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ABSTRACT

The deflation approach to blind source extraction esti-
mates the source signals one by one. The contribution of
the latest source estimate is computed via linear regression
and subtracted from the observations before performing a
new extraction. In the context of digital communications,
novel alphabet-based contrast criteria can naturally be de-
fined, leading to the recently proposed parallel deflation
concept. We analyse the use of such criteria in the chal-
lenging scenario of underdetermined mixtures, where the
sources outnumber the sensors. Due to the limitations of
linear extraction, projection on the signal alphabet before
the regression-subtraction stage is shown to be capital for
a successful source estimation. It is also demonstrated that
alphabet-based criteria outperform the constant modulus
(CM) principle, even for CM-type sources. More interest-
ingly, classical deflation can improve on parallel deflation,
but requires a refinement to render its performance robust
to the extraction ordering.

Keywords: alphabet-based criteria, blind source separa-
tion, deflation, digital communications, MIMO transmis-
sion, underdetermined mixtures.

1 INTRODUCTION

The goal of blind source separation (BSS) is to recover
the unknown source signals from their observed mixtures.
The deflation approach to BSS consists of estimating the
source signals one after another. Originally proposed by
Delfosse-Loubaton [3] in the context of instantaneous lin-
ear mixtures, deflation was later applied with success by
Tugnait in the convolutive scenario [10]. After estimat-
ing a single source signal using a suitable cost or con-
trast function, its contribution to the sensor output is esti-
mated (via linear regression, for instance) and subtracted
from the observations. The process is then repeated un-
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til all sources have been extracted. In multiple-input
multiple-output (MIMO) digital communications, defla-
tion (or symbol cancellation) has also been employed by
the popular V-BLAST detection algorithm [5], which re-
quires an accurate channel matrix estimate and is thus
non-blind.

Despite its appealing simplicity, deflation presents two
main drawbacks. Firstly, estimation errors caused in each
extraction-deflation stage accumulate through successive
stages. As a result, the source estimation quality deteri-
orates progressively as more sources are obtained. Sec-
ondly, since a linear extractor is usually employed, the
maximum number of sources that can be separated is lim-
ited by the available spatial diversity, i.e., it is generally
impossible to extract more sources than sensors. This lim-
its the applicability of deflation in the interesting scenario
of underdetermined mixtures.

The discrete nature of digital modulation sources,
characterized by a finite number of symbols compos-
ing the signal alphabet or constellation, can help allevi-
ate these shortcomings. The present contribution anal-
yses and compares these alphabet-exploiting techniques
for deflation-based source extraction in underdetermined
mixtures. A simple modification improves the robustness
of classical deflation to the source extraction ordering, and
outperforms the recently proposed parallel deflation [8] in
estimating all sources with low error probability more of-
ten.

2 PROBLEM AND ASSUMPTIONS

A noisy mixturex = [x1, x2, . . . , xL]T ∈ CL of K un-
correlated sourcess = [s1, s2, . . . , sK ]T ∈ CK is ob-
served at the output of anL-sensor array, whereT denotes
transposition. In matrix form, the sensor output can be
expressed as:

x = Hs + n =
K∑

k=1

hksk + n (1)

whereH ∈ CL×K represents the unknown full-rank mix-
ing matrix with columns{hk}Kk=1, andn ∈ CL the addi-
tive noise, which is also unknown, uncorrelated with the
sources, and has covariance matrixσ2

nIL. Eqn. (1) mod-
els (but is not limited to) a flat-fading MIMO transmission
system. BSS aims at estimating the realizations of random



vectors from the observation of the corresponding realiza-
tions of the mixturex. To this end, we seek an extracting
vectorw ∈ CL so that the linear extractor output

y = wHx (2)

optimises some cost function or contrast criterion. Sym-
bol H represents the Hermitian (conjugate-transpose) op-
erator. After a source signal has been estimated in this
fashion, its contribution is computed and subtracted (can-
celled) from the observations, which then become ‘de-
flated’. The source estimation and deflation process is re-
peated until all signals have been extracted.

In the challenging underdetermined mixture scenario,
the number of sources is higher than the number of sen-
sors,K > L. In that case, it is generally not possible
to estimate all sources linearly, even in the absence of
noise, as the rows of the mixing matrix only span anL-
dimensional subspace ofCK . Similarly, linear extraction
severely limits the capabilities of conventional deflation,
as will be seen later, calling for the design of alternative
extraction and/or deflation criteria.

The novelty of the present approach lies in the ex-
ploitation of the discrete character of digital commu-
nication signals. In the sequel, it will be assumed
that the sources can be divided intoR different groups,∑R

r=1Kr = K, where groupr containsKr sources with
the same digital modulationAr. Each digital modula-
tion is characterized by its alphabet or constellationAr =
{ar,m}Mm=1, whose discrete symbols can be represented
by the roots of a polynomialψr(z) =

∏M
m=1(z − ar,m).

3 ALPHABET-BASED EXTRACTION

Under the signal model and assumptions of the previous
section, it follows that functional

Jr(y) = E{|ψr(y)|2}

is a contrast function for sources with alphabetAr under
rather general assumptions [2]. In particular, a constella-
tion may not be a subset of another. This criterion, origi-
nally proposed in [6], is known as alphabet polynomial fit-
ting (APF) and becomes the so-called constant power (CP)
criterion forM -PSK modulations [11]. The APF presents
the advantage of targeting a specific signal modulation, in
contrast to alternative criteria typically used in the sepa-
ration of digital communication sources such as the con-
stant modulus (CM) or the kurtosis maximisation (KM)
principles [4, 9]. As opposed to independence-based con-
trast criteria, the APF can separate spatially correlated and
spectrally coloured sources. To estimate a source signal of
given modulation, a simple yet efficient gradient-descent
procedure with optimal step size can drive a linear ex-
tractor in the search of the corresponding APF contrast-
function minima [11].

4 CLASSICAL DEFLATION

At the end of a successful iterative search (leading to the
optimisation of the corresponding contrast functionJr),
the extractor outputy contains an estimatês of a source

signals with alphabetAr. In regression-based classical
deflation, the contribution of the extracted source to the
observations is estimated as:

ĥ = arg min
h

E{‖x− hŝ‖2} ⇒ ĥ =
E{xŝ∗}
E{|ŝ|2}

(3)

symbol ∗ denoting complex conjugation, and then sub-
tracted to yield the deflated sensor output:

x ← x− ĥŝ. (4)

If a linear extractor is employed, as in eqn. (2), it is
easy to prove that the rank of the sensor-output covariance
matrix (related to the available spatial diversity) necessar-
ily decreases by one at each deflation step, regardless of
the achieved source estimation quality. As a result, only
L out of theK sources can at most be estimated by this
procedure. This fundamental limitation renders plain clas-
sical deflation inappropriate in the underdetermined case.

5 ALPHABET-BASED DEFLATION

5.1 Parallel Deflation

Estimation errors accumulate through successive stages in
classical deflation. Parallel deflation [8] tries to overcome
this limitation by exploiting the discrete nature of digital
sources and alphabet diversity, which arises whenR > 1.
Sources from alphabetAr are extracted using the corre-
sponding APF criterion. To minimise the impact of error
accumulation, the deflation process used for the sources
with a given modulation is carried out from the original
observations, that can be processed in parallel by the ap-
propriate APF contrasts. As a result, one such parallel
deflation processes ‘perceives’ a mixture ofKr sources
onL sensors, which should be easier to deal with than the
L mixtures ofK sources ‘seen’ by conventional deflation
over all sources. Nevertheless, the extraction of sources
from groupr may be severely hampered by the interfer-
ing sources from the other groups.

5.2 Projection on the Source Alphabet

As pointed out earlier, the linear estimate of a source sig-
nal reduces the rank of the deflated sensor-output covari-
ance matrix, making it impossible to extract all sources
in an underdetermined mixture. To circumvent this diffi-
culty, let us assume that the source has been perfectly es-
timated: ŝ = sk, for somek ∈ {1, . . . ,K}. Then, under
the source uncorrelation assumption, the deflation proce-
dure described by eqns. (3)–(4) would produceĥ = hk

and the new set of observationsx =
∑

p6=k hpsp +n; that
is, the interference caused by that source to the remain-
ing sources would be perfectly cancelled. Since the rank
of the deflated sensor-output covariance matrix would not
necessarily decrease, the rest of the sources might still be
extracted at later stages.

Obviously, it will generally be difficult to havês =
sk. A simple manner to try to obtain this perfect estimate
is by projecting the linear extractor output on the known
source constellation before deflation, as in the V-BLAST
detection algorithm [5]. This non-linear processing can
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be carried out cost-effectively by the minimum-distance
detector.

5.3 Optimal Ordering in Classical Deflation

Classical deflation reduces the remaining interference as
more sources are extracted. The amount of interference
reduction depends on the quality of the source estimate.
To minimise error accumulation, the ‘strongest’ or best
estimated sources should be extracted and deflated first.
The prior knowledge of the channel matrix simplifies the
optimal ordering in terms of the output signal-to-noise ra-
tion (SNR), as in the V-BLAST algorithm [5]. For the
blind scenario, we propose the following ordering method
which, for simplicity but without loss of generality, is de-
veloped forM -PSK modulations.

The symbol error probability in the detection of aM -
PSK signal contaminated by complex Gaussian noise can
be accurately approximated by [7]:

Pe = 2Q
(√

SNR sin
( π
M

))
, M > 2 (5)

whereQ(x) = 1√
2π

∫∞
x

e−t2/2dt. Now, given the set

{ŝp, ĥp,wp}Kp=1 provided by an initial deflation sweep,
the signal-to-interference-and-noise ratio (SINR) in the
estimation of sourcek can be computed as:

SINRk =
|wH

k ĥk|2∑
p6=k |wH

k ĥp|2 + σ̂2
n‖wk‖2

. (6)

The noise variance estimatêσ2
n can be obtained from the

sensor-output residual after all sources have been deflated.
To estimate the probability of errorPe in (5), the SNR
can be replaced with the SINR given above. Deflation
can then be repeated in ascending order ofPe or, equiva-
lently, descending order of

√
SINR sin(π/M). To target

a specific source while trying to alleviate the increased
computational cost, the linear extractor found in the origi-
nal deflation is used to initialise the iterative optimisation
of the corresponding alphabet-matched contrast function
(the CP criterion forM -PSK signals). The whole process
may be repeated until the ordering converges, or just for a
fixed number of deflation iterations.

6 EXPERIMENTAL STUDY

Influence of extraction criterion and alphabet projection.
An underdetermined instantaneous linear mixture of 4
sources with QPSK modulation is observed at the output
of a 3-sensor array in blocks of 150 data symbols. The
sensor output is corrupted by additive white complex cir-
cular Gaussian noise, with a varying spatially averaged
received SNR defined as in [5], which can be expressed
asSNR = trace(HHH)/(Lσ2

n). The mixing matrix el-
ements are randomly drawn from a normalised complex
Gaussian distribution at each of the 200 Monte Carlo iter-
ations. In the first experiment, two extraction criteria (CM
and CP) together with two deflation methods (classical de-
flation and classical deflation with projection), giving rise
to the methods labelled as CM-D, CM-P-D (projection on

|s| = 1), CP-D and CP-P-D (projection on the alphabet).
The search for the CM and the CP contrast function min-
ima is carried out with the optimal step-size technique of
[11]. ZF V-BLAST with perfect channel estimate is im-
plemented as in [5]. The linear MMSE detector and the
non-linear MAP detector serve as performance bounds.

Figure 1 (top) shows the symbol-error-rate (SER) av-
eraged over the 4 estimated sources. Figure 1(bottom)
displays the probability of extracting all 4 sources with
an SER below 10%. The CM-D and the CP-D, where
deflation is based on conventional linear regression, are
unable to extract the four sources satisfactorily. Likewise,
the MMSE extractor and V-BLAST are also severely lim-
ited by the lack of linear invertibility of the channel ma-
trix. Although the CM-P-D visibly improves on the CM-
D, the combination of alphabet projection and alphabet-
based extraction appears most effective. Indeed, the CP-
P-D approaches the MAP bound and, for sufficient SNR,
is able to extract all four sources at low SER with proba-
bility close to one.

Classical vs. parallel deflation. Influence of extraction
ordering. The second experiment simulates a mixture of
6 sources, three with BPSK and three with 3-PSK mod-
ulation, observed at the output of 4 sensors, in the same
general conditions as above and 150 Monte Carlo itera-
tions. Only CP-based extraction is considered: classical
deflation with direct ordering (targeting the BPSK sources
first), with inverse ordering (aiming at the 3-PSK sources
first), and with the optimal ordering presented in the pre-
vious section (with a single extra deflation sweep after or-
dering). These methods are also compared with the paral-
lel deflation approach of [8] with alphabet projection.

As observed in Fig. 2, the performance of classical de-
flation depends strongly on the extraction ordering, with
the proposed optimal ordering achieving the best results
at almost twice the average number of optimal step-size
gradient-descent iterations (around 550) required by the
two other classical deflation methods (300). Parallel de-
flation entails the lowest computational cost (just over 200
iterations) but shows a performance near classical defla-
tion with inverse ordering, marginally improving on the
MMSE’s average SER at high SNR.

7 CONCLUSIONS

We have exploited the discrete nature of digital communi-
cation signals to address the deflation-based blind source
extraction in underdetermined mixtures. As already no-
ticed in other works (e.g., [1]), some type of non-linear
processing is necessary to extract all sources satisfacto-
rily. Herein, projection on the signal alphabet before de-
flation has been shown to ameliorate the performance of
linear extraction, with an alphabet-based criterion (CP)
clearly outperforming the traditional CM principle, even
for sources verifying the CM assumption. An alphabet-
matched linear extraction criterion followed by projec-
tion on the signal alphabet can considerably improve the
performance of classical regression-based deflation in ex-
tracting all sources from an underdetermined mixture with
a reasonably low probability of error. Also, the gradual in-
terference suppression of classical deflation seems to have
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Figure 1: Source extraction results in the underdetermined
(3× 4) scenario with QPSK sources, signal blocks of 150
symbols and 200 Monte Carlo runs. Top: average sepa-
rator output SER. Bottom: probability of extracting the 4
sources with SER< 0.1.

a more significant positive impact than the reduced er-
ror accumulation of parallel deflation. The further perfor-
mance enhancement provided by the proposed method for
optimising the extraction order may not compensate for
the additional computational cost. The method is reminis-
cent of the V-BLAST technique [5], but requires no train-
ing and can handle scenarios of less sensors that sources
with possibly different modulations.
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