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Abstract. FastICA is arguably one of the most widespread methods for
independent component analysis. We focus on its deflation-based imple-
mentation, where the independent components are extracted one after
another. The present contribution evaluates the method’s speed in terms
of the overall computational complexity required to reach a given source
extraction performance. FastICA is compared with a simple modification
referred to as RobustICA, which merely consists of performing exact line
search optimization of the kurtosis-based contrast function. Numerical
results illustrate the speed limitations of FastICA.

1 Introduction

Independent component analysis (ICA) aims at decomposing an observed random
vector into statistically independent variables [1]. Among its numerous applica-
tions, ICA is the most natural tool for blind source separation (BSS) in instan-
taneous linear mixtures when the source signals are assumed to be independent.
Under certain identifiability conditions, the independent components correspond
to the sources up to admissible scale and permutation indeterminacies [1].

Two main approaches to ICA have been proposed to date. In the original defi-
nition of ICA carried out in early works such as [1] and [2], the independent com-
ponents are extracted jointly or simultaneously, an approach sometimes called
symmetric. On the other hand, the deflation approach estimates the sources one
after another [3], and has also been shown to work successfully to separate con-
volutive mixtures [4]. Due to error accumulation throughout successive deflation
stages, it is generally acknowledged that joint algorithms outperform deflation-
ary algorithms without necessarily incurring an excessive computational cost.

The FastICA algorithm [5], [6], [7], originally put forward in deflation mode,
appeared when many other ICA methods had already been proposed, such as
COM2 [1], JADE [2], COM1 [8], or the deflation methods by Tugnait [4] or
Delfosse-Loubaton [3]. A thorough comparative study was carried out in [9],
where FastICA is found to fail for weak or highly spatially correlated sources.
More recently, its convergence has been shown to slow down or even fail in the
presence of saddle points, particularly for short block sizes [10].

The objective of the present contribution is to carry out a brief critical review
and experimental assessment of the deflationary kurtosis-based FastICA algo-
rithm. In particular, we aim at evaluating objectively the algorithms’ speed and
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efficiency. For the sake of fairness, FastICA is not compared to joint extraction
algorithms [1], [2], [3] but only to a simple modification called RobustICA, pos-
sibly the simplest deflation algorithm that can be thought of under the same
general conditions.

2 Signal Model

The observed random vector x ∈ CL is assumed to be generated from the in-
stantaneous linear mixing model:

x = Hs + n (1)

where the source vector s = [s1, s2, . . . , sK ]T ∈ CK is made of K ≤ L unknown
mutually independent components. The elements of mixing matrix H ∈ CL×K

are also unknown, and so is the noise vector n, which is only assumed to be
independent of the sources. Our focus is on block implementations, which, con-
trary to common belief, are not necessarily more costly than adaptive (recursive,
on-line, sample-by-sample) algorithms, and are able to use more effectively the
information contained in the observed signal block. Given a sensor-output sig-
nal block composed of T samples, ICA aims at estimating the corresponding
T -sample realization of the source vector.

3 FastICA Revisited

3.1 Optimality Criteria

In the deflation approach, an extracting vector w is sought so that the estimate

z
def= wHx (2)

maximizes some optimality criterion or contrast function, and is hence expected
to be a component independent from the others. A widely used contrast is the
normalized kurtosis, which can be expressed as:

K(w) =
E{|z|4} − 2E2{|z|2} − |E{z2}|2

E2{|z|2} . (3)

This criterion is easily seen to be insensitive to scale, i.e., K(λw) = K(w),
∀λ �= 0. Since this scale indeterminacy is typically unimportant, we can impose,
without loss of generality, the normalization ‖w‖ = 1 for numerical convenience.
The kurtosis maximization (KM) criterion started to receive attention with the
pioneering work of Donoho [11] and Shalvi-Weinstein [12] on blind equalization,
and was later employed for source separation even in the convolutive-mixture
case [4]. Contrast (3) is quite general in that it does not require the observations
to be prewhitened and can be applied to real- or complex-valued sources without
any modification.
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To simplify the source extraction, the kurtosis-based FastICA algorithm [5],
[6], [7] first applies a prewhitening operation resulting in transformed observa-
tions with an identity covariance matrix, Rx

def= E{xxH} = I. In the real-valued
case, contrast (3) then becomes equivalent to the fourth-order moment criterion:

M(w) = E{|z|4}, (4)

which must be optimized under a constraint, e.g., ‖w‖ = 1, to avoid arbitrar-
ily large values of z. Under the same constraint, criteria (3) and (4) are also
equivalent if the sources are complex-valued but second-order circular, i.e., the
non-circular second-moment matrix Cx

def= E{xxT} is null. Consequently, con-
trast (4) is less general than criterion (3) in that it requires the observations to
be prewhitened and the sources to be real-valued, or complex-valued but circu-
lar. Indeed, the extension of the FastICA algorithm to complex signals [13], [14]
is only valid for second-order circular sources. In the remainder, we shall restrict
our attention to sources fulfilling these requirements.

3.2 Contrast Optimization

Under the constraint ‖w‖ = 1, the stationary points of M(w) are obtained as a
collinearity condition on E{xzz∗2}:

E
{
|wHx|2xxH}

w = λw (5)

where λ is a Lagrangian multiplier. As opposed to the claims of [5], eqn. (5) is
a fixed-point equation only if λ is known, which is not the case here; λ must
be determined so as to satisfy the constraint, and thus it depends on w0, the
optimal value of w: λ = M(|w0

Hx|4}.
For the sake of simplicity, λ is arbitrarily set to a deterministic fixed value

[5], [7], so that FastICA becomes an approximate standard Newton algorithm,
as eventually pointed out in [6]. In the real-valued case, the Hessian matrix of
M(w) is approximated as

E{(wTxxTw)xxT} ≈ E{wTxxTw}E{xxT} = wTw = I (6)

As a result, the kurtosis-based FastICA reduces to a gradient-descent algorithm
with a judiciously chosen fixed step size leading to cubic convergence:

w+ = w − 1
3

E{x(wTx)3} (7)

w+ ← w+/‖w+‖. (8)

This is a particular instance of the family of algorithms proposed in [4].

4 RobustICA

A simple quite natural modification of FastICA consists of performing exact line
search of the kurtosis contrast (3):

μopt = argmax
μ

K(w + μg). (9)
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The search direction g is typically (but not necessarily) the gradient: g =
∇wK(w). Exact line search is in general computationally intensive and presents
other limitations [15], which explains why, despite being a well-known optimiza-
tion method, it is very rarely used. However, for criteria that can be expressed
as rational functions of μ, such as the kurtosis, the constant modulus [16], [17]
and the constant power [18], [19] contrasts, the optimal step size μopt can easily
be determined by finding the roots of a low-degree polynomial.

At each iteration, optimal step-size (OS) optimization performs the following
steps:

S1) Compute OS polynomial coefficients.
For the kurtosis contrast, the OS polynomial is given by:

p(μ) =
4∑

k=0

akμk. (10)

The coefficients {ak}4
k=0 can easily can be obtained at each iteration from the

observed signal block and the current values of w and g (their expressions are
not reproduced here due to the lack of space; see [20] for details). Numerical
conditioning in the determination of μopt can be improved by normalizing the
gradient vector.

S2) Extract OS polynomial roots {μk}4
k=1.

The roots of the 4th-degree polynomial (quartic) can be found at practically
no cost using standard algebraic procedures known since the 16th century such
as Ferrari’s formula [15].

S3) Select the root leading to the absolute maximum:

μopt = arg max
k

K(w + μkg).

S4) Update w+ = w + μoptg.

S5) Normalize as in (8).

For sufficient sample size, the computational cost per iteration is (5L + 12)T
flops whereas that of FastICA’s iteration (7) is 2(L + 1)T flops. A flop is con-
ventionally defined as a real product followed by an addition.

To extract more than one independent component, the Gram-Schmidt-type
deflationary orthogonalization procedure proposed for FastICA [5], [6], [7] can
also be used in conjunction with RobustICA. After step S4, the updated ex-
tracting vector is constrained to lie in the orthogonal subspace of the extracting
vectors previously found.

5 Numerical Experiments

The experimental analysis of this section aims at evaluating objectively the speed
and efficiency of FastICA and RobustICA in several simulation conditions. The
influence of prewhitening on the methods’ performance is also assessed.
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Performance-complexity trade-off. Noiseless unitary random mixtures of K in-
dependent unit-power BPSK sources are observed at the output of an L = K
element array in signal blocks of T samples. The search for each extracting vec-
tor is initialized with the corresponding canonical basis vector, and is stopped
at a fixed number of iterations. The total cost of the extraction can then be
computed as the product of the number of iterations, the cost per iteration per
source (Sec. 4) and the number of sources. Prewhitening, if used, also adds to
the total cost. The complexity per source per sample is given by the total cost
divided by KT . As a measure of extraction quality, we employ the signal mean
square error (SMSE), a contrast-independent criterion defined as

SMSE =
1
K

K∑

k=1

E
{
|sk − ŝk|2

}
. (11)

The estimated sources are optimally scaled and permuted before evaluating the
SMSE. This performance index is averaged over 1000 independent random real-
izations of the sources and the mixing matrix. Extraction solutions are computed
directly from the observed unitary mixtures (methods labelled as ‘FastICA’ and
‘RobustICA’) and after a prewhitening stage based on the SVD of the observed
data matrix (‘pw+FastICA’, ‘pw+RobustICA’). The cost of the prewhitening
stage is of the order of 2K2T flops.

Fig. 1 summarizes the performance-complexity variation obtained for T = 150
samples and different values of the mixture size K. Clearly, the best fastest per-
formance is provided by RobustICA without prewhitening: a given performance

10
1

10
2

10
3

10
4

10
5

−25

−20

−15

−10

−5

0

complexity per source per sample (flops)

S
M

S
E

 (
dB

)

 

 

FastICA
pw+FastICA
RobustICA
pw+RobustICA

K = 5

K = 10

K = 20

Fig. 1. Average extraction quality against computational cost for different mixture
sizes K, with signal blocks of T = 150 samples
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Fig. 2. Average extraction quality against signal block size for unitary mixtures of K =
10 sources and a total complexity of 400 flops/source/sample: (a) without prewhitening,
(b) with prewhitening. ‘×’: SNR = 10 dB; ‘�’: SNR = 20 dB; ‘◦’: SNR = 40 dB

level is achieved with lower cost or, alternatively, an improved extraction qual-
ity is reached with a given complexity. The use of prewhitening worsens Ro-
bustICA’s performance-complexity trade-off and, due to the finite sample size,
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imposes the same SMSE bound for two methods. Using prewhitening, FastICA
improves considerably and becomes slightly faster than RobustICA.

Efficiency. We now evaluate the methods’ performance for a varying block sam-
ple size T . Extractions are obtained by limiting the number of iterations per
source, as explained above. To make the comparison meaningful, the overall com-
plexity is fixed at 400 flops/source/sample for all tested methods. Accordingly,
since RobustICA is more costly per iteration than FastICA, it performs fewer
iterations per source. Isotropic additive white real Gaussian noise is present at
the sensor output, with signal-to-noise ratio:

SNR =
trace(HHT)

σ2
nL

. (12)

Results for the minimum mean square error (MMSE) receiver are also obtained
by jointly estimating the separating vectors assuming that all transmitted sym-
bols are used for training. The MMSE can be considered as a performance bound
for linear extraction.

Fig. 2(a) shows the results without prewhitening for random unitary mixtures
of K = 10 sources and three different SNR values (10 dB, 20 dB and 40 dB). Ro-
bustICA attains the MMSE bound for block sizes of about 1000 samples for the
tested SNR levels; the required block size can be shown to decrease for smaller K.
FastICA seems to require longer block sizes, particularly for noisier conditions
at the given overall complexity. As shown in Fig. 2(b), the use of prewhitening
in the same experiment worsens the performance-complexity ratio of RobustICA
while improving that of FastICA, making both methods’ efficiency comparable.

6 Conclusions

The computational complexity required to reach a given source extraction qual-
ity is put forward as a natural objective measure of convergence speed for
BSS/ICA algorithms. The kurtosis-based FastICA method can be considered
as a gradient-based algorithm with constant step size. Its speed is shown to
depend heavily on prewhitening and sometimes on initialization. Without the
performance limitations imposed by the second-order preprocessing, a simple
algebraic line optimization of the more general kurtosis contrast proves com-
putationally faster and more efficient than FastICA even in scenarios favouring
this latter method. Although not demonstrated in this paper, RobustICA is also
more robust to initialization [20], and the optimal step-size technique it relies
on proves less sensitive to saddle points or local extrema [17], [19].
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