E{·} denotes the
mathematical expectation. The value of the weight para-
meter yielding optimal finite-sample performance is also
obtained in [11].

The performance of EML and AEML deteriorates for
sks and skd near zero, respectively. This deterioration is
avoided by the WE with anyw ∈]0, 1[ [11]. It is some-
what striking to realize that other solutions based on op-
timality principles — such as AML (based on likelihood
maximization) and MaSSFOC (based on contrast-function
optimization) — originate from combinations of the EML
and AEML while preventing their shortcomings.

Third-order estimatorMaSSTOC[9] is derived from

ξ3 = (κz
30 − 3κz

12) + j(3κz
21 − κz

03) = γ3ej3θ, (11)

in whichγ3 = (κx
30 − jκx

03). In addition,

γ′3 = (κz
30 + κz

12)− j(κz
21 + κz

03) = γ3e−jθ. (12)

Hence,ξ3(γ′3)
∗ estimates|γ3|2ej4θ, from whichθ can easily

be determined when at least one of the sources is asymmet-
rically distributed. We calculate its asymptotic variance as:

σ2
MaSSTOC =

µx
40(µ

x
30)

2 + µx
04(µ

x
03)

2 − 2(µx
30µ

x
03)

2

T [(µx
30)2 + (µx

03)2]2
, (13)

with µx
mn = E{xm

1 xn
2}.

3. A GENERAL THEORY BASED ON
BICOMPLEX-NUMBER REPRESENTATION

The complex centroids are useful in estimating parameter
θ when real mixtures are observed. However, these repres-
entations cannot cope with complex-valued mixtures which
arise due to parameterα in matrix Q and/or to complex-
amplitude sources. To allow the complex mixture identific-
ation, a special class of numbers is introduced as follows.

3.1. Bicomplex Numbers

A bicomplex number̄x = a+jb, a, b ∈ C, is defined from

the first column of orthogonal matrixU =
[

a −b∗

b a∗

]
. Terms

a = Re(x̄) and b = Im(x̄) are thebreal and bimaginary
parts ofx̄, respectively, which are to be distinguished from
the commonplace real [<(a) ∈ R] and imaginary [=(a) ∈
R] parts ofa ∈ C. Symbolj is namedbimaginary unit.
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The product of two bicomplex numbers̄x1 = a1 + jb1

and x̄2 = a2 + jb2 is defined by taking into account the
first column of the product of the corresponding orthogonal
matrices:

x̄1x̄2 = (a1a2 − b∗1b2) + j(b1a2 + a∗1b2). (14)

In this manner an isomorphism is created between the set of
orthogonal matrices under usual matrix product and the set
of bicomplex numbers under the above product operation.

A bicomplex number is formed by a pair of complex
quantities. Also, note thatj2 = j2 = −1. However, it
must be stressed thatj and j represent distinct algebraic
elements. In particular,r + ji 6= r + ji, with r, i ∈ R. The
first number is actually(r + ji) + j0, whereas the second
can be written as(r + j0) + j(i + j0). As far as BSS is
concerned, both are essentially different. In the former case
the associated orthogonal matrix is always non-mixing, but
in the latter case it would generally not be so. Hence,a ∈ C
is uniquely represented by the breal part ofx̄ = a + j0.

The bicomplex number associated with a unitary trans-
formation like (2) is called bicomplex exponential:

ejθ
α = cos θ + jejαsin θ, (15)

Remark that the bicomplex product is generally non-
commutative:̄x1x̄2 6= x̄2x̄1. For instance,

jejθ
−α = ejθ

α j. (16)

Similarly, the product of a complex and a bicomplex num-
ber does not commute, but the product of a real and a bicom-
plex number always does.

The existing isomorphism between bicomplex numbers
and(2×2) orthogonal matrices enables the straightforward
definition of operators such as conjugation and modulus:

x̄∗ = Re(x̄)∗ − jIm(x̄) (17)

|x̄| = (x̄x̄∗)
1
2 = (x̄∗x̄)

1
2 =

(
|Re(x̄)|2 + |Im(x̄)|2

) 1
2 .
(18)

3.2. A Family of Bicomplex Centroids

Bicomplex centroids can be defined as particular bicom-
plex weighted sums of the whitened vector (perhaps com-
plex) statistics. These linear combinations are such that
their ‘phase’ is a function of the unknown parameters.

Theorem 1. Let ξ̄z
n,m be the following bicomplex weighted

sum of pairwiseβth-order cumulants of the components of
z, withn, m ∈ N (non-negative integers) andβ = n+2m:

ξ̄z
n,m ,

n∑
p=0

(
n

p

)
[(−1)mj]p

m∑
q=0

(
m

q

)
κz

β−(p+2q), p+2q.

(19)

If z = Q(θ, α)x, with x made up of independent compon-
ents, then:

ξ̄z
n,m = ej(−1)mnθ

(−1)n−1α ξ̄x
n,m (20)

where, according to(19),

ξ̄x
n,m = κx

β,0 + [(−1)mj]nκx
0,β . (21)

Sketch of the proof. The proof is essentially based on the
multilinearity property of cumulants [13], the source statist-
ical independence assumption, the unitary nature of matrix
Q, trigonometric identities and certain algebraic simplifica-
tions. The fact that bicomplex product is non-commutative
must also be borne in mind [e.g., eqn. (16)]. �

The above result is not practical by itself, since by defin-
ition the source cumulants are unknown in a blind situation.
Nevertheless, the following corollary surmounts the lack of
knowledge on the source statistics in many cases.

Corollary 2. Let

Ξ̄z
n,m,k = ξ̄z

n,m(ξ̄z
n−2k,m+k)∗, (22)

with k ∈ N, such that(n−2k) > 0. If [k(n+1)] mod 2 = 0
then:

Ξ̄z
n,m,k = |ξ̄x

n,m|2e
j(−1)mδθ
(−1)n−1α (23)

whereδ = n− (−1)k(n− 2k).

Proof. When(−1)k(n+1) = 1, source centroid̄ξx
n−2k,m+k

equalsξ̄x
n,m, so from eqns. (17)–(18) and (22), result (23)

follows. �

3.3. Blind Parameter Estimation

3.3.1. General result

With the conditions of Corollary 2, and if at least one of
the sourceβth-order marginal cumulants is different from
zero, the unknown parameters can be estimated from the
whitened-vector statistics via:

θ̂ = (−1)mδ−1∠
(
Re(Ξ̄z

n,m,k) + j
∣∣Im(Ξ̄z

n,m,k)
∣∣) (24a)

α̂ = (−1)n−1∠ Im(Ξ̄z
n,m,k). (24b)

3.3.2. Identifiability constraints

The values ofδ producing a valid source separation are lim-
ited. The source waveforms are preserved when solutions
(θ̂, α̂) are of the form:

(θ̂, α̂) =
(
(−1)uθ + vπ

2 , α + uπ
)
, u, v ∈ Z. (25)

In particular, only phase shifts integer multiples ofπ/2 are
permitted in the estimation ofθ. Sinceejδ(θ+2πv/δ)

ω = ejδθ
ω ,

∀ω ∈ R, coefficientδ must be restricted to the set{2, 4}.
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On the one hand,δ = 2 is generated fromn = 2 and
k = 1, with cumulant ordersβ = 4, 6, 8, . . . . On the
other hand,δ = 4 is generated fromk = 1, n = 3 (β =
3, 5, 7, . . . ) andk = 2, ∀n > 4 (β > 4).

As in the WE, centroids at different cumulant orders can
be combined in a bid to increase the estimation accuracy
and the robustness against noise or impulsive interference
[8, 11].

3.3.3. Particular cases

Some particular cases of the triplet(n, m, k) are contem-
plated below.

Case(4, 0, 2):

ξ̄z
4,0 = (κz

40 − 6κz
22 + κz

04) + j4(κz
31 − κz

13)
ξ̄z
0,2 = κz

40 + 2κz
22 + κz

04

Ξ̄z
4,0,2 = γ2ej4θ

−α .

(26)

These equations correspond to the EML estimator (5)–(7),
which is hence naturally extended to the complex-mixture
domain [11].

Case(2, 1, 0) requires anad hocsubtle re-definition of̄Ξz:

ξ̄z
2,1 = (κz

40 − κz
04)− j2(κz

31 + κz
13)

Ξ̄z
2,1,0 , (ξ̄z

2,1
∗)2 = η2ej4θ

−α

(27)

which extends the AEML centroid (8) [11].

Cases(4, 0, 2) and(2, 1, 0) can also be combined as in the
WE (9), giving rise to the hybrid centroid:

Ξ̄z
WE = w Ξ̄z

4,0,2 + (1− w) Ξ̄z
2,1,0, 0 6 w 6 1, (28)

which estimates[wγ2 +(1−w)η2]ej4θ
−α . As in the real case,

for w ∈]0, 1[ the WE does not experience the performance
degradation of EML and AEML when the sks and the skd
tend to zero, respectively [11]. Atw = 1/3 andw = 1/2,
the corresponding methods become, resp., the complex ex-
tensions of the AML and MaSSFOC estimators.

Case(3, 0, 1):

ξ̄z
3,0 = (κz

30 − 3κz
12) + j(3κz

21 − κz
03)

ξ̄z
1,1 = (κz

30 + κz
12)− j(κz

21 + κz
03)

Ξ̄z
3,0,1 = |γ3|2ej4θ

α .
(29)

This is the generalized version of the MaSSTOC estimator
(11)–(12).

When real-valued mixtures are treated, eqns. (24) on the
above bicomplex centroids are tantamount to the argument
function on the corresponding complex centroids summar-
ized in Section 2. Consequently, the presented estimators
can be applied regardless of the mixture type.
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Fig. 1. ISR vs. sample size. Binary–Rayleigh sources,θ = 30o, ν
independent MC runs, withνT = 5 × 106. Solid lines: average
empirical values. Dashed lines: asymptotic variances (10) (WE)
and (13) (MaSSTOC).

4. EXPERIMENTAL RESULTS

A number of computer experiments illustrate the above the-
oretical results and evaluate the proposed methods in a vari-
ety of scenarios. Closed-form separations are obtained with
the bicomplex-centroid formalism developed in Section 3
without taking into account the type of mixture (real or com-
plex) being observed. For the sake of comparison, a well
established BSS procedure not based on closed-form estim-
ation, JADE [14], is also considered.

Fitness of asymptotic analysis
The first experiment tests the theoretical asymptotic res-

ults of Section 2. Source realizations are composed of i.i.d.
samples drawn from (symmetric) binary and Rayleigh dis-
tributions. The performance of separations carried out on
real-valued orthogonal mixtures is averaged over several in-
dependent Monte Carlo (MC) runs. The interference to sig-
nal ratio (ISR) [4] is used as an objective performance index.
In the real case, the ISR approximates the estimated-angle
variance forθ̂ near effective separation solutions. Fig. 1
shows that the WE asymptotic variance (10) accurately ap-
proximates the empirical outcomes for the tested values of
the weight coefficientw, even for relatively short data re-
cords. MaSSTOC asymptotic variance (13) appears slightly
pessimistic. In this simulation, both the optimal WE (wopt =
0.6319) [11] and MaSSFOC outperform JADE; in fact, the
optimal WE is about 5 times as efficient [15] as JADE.

Performance variation with angular parameters
The influence of the actual values of the unitary-mixing

parameters is assessed next. First, the source effect on the
observed complex cumulants is neutralized by considering
sources with real-valued uniform and exponential distribu-
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Fig. 2. ISR vs. unitary mixing matrix parameters. Uniform–
exponential sources,T = 5 × 103 samples,200 MC runs. Solid,
dashed and dash-dotted lines:α = 0o, 45o, 90o (resp.). Dotted
lines: theoretical variances (10) (EML) and (13) (MaSSTOC).

tion. At each(θ, α) value, separations are obtained from the
corresponding mixtures of a fixed (but otherwise randomly
selected) set of source realizations. Fig. 2 shows the average
ISR curves for EML, MaSSTOC and JADE as a function of
θ, for three different values ofα. EML performance suffers
considerable variations withθ whenα 6= 0. Variations are
less severe for MaSSTOC, whose performance is flat and
improves JADE by about 4 dB in mostθ-range, but worsens
nearθ = ±45o for α 6= 0. AEML results (not shown for
clarity) lie just below JADE’s in this example, and do not
depend on the parameters of the unitary mixing matrix.

Fig. 3 presents analogous results with complex-valued
sources (4-QAM signals with normalized kurtosis−1 and
2). Again, AEML’s performance is uniform over(θ, α).
EML and MaSSTOC show a more regular behaviour than
in the previous simulation, although their performance de-
teriorates aroundθ = ±45o.

The performance degradation experienced by EML and
MaSSTOC may stem from the fact thatIm(ej4θ

−α ) = 0 when
θ = vπ/4, v ∈ Z, which hinders the estimation ofα from
their respective centroids [eqns. (26) and (29)] at such val-
ues ofθ. As pointed out in [11, Sec. 3.3], the estimation of
α is immaterial forv even. Forv odd, however, inaccurate
estimates ofα do have an impact on the separation quality.

More than two sources in noise
Finally, the methods’ performance is evaluated when

more than two mixtures of more than two sources are ob-
served in the presence of noise. To deal with this gen-
eral scenario, the pairwise approach of [2] is adopted: ana-
lytic two-signal estimators are applied over the whitened
component pairs successively, over a number of sweeps.
Complex-valued mixing matrix entries are made up of in-
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Fig. 3. ISR vs. unitary mixing matrix parameters. 4-QAM sources
with kurtosis(−1, 2), T = 5×103 samples,200 MC runs. Solid,
dashed and dotted lines:α = 0o, 45o, 90o (resp.).

dependent real and imaginary parts uniformly distributed in
the interval[−1, 1]. The signal-to-noise ratio (SNR), that
we define as the power due to sources over the power due to
noise for a given observed signal, is chosen to be equal at all
sensors. Pre-whitening is achieved via the singular value de-
composition of the observation sample matrix. Fig. 4 shows
average ISR results for three observed mixtures of three 4-
QAM sources with normalized kurtosis values(−1, 1, 1)
embedded in additive noise with complex Gaussian distri-
bution. Even though the analytic estimators were developed
in the noiseless two-signal BSS scenario, they also prove
successful in separating more than two sources in noise.
Only EML and AEML fail even at positive SNR because
source pairs with zero sks or skd exist. The weighted es-
timators (AML, MaSSFOC) and MaSSTOC follow closely
JADE’s trend. MaSSTOC even improves JADE in the low
SNR range[−10, 0].

Similar comments hold in the experiment of Fig. 5, in
which impulsive interference is simulated by means of 4-
QAM noise signals with normalized kurtosis(3, 3, 3). In
this occasion AML, MaSSTOC and MaSSFOC remain even
closer to JADE. To start separating the sources effectively,
the methods need about 10 dB higher SNR than in the Gaus-
sian noise experiment, since the non-null higher-order stat-
istics of the interference now affect the higher-order stage
of the separation.

5. CONCLUSIONS

A novel formulation for the closed-form estimation of the
unitary mixing matrix parameters after the pre-whitening
stage in two-signal instantaneous linear BSS has been put
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Fig. 4. ISR vs. SNR. 4-QAM sources with kurtosis(−1, 1, 1),
complex Gaussian noise, mixing matrix elements with independ-
ent real and imaginary parts uniformly distributed in[−1, 1],
T = 5× 103 samples,103 MC runs.

forward. The approach emerges from the fusion of the no-
tion of centroid — a linear combination of the whitened-
vector higher-order cumulants retaining information about
the unknown parameters — and the algebraic formalism of
the bicomplex numbers — which are isomorphic to the mat-
rix set to be identified. The resulting estimators are applic-
able regardless of the mixture type, either real or complex
valued. The developed theory unifies the formulation of ex-
isting analytic methods (EML, AEML, AML, MaSSFOC,
WE, MaSSTOC) and accomplishes their natural extension
to the complex-mixture scenario, which is of relevance in
disciplines such as digital communications and seismic ex-
ploration. Simulations have shown that the estimators are
also useful in the presence of noise and, by operating pair-
wise, can successfully tackle the general BSS scenario of
more than two signals.

The observed non-uniform behaviour of EML and MaS-
STOC with the unknown parameters is not yet fully under-
stood, and deserves further investigation. The theoretical
performance analysis of the closed-form estimators in the
complex domain could shed some light on this issue.
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