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Abstract

The identification and equalization of single-input digital communica-
tion channels can be accomplished blindly (without training sequences)
using only second-order statistics (SOS) and parameter estimation al-
gorithms based on matrix algebra tools. In this contribution, a blind
identification and equalization (BIE) method based on the spectral de-
composition of the sensor covariance matrix is extended to the multiuser
scenario. This extended SOS-based BIE procedure leads to a co-channel in-
terference (CCI) cancellation problem free of intersymbol interference. The
statistical independence between the users’ signals allows the application
of independent component analysis, which arises as a strong alternative to
CCI-cancellation techniques exploiting other spatio-temporal properties.

1 Introduction

In point-to-point digital communications, linear channel distortion (primarily
caused by limited bandwidth and multipath propagation) introduces intersymbol
interference (ISI) in the received signal, producing errors in symbol detection.
A variety of equalizer designs can be employed to compensate for the channel
effects [1]. Blind channel identification and equalization (BIE) methods present
the benefit of not requiring training sequences. Original blind equalizers were
based on higher-order statistics (HOS), which are computationally demanding
and yield a slow convergence, not always to the global solution [1].

In single-input multiple-output (SIMO) signal models, non-minimum phase
channels can be identified using only second-order statistics (SOS) and estima-
tion procedures based on matrix algebra theory [2, 3]. Due to the cyclostation-
arity of the emitted digital signal, SIMO models originate when sampling the
received signal faster than the baud rate (time oversampling) and/or multiple
spatially-separated sensors exist (spatial oversampling).
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Due to their foreseen relevance in future wireless communication networks,
air interface solutions based on non-orthogonal multiple access strategies have
become an important research area [4]. In this type of communication environ-
ments, co-channel interference (CCI) caused by other users transmitting at the
same time-frequency slot adds to multipath-induced ISI, hindering the reception
of the signal(s) of interest. To mitigate the channel effects and ensure reliable de-
tection, space-time equalization must be carried out. Time equalization aims at
ISI removal, whereas space equalization involves CCI cancellation. The diversity
arising from spatio-temporal oversampling results in multi-input multi-output
(MIMO) signal models.

The present contribution extends the SOS-based SIMO-BIE method of [3] to
the multiuser case. It is proved that the application of this extended method
yields an ISI-free linear mixture of the users’ signals, i.e., a CCI-only cancellation
problem. We discuss the use of independent component analysis in this CCI-
removal stage.

Notations: In refers to the n × n identity matrix and 0m×n to the m × n
zero matrix. Superindices (·)T, (·)H and (·)−1 indicate the transpose, hermitian
(conjugate-transpose) and inverse matrix operators, respectively. E[·] stands
for mathematical expectation, symbol ⊗ represents the Kronecker product, and
R(A) denotes the range (or column) space of matrix A.

2 Signal Model

Consider a digital communication system where: i) K users simultaneously trans-
mit zero-mean unit-power mutually-independent data symbols {sk,n}K

k=1 ∈ C,
at a known constant rate; ii) the finite impulse responses h

(i)
k representing the

propagation (including the effects of the transmitter and receiver filters) between
the kth source and the ith sensor (perhaps ‘virtual’, if induced by oversampling)
span at most M + 1 data symbols; iii) the additive measurement noise w

(i)
n is

zero-mean and uncorrelated with the data sequences. The discrete-time complex
baseband received signal can then be expressed as:

x(i)
n =

K∑
k=1

M∑
m=0

h
(i)
k,msk,n−m + w(i)

n , i = 1, . . . , L. (2.1)

N consecutive samples of the L (virtual) channel outputs are stored in vector

xn = [x(1)
n

T
, . . . , x(L)

n

T
]T, where x(i)

n = [x(i)
n , . . . , x

(i)
n−N+1]

T, with analogous
notation for the noise vector wn. Similarly, define the source symbol vector
sn = [sT

1,n, . . . , sT
K,n]T, with sk,n = [sk,n, . . . , sk,n−M−N+1]T. The MIMO signal

model is given by:
xn = HNsn + wn. (2.2)

Defining p
4
= LN , c

4
= M + N and d

4
= Kc, in the above model HN =

[H1,N , . . . , HK,N ] ∈ Cp×d, Hk,N = [H(1)
k,N

T
, . . . , H(L)

k,N

T
]T ∈ Cp×c and H(i)

k,N ∈
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CN×c represents the Toeplitz filtering matrix associated with the linear filter
h(i)

k = [h(i)
k,0, . . . , h

(i)
k,M ]T [3]. We assume that the channel matrix HN is full

column rank. The objective of BIE is to estimate HN (channel identification)
and sn (space-time equalization) from the only observation of the received vec-
tor xn. These tasks are tantamount to recovering the channel coefficient vector

h = [hT
1 , . . . , hT

K ]T ∈ CKL(M+1), with hk = [h(1)
k

T
, . . . , h(L)

k

T
]T, and the source

vector s = [s1,n, . . . , sK,n]T = [sn(1), sn(c + 1), . . . , sn

(
(K − 1)c + 1

)
]T, where

sn(i) denotes the ith element of vector sn.

3 Subspace Approach

For K = 1, a second-order BIE approach is proposed in [3], based on the subspace
decomposition of the sensor-output covariance matrix and benefiting from the
channel-matrix Toeplitz structure. In this section we generalize the method to
the multiuser case (K > 1). The identification of the filtering-matrix range space
leads to the following indeterminacy result, which is proved in the appendix.

Theorem 1. Assume that (A1) matrix HN−1 is full column rank; (A2) N > M .
Let H̃N be a nonzero filtering matrix with the same dimensions as HN . Then,
R(H̃N ) ⊂ R(HN ) if and only if H̃N = HN (A⊗Ic), where A is a regular K×K
matrix with elements in C.

Now, from matrix model (2.2): Rx = E[xnxH
n ] = HNRsHH

N +Rw, where Rx,
Rs and Rw denote, respectively, the covariance matrices of the sensor output,
sources and noise, defined accordingly. For simplicity, let us assume that Rw =
σ2Ip. Let λ1 > λ2 > . . . > λp denote the eigenvalues of Rx. Since Rs is full
rank, the signal part of Rx, i.e., HNRsHH

N , has rank d. Hence λi > σ2, for
1 6 i 6 d and λi = σ2, for d < i 6 p. The sensor covariance matrix can then be
expressed as Rx = Udiag(λ1, . . . , λd)UH + σ2VVH. The columns of matrix U,
which are the eigenvectors associated with {λi}d

i=1, span the signal subspace. Its
orthoghonal complement, R(U)⊥, is called the noise subspace, and is spanned by
the columns of V = [v1, . . . , vp−d], which are the eigenvectors associated with
{λi}p

i=d+1. The signal subspace is also spanned by the columns of the filtering
matrix HN , i.e., R(HN ) = R(U), and hence, R(HN ) = R(V)⊥. In particular,
vH

i HN = 01×d, 1 6 i 6 p − d. These orthogonality relations constitute a set
of d(p − d) linear equations in the KL(M + 1) unknown channel coefficients.
To avoid indeterminacy, we must have c(p − d) > L(M + 1). This leads to the
constraint (L − K)N2 + M(L − 2K)N > KM2 + L(M + 1), which sets lower
bounds on the smoothing factor N given the other system parameters (cf. [5]).

In practice, only sample estimates v̂i of the noise eigenvectors are available,
and a solution in the least squares (LS) sense is sought, leading to the minimiz-
ation of the quadratic form:

ξ(h) =
p−d∑
i=1

‖v̂H
i HN‖2. (3.1)
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The dependence of cost function ξ on the channel coefficient vector h can be
made explicit with the help of the lemma below (proved in the appendix).

Lemma 2. If Vi,M+1 represents the L(M + 1)× c filtering matrix linked to the
LN × 1 vector v̂i, then v̂T

i HN = hTṼi,M+1, where Ṽi,M+1 = IK ⊗Vi,M+1.

For convenience, subindices (·)N and (·)M+1 are dropped in the sequel. By
virtue of Lemma 2: ‖v̂H

i H‖2 = v̂H
i HHHv̂i = hHṼiṼH

i h = trace(H̄HViVH
i H̄),

where H̄ = [h1, . . . , hK ] ∈ CL(M+1)×K . Cost function (3.1) finally becomes:

ξ(H̄) = trace(H̄HQH̄), with Q =
p−d∑
i=1

ViVH
i . (3.2)

In order to avoid the trivial solution H̄ = 0L(M+1)×K , criterion (3.2) must
be minimized subject to certain constraint. For instance: if trace(H̄HH̄) = 1,
then the columns of estimate ˆ̄H are proportional to the eigenvectors associated
with the smallest eigenvalue of matrix Q; if trace(CHH̄) = 1, where C is a
L(M + 1)×K constraint matrix, then ˆ̄H = (Q−1C)/trace(CHQ−1C).

The above procedure identifies the channel matrix up to the indeterminacy
shown in Theorem 1: Ĥ = H(A ⊗ Ic), with A an unknown K × K regular
matrix. In the absence of noise, the zero-forcing equalizer output is given by zn =
ĤH(ĤĤH)−1xn = (A−1 ⊗ Ic) sn. Defining z = [zn(1), zn(c + 1), . . . , zn

(
(K −

1)c+1
)
]T, where zn(i) denotes the ith element of vector zn, the equalized system

is equivalent to
z = A−1s. (3.3)

4 ICA-Based CCI Cancellation and Symbol Detection

Eqn. (3.3) represents an ISI-free CCI-cancellation problem. To achieve space
equalization, most proposed methods exploit properties inherent to digital sig-
nals, such as their constant modulus or finite alphabet (FA) [6]. The global
convergence of some of these methods (e.g., the family of iterative LS algorithms
[6]) is not generally guaranteed, even in the absence of noise [5].

The very plausible property of the mutual independence between the users’
signals can also be exploited through the statistical tool of independent compon-
ent analysis (ICA), which requires HOS if the source symbols are i.i.d. Benefits
are exhibited in two aspects of the BIE problem [7]: CCI cancellation and sym-
bol detection. Firstly, ICA leads to dramatic improvements in CCI-cancellation
performance, compared to an FA-based method. Secondly, an ICA-based refine-
ment yields remarkable performance gains relative to the conventional minimum
mean square error (MMSE) receiver. Furthermore, the particular structure of
the FIR-MIMO model enables a simplification of the ICA-aided MMSE detector,
with improved performance and a lower computational cost.

Illustrative simulation results will be presented at the conference.
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5 Conclusions

The subspace-based blind identification method of [3] relies on the channel-
matrix structure and, as opposed to [2], is able to operate regardless of the
source spectra. The extension of this method to the multiuser scenario performs
time equalization only. Various spatio-temporal properties of the communica-
tion system can be exploited to achieve space equalization in a second processing
stage. The versatility and improved CCI-cancellation and symbol detection per-
formance of independence-exploiting ICA-based techniques render them very
promising in next-generation cellular and ad-hoc wireless commercial networks
as well as non-cooperative military scenarios.
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Appendix: Proofs

Proof of Theorem 1
Define H(k) ∈ CL×K as

(
H(k)

)
ij

= h
(i)
j,k, i.e., the matrix composed of all channel

coefficients associated with delay k. Then, matrix

HN =


H(0) H(1) . . . H(M) 0L×K . . . 0L×K

0L×K H(0) H(1) . . . H(M) 0L×K . . .
...

. . .
. . .

. . .
. . .

. . .
...

0L×K . . . 0L×K H(0) H(1) . . . H(M)

 (A.1)

corresponds to a rearrangement of the rows and columns of matrix HN , and hence their
column spaces are canonically equivalent (remark that a subsequent rearrangement of
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the source vector would leave the observed sensor output unaltered). Due to the block-
Toeplitz structure of HN and the shift property of Toeplitz matrices, we have the two
equivalent representations:

HN =

[
H(0) PN−1

0L(N−1)×K HN−1

]
and HN =

[
HN−1 0L(N−1)×K

QN−1 H(M)

]
(A.2)

with

{
PN−1 = [H(1), . . . , H(M), 0L×K(N−1)]

QN−1 = [0L×K(N−1), H(0), . . . , H(M−1)].

The p× d block-Toeplitz matrix H̃N can be constructed accordingly.
The sufficiency part of the theorem is evident; the only difficulty lies in the necessity

part. Assume thatR(H̃N ) ⊂ R(HN ). In particular, the columns of [H̃
T

(0), 0T
L(N−1)×K ]T,

which belong to R(H̃N ), also belong to R(HN ). Taking into account the first repres-
entation in (A.2), there exist matrices A0 ∈ CK×K and X0 ∈ CK(c−1)×K such that[

H̃(0)

0L(N−1)×K

]
=

[
H(0) PN−1

0L(N−1)×K HN−1

] [
A0

X0

]
. (A.3)

By virtue of assumption A1, matrix HN−1 is full column rank, and then the above

linear system implies that X0 = 0K(c−1)×K , and hence H̃(0) = H(0)A0. Similarly, the

relation [H̃
T

(1), H̃
T

(0), 0T
L(N−2)×K ]T ∈ R(HN ) shows the existence of A1 ∈ CK×K such

that H̃(1) = H(0)A1 + H(1)A0. Analogous reasoning proves the existence of matrices

A0, A1, . . . , AM ∈ CK×K verifying:

H̃(k) =

k∑
n=0

H(n)Ak−n, k = 0, . . . , M. (A.4)

Proceeding in a similar manner with the second decomposition in (A.2), one can show
the existence of matrices B0, B1, . . . , BM ∈ CK×K fulfilling:

H̃(k) =

M∑
n=k

H(n)BM+k−n, k = 0, . . . , M. (A.5)

Both set of equations (A.4)–(A.5) can be compactly expressed as:

HM+1A = HM+1B, with

{
A = [AT

M , AT
M−1, . . . , AT

0 , 0T
KM×K ]T

B = [0T
KM×K , BT

M , BT
M−1, . . . , BT

0 ]T.
(A.6)

From hypothesis A2, HM+1 is full rank, because M + 1 6 N . Hence, the unique
solution of the linear system (A.6) is A = B. This implies: A0 = BM ; Ai = 0K×K ,
i = 1, . . . , M ; and Bi = 0K×K , i = 0, . . . , M − 1. Therefore, H̃(k) = H(k)A0,

k = 0, . . . , M , and then H̃N = HN (IM+N ⊗A0). Due to the relationship between the
structures of HN and HN , the latter equality leads to H̃N = HN (A0 ⊗ Ic). Finally,
matrix A0 must be regular to guarantee the full column rank of H̃N .

Proof of Lemma 2
The Toeplitz structure of H

(i)
k,N leads to v̂T

i Hk,N = hT
k Vi,M+1 [3]. Hence, v̂T

i HN =

v̂T
i [H1,N , . . . , HK,N ] = [v̂T

i H1,N , . . . , v̂T
i HK,N ] = [hT

1 Vi,M+1, . . . , hT
KVi,M+1]. The

last term can be expressed as [hT
1 , . . . , hT

K ] diag(Vi,M+1, . . . , Vi,M+1︸ ︷︷ ︸
K

), which is equi-

valent to hTṼi,M+1.
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