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ABSTRACT 

 
We approach the problem of blind identification and 
equalization (BIE) of single-user digital communication 
channels from the perspective of blind source separation 
(BSS). A new BSS-based BIE algorithm is proposed in 
this paper and is compared with a subspace method as 
well as a normalized variant of the well-known constant 
modulus algorithm (NCMA). The equalization qualities of 
the three algorithms are assessed using channels with 
well-conditioned and ill-conditioned convolution matrices. 
It is found that the BSS-based algorithm outperforms the 
other algorithms except for short source data sequences.  
The subspace method, which inverts the estimated channel 
to obtain the equalizer, leads to poor results in the case of 
the ill-conditioned channel.  The simple NCMA suffers 
from slow convergence or misconvergence except for 
well-conditioned channels of low order. 
 

1. INTRODUCTION 
 
In digital communications, a number of propagation 
effects (such as multipath propagation in wireless 
environments or dispersion in optical fibre) cause 
distortion of the transmitted signal at the receiving end.  
Equalization techniques must be used to recover the 
original data from the distorted received signal.  
Traditionally, training sequences known by the receiver 
were employed to aid in the deconvolution process.  
However, operating ‘blindly’ makes a more efficient use 
of bandwidth resources, as no periodical transmission of a 
training sequence is required. 

Due to the cyclostationary nature of digital signals, 
when the received signal is fractionally sampled (in time 
and/or space) the blind channel identification and 
equalization (BIE) problem accepts a blind source 
separation (BSS) model of instantaneous linear mixtures 
[1].  The BSS approach proves specially attractive because 
source separation methods with the equivariance property  
[2] guarantee a robust blind equalization even in channels 
with deep notches and ill-conditioned convolution 

matrices. However, the inherent source scale and 
permutation indeterminacy in BSS precludes a successful 
blind identification of the channel.  

The present contribution proposes a simple post-
processing stage which allows blind equalization and 
channel estimation based on BSS techniques.  Through a 
number of computer simulations in a variety of channel 
conditions, the BSS approach is compared with the 
subspace method of [3]. Although these two methods 
process the received signal in sample blocks (batch 
processing), they are also compared to the widespread 
normalized constant modulus algorithm (NCMA) of [4], 
which operates in an adaptive (i.e., time recursive) 
fashion. All of the blind equalization methods investigated 
in this work use fractional sampling, which, theoretically 
and in the absence of noise, allows perfect signal 
reconstruction using a finite impulse response (FIR) 
equalizer filter [5].  

After developing the signal model in Section 2, the 
BSS-based approach is presented in Section 3. For the 
sake of completeness, the subspace method and the 
NCMA are briefly reviewed in Section 4.  Then, Section 5 
describes the simulation environment used in Section 6 to 
compare the performance of the three blind equalization 
methods. The results are discussed in Section 7, and 
conclusions are drawn in Section 8. 

Notations: Symbols (.)T and (.)H denote the transpose 
and Hermitian (conjugate-transpose) matrix operators, (.)* 

denotes complex conjugation, E[.] is the mathematical 
expectation, and δ(n) is Kronecker's delta function. 

 
 

2. PROBLEM STATEMENT AND SIGNAL MODEL 
 
Let x(k) be a sequence of non-Gaussian data symbols, 
which are assumed to be zero mean, independent and 
identically distributed (i.i.d.), with autocorrelation 
function Rx(n) = E[x(k)x*(k - n)] = δ(n).  The data 
sequence is transmitted at a known baud rate 1/T through 
a channel with impulse response h(n) spanning (M+1) 
data symbols.  
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Fig. 1 Blind equalizer in a digital communication system. 
 
We assume, without loss of generality, that a single sensor 
is oversampled by an integer factor of P. The received 
baseband signal is then given by u(n) = y(n) + v(n), 
where ∑= k kP-nhkxny )()()(  is the noise-free channel 

output and v(n) denotes the zero-mean additive sensor 
noise. 

The objective of blind channel identification is to 
estimate the channel impulse response h(n) from the only 
observation of the receiver output u(n).  Similarly, blind 
channel equalization is concerned with the estimation of 
the data sequence x(n) from u(n) by using an equalizer 
filter w(n), perhaps obtained from the inversion of a 
channel filter estimate if channel identification is 
previously carried out. The BIE system model is 
graphically depicted in Fig. 1. 

Consider an observation window of N samples, N 
being a multiple of the oversampling rate.  Denote u(i)(n) 
= u(nP + i), i = 0, 1, ..., P-1, with analogous notations for 
h(i)(n) and v(i)(n).  Stacking N/P consecutive values of the 
received signal in vector u(i)

n = [u(i)(n), ..., u(i)(n – N/P + 
1)]T , we have that 
 

u(i)
n = Hi xn + v(i)

n , 
 
in which xn = [x(n), ..., x(n - M – N/P + 1)]T, and Hi is the 
N/P x (M + N/P) Toeplitz convolution matrix associated 
with the filter [h(i)(0), ..., h(i)(M)]T . Then: 
 

un = H xn + vn   (1) 
 
where un = [u(0)

n
T, ... , u(P-1)

n
T]T (and similarly for v(n)), 

and H = [H0 
T, ..., HP-1 

T]T represents the N x (M + N/P) 
channel filtering matrix, which is assumed full column 
rank.  Sufficient conditions for H to be full column rank 
are given by the convolution matrix rank theorem [5]. 
 

3. BSS-BASED BLIND EQUALIZATION 
 

Eqn. (1) corresponds to the BSS model of instantaneous 
linear mixtures [6].  The i.i.d. source assumption makes 
the source components in eqn. (1) statistically 
independent.  Hence, BSS methods based on higher-order 
statistics (HOS) can be used to recover the source symbol 
vector xn [1].  However, the BSS problem presents an 

inherent indeterminacy related to the scale (phase) and 
ordering of the sources, which in a general separation 
scenario are usually unimportant.  By contrast, in the BIE 
model (1) the arrangement and scale of the recovered 
sources is crucial, for they may alter the time sequence of 
the data symbols as well as the temporal structure of the 
channel impulse response.  Hence, the solution obtained 
via BSS needs to be refined if it is to be useful in the BIE 
problem, specially for channel identification purposes. 

The following post-BSS stage overcomes the order 
and scale indeterminacies in the source vector 

nx ′ estimated via BSS to obtain an adequate estimate of 

the channel matrix Ĥ and its corresponding source 

symbol estimate nx̂ . 
1.Estimate the cross correlation between a 

reference element refx′  and all remaining 

elements ix ′ :

( ) ( ) ( )[ ]nnxER *
ix refix ,refx −′= ′′′ where 

)(nxi′ denotes the ith element of nx ′ at time n. 

2.Obtain the lag iˆ  with maximum absolute 

value of the cross correlation ( )R
ix ,refx ′′  

and obtain the value in~  of the cross 

correlation at lag iˆ . 

3.Multiply element ix′  by iñ ; divide the ith 

column of Ĥ  by in~ . 

4.Rearrange the elements of nx′ and the columns 

of Ĥ  according to descending order of î . 

 
Utilizing a signal-quality criterion based on the 

normalized kurtosis, the least noisy component among the 
estimated sources is chosen as a reference element. 
Considering real-valued signals, the normalized kurtosis ki 

of the estimated source i is defined as  

3
2x2E

4xE
k

ni

ni
i −





 ′





 ′

=
)(

)(
 

 
 

(2) 

In digital communications, source symbols usually have 
non-Gaussian (typically sub-Gaussian) distributions while 
the additive noise can often be assumed to be Gaussian. In 
these conditions, lower noise levels will produce higher 
absolute values of normalized kurtosis.  

In the simulations reported later in this paper we use 
the BSS method of [7] (see also [8]), which is an efficient 
approximate closed-form solution for the maximization of 
the sum of squared fourth-order cumulants (MaSSFOC) at 
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the separator output.  Note that this choice of BSS method 
is somewhat arbitrary, since we are primarily concerned 
with the application of BSS as a general strategy. 

 
4. SUBSPACE METHOD AND NCMA 

 
4.1. Subspace method 
 
The method presented in [3] exploits the orthogonality 
between the signal and noise subspaces of the observed 
vector (1) to estimate the coefficients of the channel 
impulse response up to a multiplicative constant.  The 
method uses second-order statistics (SOS) only, as 
opposed to HOS typically employed in BSS methods.  In 
the presence of noise, the subspace method was 
implemented using a quadratic least-squares cost function.  
By taking advantage of the channel Toeplitz structure, the 
optimization of this cost function was smartly reduced to a 
simple eigenvalue decomposition.  After identifying the 
channel, an FIR linear decorrelating (or zero-forcing) 
equalizer W was obtained from the pseudo-inverse of the 
estimated channel matrix: 
 

( ) ( ) H12
1P / NM

12H ,..,0diag SSW 







−−=

−
−+

−ˆ  

(3) 

where Ĥ  is the estimated channel filtering matrix, the 
columns of S contain the signal-subspace eigenvectors of 
the sensor autocorrelation matrix, i denote their 
associated eigenvalues and 2 represents the noise 
variance.  Note that in our notation N denotes the window 
size in samples, i.e., the product of the stacking level 
times the oversampling factor, as opposed to the stacking 
level of [3]. 
 
4.2. NCMA 
 
The constant modulus algorithm (CMA) sets the equalizer 
coefficients to minimize the envelope variation of the 
equalized signal. It was originally proposed in [4] and 
uses a stochastic gradient search to minimize the CM cost 
function.  Due to its simplicity and generally good 
equalization performance the CMA is widely used [6].  A 
normalized version (NCMA), presented in [9], is 
implemented for our comparison experiments. This 
normalized version obtains faster convergence and 
guarantees stability compared to the original algorithm in 
[4].  The filter coefficient update equation is given by: 
 

)(ˆ
)(̂

1
1

2
n*x

 nx 
n

n
n1n 





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
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−
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−=+

u
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(4) 

 

where nw  = [w0 , ... , wN-1]
T denotes the current and  

1n+w the updated equalizer filter vectors, nu = [u(n), ... , 
u(n-N+1)]T is the observed vector, )(̂nx  the equalizer 

output and  .  denotes the L-2 norm.  Parameter , 

typically set to a small value, is used to avoid very large 
step sizes which can result in increased noise at the 
equalizer output when the input signal u(n) has a low 
amplitude.  The window size N corresponds to the length 
of the filter vector w.  The equalizer output is obtained as: 
 

n
H

nnx uw=)(̂  (5) 

 
Due to the nature of its cost function, the CMA uses HOS 
implicitly.  
 

5. SIMULATION ENVIRONMENT 
 
Performance tests are carried out to compare the 
behaviour of the three blind equalization methods in a 
digital communications setting.  A binary phase shift 
keying (BPSK) signal x(n) is oversampled by a factor P=2 
(unless otherwise stated) and transmitted through the 
fractionally spaced channels as depicted in Fig. 2.  The 
source signal has an equal probability of the symbol 
states, is i.i.d. and has unit variance.  These signal 
characteristics fulfill the requirements of the blind 
equalization methods in [3] and [9], although the i.i.d. 
assumption is not strictly required in these two methods.  
Simulations are carried out with Ne = 120, 240, 500, 1000 
and 2500 observed symbol periods. Gaussian noise v(n) is 
added to the channel output y(n) to obtain the received 
signal u(n).  Perfect symbol timing recovery is assumed 
throughout. 

The equalized symbols )(̂nx  are first scaled and time 

shifted before they are compared with the true source 
symbols x(n).  The mean square error (MSE)  

 

( ) ( )












∑
=

−=
k

1n

2 nxnx  
k

1
10log 10dB MSE ˆ)(  

 
(6) 

 
is used as a performance criterion, where k denotes the 
number of equalized symbols.  In the case of the BSS-
based and the subspace methods the MSE is calculated 
from all available equalized symbols.  In the case of the 
NCMA, only the last 100 equalized symbols are used, 
before which convergence is expected to have taken place.  
Two different channels are considered. Both have deep 
notches and are non-minimum phase channels but one 
channel has an ill-conditioned convolution matrix while 
the other has a well-conditioned convolution matrix. 
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Fig. 2 Performance test setup. 
 
 Below results have been obtained by averaging 100 
Monte Carlo runs. 

The channels, which are of order 7, model a severe 
frequency-selective transmission medium.  The condition 
number of the associated convolution matrix H is 365 for 
the well-conditioned channel and 8886 for the ill-
conditioned channel at N = 20.  The condition number is 
defined as the ratio of the largest singular value to the 
smallest singular value of H. The channels have the 
fractionally spaced impulse responses (P = 2): 
 
h1 = [0.1500  0.3679  0.0611  0.3413  -0.0170  0.3066  
-0.0322  0.3372  -0.0414  0.5448  0.2078  0.1967  0.0659  
0.0690   0.0379  0.0213]  
h2 = [0.1500  0.3679  0.0611  0.0180  -0.0170  0.5438   
-0.0322  0.0544  -0.0414  0.4623  0.2078  0.1722  0.0659  
0.0535   0.0379  0.0224]  

 
where h1 and h2 are the well-conditioned and the ill-
conditioned channel impulse responses, respectively.  

The signal-to-noise ratio (SNR) is defined as 
 

[ ]
[ ]2

2

10
nvE

nyE
log 10dB SNR

)(

)(
)( =  

 
(7) 

 
A common requirement of the three blind 

equalization methods is that the channel convolution 
matrix H be full column rank.  This condition is fulfilled 
for the window sizes shown in Table 1. 

 
Table 1 Window sizes used for simulations. 

Algorithm Window size, N 
 NCMA  10 
 Subspace method  20 
 BSS-based method  20 

 
 

6. SIMULATION RESULTS 
 
6.1. Well-conditioned channel 
 
Fig. 3 shows the MSE obtained with the well-conditioned 
channel as a function of the number of observed symbol  
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Fig. 3 MSE vs. Ne, SNR = 25 dB. 
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Fig. 4 MSE vs. SNR, Ne = 1000. 

 
periods, Ne. The subspace method obtains similar results 
as the BSS-based method at a low number of symbols, 
while the BSS-based method  improves with  longer  data 
sequences due to the exploitation of HOS, which require 
more data for accurate estimation than SOS.  The NCMA 
performance improvement with increasing number of 
symbols is slower than that of the other algorithms. 

Fig. 4 shows the MSE as a function of the SNR.  It 
can be observed that at low SNR values the BSS-based 
method still obtains the lowest MSE.  The MSE of the 
NCMA is nearly 3dB at SNR = 15dB.  This upper limit is 
reached when convergence, and thus equalization, fails.  
 
6.2. Ill-conditioned channel 
 
Fig. 5 shows that all algorithms perform worse compared 
to the well-conditioned channel.  The worse performance 
of the subspace and BSS methods can be explained with 

P 

BPSK 
Source 

Channel 
h(n) 

Equal. 
w(n) 
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Fig. 5 MSE vs. Ne, SNR = 25 dB. 
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Fig. 6 MSE vs. SNR, Ne = 1000. 

 
the higher condition number of the channel convolution 
matrix H. The subspace method uses inversion of the 
channel estimate, which is more sensitive to estimation 
errors for higher condition numbers of H.  Although the 
BSS method does not use matrix inversion to estimate the 
source symbols, the higher condition number of H - which 
is in fact the mixing matrix in the BSS setting - leads to a 
worse source separation quality due to the presence of 
noise.  In effect, the uniform performance property of 
equivariant BSS techniques is only expected to hold 
strictly in the noiseless case [2].  Still, the BSS-based 
method obtains a lower MSE than the subspace method.  
It can be seen that the equalization with the NCMA failed.  
However, it was observed that the NCMA performed 
reasonably well when the equalizer filter of the NCMA 
was initialised close to an optimum setting. 

Fig. 6 shows the MSE as a function of the SNR.  The 
MSE of the subspace method and the BSS-based method 

are nearly independent of the SNR value.  Equalization 
with the NCMA fails even at high SNR values. 
 
6.3. Further simulations 
 
Simulations were also carried out with a channel of order 
3 without deep notches.  The window size of the NCMA 
was N = 4 in this case while the other window sizes were 
as defined in Table 1.  The results showed that the MSE of 
the subspace method was about 5 dB lower in all 
simulations while the MSE of the BSS-based method was 
roughly the same.  This highlights the fact that the BSS- 
based algorithm is robust with respect to the structure of 
the channel convolution matrix H.  The NCMA obtained a 
faster convergence compared to the well-conditioned 
channel and obtained the lowest MSE for long data 
sequences. 

Next, the oversampling factor was doubled.  The 
window size of the NCMA was N = 8, while the window 
sizes of the subspace method and the BSS-based method 
were N = 40.  It was found that with P = 4 the subspace 
and the BSS-based methods obtained similar results as 
with P = 2 at half the number of observed symbol periods.  
The NCMA obtained about a 12 dB lower MSE for short 
data sequences. 
 
6.4. Computational requirements 
 
The computational cost of the equalization methods was 
compared by counting the number of floating point 
operations (flops).  The results were obtained under the 
following conditions: well-conditioned channel, Ne = 
1000 symbol periods and SNR = 25 dB. 

 
Table 2 Computational requirements. 

Algorithm Flops (x106) 
 NCMA  0.1 
 Subspace method  4.7 
 BSS-based method  22.9 

 
It can be seen in Table 2 that the BSS method, which 
performed best in all simulations, had the highest 
computational requirements.  For the algorithms analyzed 
in this work, it emerges that the computational 
requirements are linked to their performance: the higher 
the computational requirements, the better the 
performance. 
 

7. DISCUSSION 
 

The simulation results show the superiority of the BSS-
based equalization algorithm in most situations, except for 
very short data sequences.  The performance breakdown at 
short sample size is due to the larger amounts of data 
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required to obtain accurate HOS estimates.  It is observed 
that the BSS-based method achieves the best equalization 
for most simulated SNR ratios, which is certainly related 
to the robustness of HOS to Gaussian noise.  The BSS 
method obtains the same equalization quality for channels 
with and without deep notches as long as they are well-
conditioned.  This is in line with the theory: the 
performance of equivariant BSS methods is independent, 
at least in the noiseless case, of the structure of the mixing 
matrix, which corresponds to the channel convolution 
matrix in the BIE problem. However, the good 
performance of the BSS method comes at the expense of 
higher computational requirements. 

The subspace method performs worse than the BSS 
method except at very short data sequences. Since in the 
subspace method the estimated channel convolution 
matrix is inverted to obtain the equalizer, it is expected to 
perform worse with the ill-conditioned channel than the 
BSS-based method, which directly estimates the source 
symbols.  The use of SOS in the subspace method leads to 
lower MSE values for short sample length compared to 
the BSS method.  The performance worsens in the case of 
channels with deep notches, as relatively long FIR filters 
are necessary to equalize such channels.  The use of 
channel inversion can lead to worse equalization than 
obtained via BSS and in some cases also worse than that 
of NCMA. Yet, the method achieves reasonable 
equalization when the channel is well-conditioned. 

The NCMA performs well only with the channel of 
order 3.  In all other cases either the convergence rate is 
very low (well-conditioned channel) or the algorithm does 
not converge at all (ill-conditioned channel) due to an 
unsuitable equalizer filter initialization.  However, the 
advantage of the NCMA is its simple implementation and 
low computational requirements.  

Interestingly, doubling the oversampling factor 
improves the performance of all investigated methods. 

 
8. CONCLUSIONS 

 
This paper has addressed the problem of blind 
identification and equalization of digital communication 
channels.  We have put forward a simple postprocessing 
stage which enables channel identification from the 
application of a BSS method.  This technique has been 
compared, through a variety of simulations, with two 
other blind equalization algorithms, namely, the subspace 
method and the NCMA. 

In most cases the BSS-based approach has been found 
to outperform the other methods.  The most attractive 
benefit of the BSS approach is its robustness to ill-

conditioned channels, at least in high SNR scenarios.  The 
subspace method proves suitable in rapidly changing 
environments, such as fast fading wireless channels. The 
BSS-based method, however, requires longer data 
sequences to obtain good equalization due to the use of 
HOS, which also entails an increased computational 
burden.  The NCMA suffers from slow convergence 
except for short equalizer filters, which can only be used 
in low-order channels.  Thus, the NCMA is suitable in 
stationary channels where the slow convergence rate does 
not pose a problem and when convergence can be 
guaranteed. 
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