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ABSTRACT

The blind equalization of multi-input multi-output (MIMO) digi-
tal communication channels is addressed in this paper. A variety
of error sources (e.g., stemming from finite sample size) can cause
considerable discrepancies between practical performance and the-
oretical limits of multichannel linear equalizers. In this contribu-
tion, we show that a post-detection strategy based on the statistical
tool of independent component analysis (ICA) can notably alleviate
these detrimental effects. Thanks to the time redundancies intro-
duced by the wideband multipath channel, ICA-assisted detection
can bring MIMO equalization performance closer to the theoretical
bounds without the excessive computational complexity of extract-
ing all signal components.

1. INTRODUCTION

Multichannel equalization of digital communication systems has
drawn considerable research attention recently. This interest has
been spurred by two remarkable discoveries [1–3]: 1) single-input
non-minimum phase channels can be blindly identified using only
second-order statistics (SOS), and 2) finite-impulse response (FIR)
channels accept FIR equalizers. Multichannel structures naturally
arise in practical communication systems when exploiting diversity
in time (oversampling), space (antenna arrays), and/or code (spread-
ing sequences) [4]. The use of multiple transmit antennas leads to
multiple-input multiple-output (MIMO) systems, which offer im-
portant performance improvements over conventional transmission
schemes. Enhanced spectral efficiency, higher data rates and in-
creased capacity feature among the typical benefits of MIMO sys-
tems. To achieve these benefits, MIMO channel impairments such
as co-channel interference (CCI) caused by the multiple inputs and
intersymbol interference (ISI) due to multipath propagation need to
be tackled through suitable equalization techniques. Channel iden-
tification and equalization has traditionally been aided by training
sequences. However, operating blindly (i.e., without training data)
proves beneficial in terms of flexibility and bandwidth resources [5].

Although direct blind equalization is feasible [2, 6–9], a previ-
ous channel identification [1,3] may be useful, e.g., for source local-
ization or propagation characterization. The estimated channel can
then be used to equalize the received signal. Linear receivers such as
the zero forcing (ZF) or the minimum mean squared error (MMSE)
detectors offer a reasonable compromise between performance and
complexity. In practice, the equalization quality of these linear re-
ceivers can notably depart from the theoretical bounds, even when
the channel parameters are perfectly known. Sources of error such
as the finite-sample estimation of the sensor-output covariance ma-
trix can severely degrade performance. In [10], it is proposed that
the statistical tool of independent component analysis (ICA) could
be used to ameliorate the impact of channel and covariance matrix
estimation errors on equalization quality. A single user of interest
was extracted in a short delay-spread (spanning less than half sym-
bol period) multipath CDMA channel. However, this signal model
is rather constrained. In general, the simultaneous demodulation of
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all existing inputs is necessary, particularly if spatial multiplexing
is employed at the transmitting end to increase the data throughput.
Furthermore, a more realistic characterization of wideband channels
should account for longer delay spreads. Long delay spreads make
it possible to extract the transmitted data at non-zero equalization
delays, which can result in important performance gains relative to
zero-delay equalization [6,8].

This contribution applies ICA to wideband multichannel equal-
ization. We propose the use of ICA for the simultaneous extrac-
tion of the input signals at their respective optimal equalization
delay. In addition, single-delay extraction renders ICA-assisted
equalizers computationally feasible in practice. Illustrative sim-
ulations demonstrate the improved tolerance to noise, lower sam-
ple size requirements and higher system capacity achieved by ICA-
based equalization, which brings the performance of linear receivers
closer to their theoretical limits.

2. SIGNAL MODEL

Let us consider a communication system with the following as-
sumptions:
(A1) K co-channel input sources transmit, at a known

constant baud rate, zero-mean data symbolss(n) =
[s1(n), . . . , sK(n)]T ∈ CK with identity covariance matrix;

(A2) a diversity-L receiver with vector output x(n) =
[x1(n), . . . , xL(n)]T ∈ CL;

(A3) FIR channels (including pulse-shaping and receive filter ef-
fects) spanning at most(M +1) symbols, with matrix coeffi-
cientsH(k) ∈ CL×K , k = 0, 1, . . . , M, where the channel or-
derM is assumed to be known and the channel taps fixed over
the observation window;

(A4) zero-mean additive noisev(n) ∈ CL independent of the data
sources.

The receiver output components in (A2) are not necessarily associ-
ated with spatially-separated receive antennas; ‘virtual sensors’ can
also arise from the oversampling of cyclostationary signals or the
use of spreading sequences [3, 4]. This makes the resulting signal
model rather general. Assumptions (A3) correspond to block fad-
ing channels, typical of scenarios with small to moderate Doppler
spread values. According to the above assumptions, the MIMO
baseband signal model can be expressed as:

x(n) =
M

∑
k=0

H(k)s(n−k)+v(n). (1)

StackingN consecutive received signal vector samples yields:

xn = Hsn +vn (2)

with sn = [s(n)T, s(n−1)T, . . . , s(n−M−N +1)T]T ∈ CD, xn =
[x(n)T, x(n−1)T, . . . , x(n−N + 1)T]T ∈ CP, and analogous def-

inition for vn, with D
4
= K(M + N) and P

4
= LN. H ∈ CP×D

is the block-Toeplitz matrix associated to the channel tapsH =
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[H(0), H(1), . . . , H(M)], and musts be full column rank. Obvi-
ous necessary conditions for input-signal linear extraction are that
L > K, which demands sufficient space-time-code diversity, and
N > KM/(L−K), which sets a lower bound on the equalizer length.

The objective of blind MIMO equalization is to estimate the
source signalss(n) from the only observation of the sensor output
x(n).

3. BLIND MIMO CHANNEL IDENTIFICATION

Single-input multiple-output (SIMO) channels can be blindly iden-
tified using SOS [1–3]. The extension of SOS-based SIMO blind
identification methods to the MIMO case can at most obtain chan-
nel estimates of the form̂H = H(IC ⊗A−1), whereA ∈ CK×K

is a unknown invertible matrix,⊗ denotes the Kronecker product,

andIC is the(C×C) identity matrix, withC
4
= (M +N) [5, 11]. In

the noiseless case, this channel matrix estimate results in the instan-
taneous (i.e., ISI-free) linear mixturey(n) = As(n). This spatial
mixture can be inverted, thus completing the MIMO channel esti-
mate, by exploiting the input signals’ structural properties such as
their finite alphabet, constant modulus, or statistical independence.
In the latter case, matrixA can be identified using ICA [11].

In the sequel, it is assumed that the channel matrixH (or, equiv-
alently, the channel tap matrixH) has been estimated through a suit-
able blind MIMO identification method (as those of, e.g., [5, 11]).
Our primary concern is the estimation of the source signalss from
the sensor outputx by using the identified channel.

4. LINEAR DETECTION

4.1 MMSE equalizer

The maximum likelihood sequence estimator is the optimal de-
tector, but its computational load can be prohibitive in scenarios
involving a large number of users or highly dispersive channels
[12]. Trading off complexity for performance, linear receivers are
based on the estimation of a linear transformationG ∈ CP×D ful-
filling certain (sub)optimality criterion; data are then detected as
ŝn = GHxn. Since the ZF detector is known to produce undesired
noise amplification, we focus our attention on the MMSE equalizer:

GMMSE = arg min
G

E
{
‖GHxn−sn‖2} (3)

with closed-form solutionGMMSE = R−1
x H, in which Rx =

E{xxH} represents the sensor-output covariance matrix.

4.2 Optimal delay selection

DetectorGMMSE extractsC time-shifted versions of each of theK
inputs. However, the recovery of a single time delay per input suf-
fices in practice. The time redundancy introduced by the wideband
multipath channel in the MIMO model (2) enables the choice of the
equalization delay providing the best MMSE performance for each
input [7–9]. This choice is simplified thanks to the channel matrix
estimate obtained in the blind identification stage. The MMSE de-
tector of theith input signal, 16 i 6 K, with delay 06 d 6 (C−1),
is given by:

Gi,d = R−1
x hi,d (4)

in whichhi,d denotes the(Kd+ i)th column vector of channel ma-
trix H. The resulting MMSE is easily obtained as:

MMSEi,d = E
{∣∣ŝi(n)−si(n−d)

∣∣2} = 1−hH
i,dR

−1
x hi,d. (5)

Optimum MMSE equalization for theith input is thus achieved at
delay:

di = arg min
d

MMSEi,d. (6)

In practice, even if the channel matrix is perfectly known, finite-
sample errors in the sensor covariance matrix make the estimation
of the optimum delay a difficult task. As reported elsewhere in the

literature (e.g., [6, 8]), we have observed in extensive experiments
that when the channel is fairly well conditioned, the optimum delay
usually falls around the centre of the observation window, that is,

di ≈ dm
4
= d(C−1)/2e. For ill-conditioned channels, the optimality

of the middle delay does not hold any more. Nonetheless, in our
simulations the middle-delay selection seems to outperform more
sophisticated optimum-delay estimation procedures based, e.g., on
the principal components or polynomial-expansion approximations
[13] of the sensor-output covariance matrix.

5. ICA-ASSISTED DETECTION

5.1 Rationale and assumptions

The practical MMSE receiver can notably divert from the theoreti-
cal performance given by eqn. (5). A typical example of these de-
viations is the flooring effect observed as the noise level decreases,
due to the sampling noise caused by finite observation length. This
effect will be illustrated by the results of Sec. 6. Even under perfect
channel knowledge, imperfections in the covariance matrix estimate
lead to residual interference in the equalized output, thus degrading
detection performance.

In a bid to alleviate these detrimental effects, let us consider an
additional hypothesis:
(A5) the input components are mutually statistically independent

and consist of non-Gaussian i.i.d. data symbols.
Under this spatio-temporal independence assumption, eqn. (2) cor-
responds to a signal separation model of independent sources in
instantaneous linear mixtures. This separation problem could be di-
rectly solved with the statistical tool of ICA based on higher-order
statistics (HOS) [14]. The use of HOS requires the non-Gaussian
assumption, which is verified by most digital modulations of prac-
tical significance. Unfortunately, the computational complexity of
blindly separatingD = K(M +N) independent components can be-
come excessive in scenarios with a large number of inputs or long
delay spreads as a result of high data rates [11], particularly if the
separation method is not properly initialized.

As suggested in the CDMA scenario of [10], the practical
MMSE solution can be used as starting point in the ICA search.
This sensible initialization, if close to the ICA solution, would gen-
erally reduce the number of iterations required for convergence.
From another perspective, the ICA stage can be seen as a higher
order refinement of the MMSE receiver, which is only (implicitly)
based on SOS. Indeed, the MMSE-initialized ICA solution out-
performs the practical MMSE detector [10, 15]. Despite the ju-
dicious initialization, the computational cost of extracting all in-
dependent signal components remains prohibitive in more realistic
time-dispersive scenarios [15].

5.2 Single-delay signal extraction

To reduce complexity, the ICA algorithm may be tuned to search
only for theK independent components associated with the input
signals at their respective optimum MMSE delays. Let the cor-
responding columns of the estimated channel be stored in matrix
HK = [h1,d1, h2,d2, . . . , hK,dK

]. The MMSE equalizer of the com-
ponents ofsn at the chosen delays accepts the equivalent expression

GK = WHK (7)

which is to be applied on the whitened sensor outputzn = Wxn,
with W ∈ CD×P such thatRz = ID. Matrix equalizer (7) and the
whitened data are used as the the initial point in the ICA algorithm.
Final detection is then performed with the separating matrixG′

K
provided by the ICA algorithm after convergence. We choose the
fixed-point FastICA algorithm based on kurtosis optimization [14]
for its robustness and rapid (cubic) convergence properties; not less
importantly, the method is well adapted to the extraction of a par-
ticular group of source components. The specific algorithm used
in the experiments reported later in this paper (Sec. 6) is detailed
in [15].
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5.3 Computational complexity

For a batch ofT observed vectorsxn, the computational complexity
of the proposed ICA-based detection algorithm is of order O(KDT)
floating point operations (flops) per iteration. If the channel esti-
mate is accurate enough, the above initialization may already be
quite close to the ICA solution, thus reducing the number of iter-
ations necessary for convergence. By contrast, extracting all in-
dependent components through the fully-blind application of ICA
would require O(D2T) flops over a potentially higher number of
iterations due to an improper initialization.

5.4 Remarks

The notion of ICA-aided detection was originally proposed in [10]
for a particular DS-CDMA model without co-channel users. The
authors of [10] were interested in extracting a fixed-delay compo-
nent of a single user of interest in a short delay-spread channel with
maximum time dispersion of half symbol period.

In contrast, the MIMO model of eqns. (1)–(2) characterizes
a more general communication environment in which co-channel
users transmit at the same time-frequency-code slot through a wide-
band channel with a possibly important delay spread. We aim at the
simultaneous demodulation of all existing users, including all the
spatially-multiplexed data substreams of each user in the case where
multiple transmit antennas are employed. Time dispersion intro-
duces undesired ISI, but can also be exploited to our own benefit:
long delay spreads allow us to estimate the input signals at alterna-
tive equalization delays, which can lead to significant performance
improvements, as demonstrated by the following experimental re-
sults.

6. EXPERIMENTAL RESULTS

A few simulations are useful in illustrating the performance im-
provements that can be achieved by the ICA-aided equalization
scheme presented above, referred to as MMSE-ICA. A commu-
nication system composed of a numberK of QPSK-modulated
co-channel users with single transmit antennas is simulated in a
frequency-selective block fading channel introducing ISI from a
maximum ofM = 5 consecutive baud periods. The channel fil-
ter taps are randomly drawn from a complex Gaussian distribu-
tion and hence model (up to the pulse-shaping and receive filters)
a Rayleigh propagation environment. A spatio-temporal diversity
level of L = 20 (e.g., 4 receive antennas oversampled by a factor
of 5) and a smoothing factor ofN = 5 are chosen. AWGN with
covariance matrixRv = σ2IL is present at the sensor output, with

SNR=
trace(HHH)

σ2L
. (8)

Equalization performance is measured by the signal mean square
error (SMSE):

SMSE=
1
K

K

∑
i=1

E
{∣∣ŝi(n)−si(n− d̂i)

∣∣2}. (9)

Performance parameters are averaged overν independent Monte
Carlo (MC) iterations, withνNd > 104, whereNd is the observation
length in baud periods. The optimal MMSE denotes the optimum-
delay MMSE equalizer obtained from the true sensor-output covari-
ance matrix (̂di = di). By MMSE, we refer to the practical subspace
MMSE equalizer (7) in which the whitening matrixW is computed
from the EVD of the covariance matrix sample estimate followed by
projection on the signal subspace (whose dimension is assumed to
be known) [4]. Both MMSE and MMSE-ICA extract the middle-
delay components (̂di = dm).

Sample-size requirements.In the first experiments we simulate
K = 5 users and the channel is assumed to be perfectly estimated.
Fig. 1 plots the variation of equalization performance as a func-
tion of the sample size (measured in number of observed symbol

periods) for various SNRs. For sufficient SNR, the MMSE-ICA re-
quires substantially lower sample size than the MMSE for the same
equalization performance and tends faster to the optimum theoret-
ical solution. At moderate SNR, the MMSE-ICA needs just over
two hundred symbol periods to start noticeably improving the con-
ventional MMSE receiver.

Noise tolerance.The performance variation against SNR for
various sample lengths is summarized in Fig. 2. The MMSE-ICA
compensates from the sampling-noise flooring effect typical of the
conventional MMSE receiver at high SNR, pushing performance
closer to the theoretical bound. Equivalently, the MMSE-ICA toler-
ates higher noise power than the MMSE for the same equalization
quality.

Capacity.Next, we illustrate the capacity gains that can be at-
tained through ICA-assisted detection. Fig. 3 displays the equal-
ization performance for a varying number of co-channel users, at
several noise levels, with a fixed sample size ofNd = 500 baud pe-
riods. At 40 dB SNR, the proposed ICA-assisted detector allows a
capacity increase of one order of magnitude relative to the conven-
tional MMSE receiver.

Blindly identified channel.In a final simulation (again with
K = 5 users), the channel is blindly identified with the MIMO ex-
tension of the SIMO method of [1] followed by ICA-based spatial-
mixture separation (also performed with the FastICA algorithm), as
explained in Sec. 3. Fig. 4 demonstrates the interesting fact that
even when ICA takes part in channel identification, its use in de-
tection also proves beneficial. Further results for blindly identified
channels are reported in [15].

7. CONCLUSIONS

The assumptions of statistically-independent non-Gaussian i.i.d. in-
puts can be exploited to refine blind MIMO linear equalization
through the use of ICA techniques based on HOS. The time dis-
persion introduced by the frequency-selective channel is beneficial
in reducing the computational load while further improving perfor-
mance by searching for the independent component with optimal
MMSE reconstruction delay for each co-channel signal. In realis-
tic SNR and sample-size conditions, the resulting ICA-assisted de-
tector notably outperforms the conventional MMSE receiver, and is
thus able to achieve remarkable capacity gains. As opposed to alter-
native detection approaches, the ICA-aided receiver is constellation
independent. This feature makes ICA techniques very attractive
in next-generation ad-hoc networks as well as in non-cooperative
military scenarios. The phenomenal rate of increase in available
computing power envisages the practical implementation of these
techniques in the near future. Further work should focus on the the-
oretical analysis of the performance gains achieved by ICA-assisted
detection.
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