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ABSTRACT

In the problem of blind source separation from instantan-
eous linear mixtures, a unitary transformation remains un-
known after second-order spatial whitening. We present a
novel approach for the identification of the orthogonal mat-
rix in the real-valued three-signal scenario which, in con-
trast to existing procedures, operates in a single closed-form
step, with no iterations. The new approach is based on in-
tuitive geometrical notions and the theory of quaternions,
and develops into a practical semi-blind method requiring
certain prior knowledge on the source statistics. A simple
numerical experiment illustrates the proposed algorithm.

1. INTRODUCTION

Consider the linear model:

y = Mx, (1)

wherey ∈ IRp, x ∈ IRq andM ∈ IRp×q. Blind source sep-
aration (BSS) aims to recover the unknown source signalsx
and mixing matrixM from the observed mixturey [1]. The
above model holds, for instance, when unknown transmit-
ted radio signals impinge on an antenna array whose layout
is unknown or difficult to model. The BSS problem is also
encountered in a variety of areas such as multi-user com-
munications, radar/sonar, biomedical signal processing and
seismic exploration.

The crucial assumption allowing the source extraction
and mixing-matrix identification is the statistical independ-
ence of the source signals. Mathematically, this assumption
can be formulated in terms of the source joint probability
density function (pdf)px(x):

px(x) =
q∏
s=1

pxs(xs), (2)
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wherepxs is the marginal pdf of thesth component ofx.
From this perspective, BSS can be accomplished through
the independent component analysis (ICA) of the observa-
tions. ICA searches for a transformation on the observed
vector yielding independent components or, at least, as in-
dependent as possible in the sense of the optimization of a
suitable independence criterion [2]. Certain identifiability
conditions guarantee that the vector obtained via ICA cor-
responds to the sources, up to, perhaps, irrelevant permuta-
tion and scale factors affecting its components. The evident
complexity in operating directly over the pdf is alleviated by
means of more tractable approximations, or contrasts, based
on higher-order statistics [2,3].

In this paper, we aim to achieve ICA by adopting a
more intuitive geometrical viewpoint. After diagonaliza-
tion of the observed covariance matrix (pre-whitening) —
carried out through conventional second-order techniques
(principal component analysis)— the mixing reduces to an
unknown orthogonal transformationQ ∈ IRq×q, which can
be considered as a rotation in aq-dimensional space. The
resulting whitened sensor-outputz ∈ IRq then reads:

z = Qx. (3)

Accordingly,pz(z) = px(Q†z), where symbol† stands for
the transpose operator, so that the pdf ofx undergoes an
analogous transformation in the whitened observation sig-
nal subspace. In such subspace, the source directions cor-
respond to the columns ofQ. The estimated rotation must
be such that, when applied on the whitened observations, it
aligns the source directions with the observation frame of
reference, thus resulting in the pdf of a signal vector with
independent components [eqn. (2)].

In the fundamental two-signal case (q = 2) the above
geometrical concepts are illustrated in Fig. 1. The bottom
plots display the scatter diagrams —representations of the
form

(
x1(τ), x2(τ)

)
, τ denoting a time index— which are

sample approximations of the true pdfs. The unknown unit-
ary transformation reduces to a planar rotation of angleθ,
whose estimation can be carried out in closed form [2, 3,
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Figure 1: BSS of two instantaneous linear mixtures, with sources composed of a sinusoid and a uniformly distributed process. The top
plots show the time variation of the signals, whereas the bottom plots represents the respective scatter plots. Vectorsm1 andm2 refer to
the source directions (or signatures) in the observation signal subspace. After diagonalizing the sensor-output covariance matrix, the source
directions simply become the whitened signal subspace basis vectors rotated by an unknown angleθ.

4, 5, 6, 7, 8]. Fourth-order cumulants are directly employed
in the algebraic and contrast-based approaches of [4] and
[2, 6]. When the sources present symmetric marginal pdfs,
a simple yet insightful geometrical standpoint can be taken
by exploiting the various symmetries of the resulting scatter
plot [5]. The restricted approximate ML criterion of [3] is
extended in [7, 8], where the scatter-plot samples are con-
veniently expressed as complex numbers(z1 + iz2), i2 =
−1. Higher-order expectations of these representations are
shown to generate explicit expressions for the estimation of
the relevant parameter.

More than two sources can be separated through the it-
erative application of a two-signal method over all signal
pairs [2]. In the three-signal case (q = 3), iterations on three
signal pairs are required, sometimes over several sweeps.
In a bid to obtain a more efficient separation scheme, the
present contribution is devoted to extending the single-step
(i.e., non-iterative) closed-form estimation ofQ to the three-
signal scenario. The mathematical tool which allows us to
accomplish this task is the quaternion algebra.

2. QUATERNIONS

Quaternionswere invented by Sir William Rowan Hamilton,
the most important Irish mathematician of all time, in the
1840’s [9]. In his original motivation, Hamilton developed
quaternions as quotients of three-dimensional (3D) vectors.
Algebraically, a quaternion is a four-dimensional entity that
can be represented as a linear combination of the four qua-

ternion units1, i, j, andk: A = a + a1i + a2j + a3k,
a, am ∈ IR, 1 < m < 3. These units form the basis for the
quaternion space, and fulfil the famous fundamental rela-
tionsi2 = j2 = k2 = ijk = −1, which give the basic rules
for quaternion multiplication. Quaternions are the natural
extension of complex numbers, with the remarkable feature
that their product is not commutative [9]. In fact, they con-
stituted the first non-Abelian ring to be discovered [10]. The
most salient properties of quaternions are summarized be-
low [11]:
(P1) QuaternionA can be expressed as the combination of
a scalar part,a ∈ IR, and a vector part,a = [a1, a2, a3]† ∈
IR3: A = [[a, a]]. We denote vec(A) = a.
(P2) Conjugate:A∗ = [[a, −a]].
(P3) Norm:|A| = (AA∗)

1
2 = (A∗A)

1
2 =

√
a2 + |a|2.

(P4) Inverse:AA−1 = A
−1
A = 1 ⇒ A

−1 = A
∗|A|−2.

(P5) Product:

AB = [[ab− a · b, ab + ba + a× b]] , (4)

whereB = [[b, b]], symbol ‘·’ represents the inner (or dot)
product and ‘×’ the vector (or cross) product. Quaternion
product is associative,(AB)C = A(BC), but not commut-
ative, i.e., in generalAB 6= BA. Also: (AB)∗ = B

∗
A
∗.

(P6) Exponential form:A = |A|enφ, where

enφ = [[cosφ, n sinφ]] , (5)

andn = a/|a|. In addition:(enφ)∗ = e−nφ, andenφenθ =
enθenφ = en(φ+θ), ∀φ, θ ∈ IR.
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One of the most attractive features of quaternions is their
ability to represent and perform operations in the 3D space,
including affine transformations, projections and, specially,
rotations. A point in a 3D Euclidean space,x ∈ IR3, can
be represented by the pure quaternionX = [[0, x]]. A ro-
tation of angleθ around an axis —orpole— n generates
vectorz. This rotated point is found in the vector part of
another pure quaternionZ given by the so-called canonical
transformation [11]:

Z = enθ/2
X e−nθ/2. (6)

Applications of quaternions include molecular and nuc-
lear physics, cryptography, image processing [12], robotics
and computer vision [13], computer theory, electromagnet-
ism, and mechanical design. For the first time, this contribu-
tion applies quaternions to the problem of source separation.

3. SOURCE SEPARATION VIA QUATERNIONS

3.1. General Approach

The connection between BSS in the three-signal case and
quaternions soon becomes apparent. The 3D source and
whitened vectors can be represented by quaternionsX and
Z, respectively. The unitary transformationQ linking the
sources and sensor-output after pre-whitening [eqn. (3)] can
similarly be characterized by a polen and a rotation angleθ
that are both unknown. The quaternion formulation of this
transformation is then given by (6). Hence, the problem re-
duces to the estimation of rotation parameters(n, θ) from
Z. If the sources were known, the problem could be solved
by the algorithm described next.

Algorithm 1 (Identification of 3D rotation parameters).
Given two linearly independent source samplesx1, x2, and
their respective whitened observations,z1, z2, the rotation
parameters can be identified as follows:

• Step 1. Compute the displacement vectors

dm = zm − xm, m = 1, 2. (7)

• Step 2. Estimate the rotation axis (Appendix 6.1):

– If d1 = d2 = 0 thenθ = 0 and, since there
is no rotation, the actual value ofn is irrelevant.
Second-order analysis has already performed the
source separation.

– Else, ifd1 = 0, d2 6= 0 (resp.d1 6= 0, d2 = 0)
thenn = x1 (resp.n = x2).

– Else,n = d1 × d2. If n = 0 thenn = x1 ×
x2 × dm (m = 1 orm = 2).

• Step 3. Normalize pole:n := n/|n|.

• Step 4. Set upN = [[0, n]], Xm = [[0, xm]], and
Zm = [[0, zm]], m = 1, 2. Obtain the rotation qua-
ternion as (Appendix 6.2):

enθ/2 =
[
(NZm − ZmN)(NXm − XmN)−1

] 1
2 , (8)

with m = 1 orm = 2 according to Step 2.

3.2. A Practical Semi-Blind Method

Since, by definition, the source signals are not available, the
above procedure cannot be applied directly. Instead, we ad-
opt asemi-blindapproach, by assuming that we have prior
knowledge of the source statistics at least at two different
orders. The conditions that these statistics must fulfil will
be determined later. First, let us define therth-order qua-
ternion moment[12] as:

Xr = E[XX∗ · · ·︸ ︷︷ ︸
r

], (9)

where E[·] represents the mathematical expectation. Denot-
ing the (r + s + t)th-order moment of the source signals
asµxrst = E[xr1x

s
2x
t
3], and assuming zero-mean unit-power

sources, the first source quaternion moments are:

X1 = 0, X2 = 3 (10a)

X3 = µx300i+ µx030j + µx003k (10b)

X4 = µx400 + µx040 + µx004 + 6 (10c)

X5 = (µx500 + 4µx300)i+ (µx050 + 4µx030)j
+ (µx005 + 4µx003)k (10d)

From the basic properties of quaternions outlined in Sec-
tion 2, the whitened-signal quaternion moments turn out to
be [cf. eqn. (6)]:

Zr = enθ/2
Xre−nθ/2, ∀r > 1. (11)

That is, the source quaternion moments are affected, at any
order, by the same rotation as the quaternion samples. If
we select two ordersr1 andr2 such thatXr1 andXr2 are
not proportional, the corresponding moment vectorsxrm =
vec(Xrm), m = 1, 2, are linearly independent. As a con-
clusion, the rotation parameters can be identified by appro-
priate substitution ofXrm , Zrm , xrm andzrm = vec(Zrm)
for Xm, Zm, xm andzm,m = 1, 2, resp., in Algorithm 1.

3.3. Identifiability

The identifiability condition of the proposed method reduces
to the linear independence of source quaternion moments
Xr1 andXr2 . For this condition to be fulfilled at orders
r1 = 3 and r2 = 5, for instance, at least a pair of asym-
metrically distributed sources must show dissimilar 3rd- to
5th-order moment ratios. In particular, at most one symmet-
ric distribution is allowed among the sources.
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4. ILLUSTRATIVE RESULTS

As an illustrative numerical example, we selectr1 = 3,
r2 = 5, and source signals composed of5×103 i.i.d. samples
with exponential, Rayleigh and uniform distribution. Hence,
X3 = 2i+ 0.63j andX5 = 52i+ 8.52j [eqns. (10)], which
comply with the conditions set out in Section 3.3. The pole
and angle of rotation aren = [0.21, −0.52, 0.83] (vector
[2, −5, 8] normalized) andθ = 30o, which correspond to an

orthogonal mixing matrixQ =
[

0.87 −0.43 −0.24
0.40 0.90 −0.16
0.28 0.05 0.96

]
. The ap-

plication of the proposed algorithm on the resulting unitary
mixtures produces the estimatesn̂ = [0.03±0.32, −0.54±
0.23, 0.72± 0.17] andθ̂ = 36.1o± 17.8o, where the “mean
± standard deviation” values are obtained by averaging over
103 independent Monte Carlo runs. The interference-to-
signal ratio (ISR) [1], a performance index that measures
the distance between the original and the estimated mixing
matrices, yields an average of ISR(Q, Q̂) = −14.7 dB, cor-
responding to a successful source separation.

5. CONCLUSIONS AND OUTLOOK

We have presented a novel approach for three-dimensional
linear ICA which enables the closed-form identification of
the remaining orthogonal transformation after second-order
analysis in a single step, i.e., without iterations of any kind.
The approach is based on the algebra of quaternions, and is
able to perform non-iterative semi-blind separation of three
source signals from three instantaneous linear mixtures.

At the orders considered (r1 = 3, r2 = 5) the applic-
ability conditions of the suggested algorithm are indeed re-
strictive. Additional work is required to increase the range
of source distributions that can be treated. Nevertheless,
the basic foundations for the use of quaternions in ICA/BSS
have been laid down, and we envisage that the applicabil-
ity domain of quaternion theory in this exciting signal pro-
cessing problem will be broadened in future investigations.
Further efforts could begin by focusing on the performance
analysis of the proposed identification scheme, its compar-
ison with iterative procedures, and the application of qua-
ternion algebra to contrast-based approaches.

6. APPENDICES

6.1. Rotation Identification

We prove that the rotation axis ofQ can be identified from two linearly
independent source samplesx1, x2, and their associated observationsz1,
z2, as in Algorithm 1. First, consider the following remarks:
(R1) The eigenspace of rotationQ 6= I (I being the identity matrix) is
spanned by its polen, with associated eigenvalueλ = 1.
(R2) Fromdm = (Q − I)xm and the linear independence ofxm, it
follows thatdm = 0, ∀m, iff Q = I.
(R3) If dm = 0 thenxm belongs to the eigenspace ofQ 6= I.
(R4) Whendm 6= 0 are parallel, vectorsn, x1 andx2 are coplanar.

(R5) If Q 6= I, the rotation pole lies in the plane perpendicular to any
non-null displacement vectordm.

Therefore:
• If d1 = d2 = 0 then, according to (R2), there is no rotation to be
identified:θ = 0.
• Else, ifd1 = 0, d2 6= 0 (resp.d1 6= 0, d2 = 0) then, from (R1)–(R3),
the rotation axis is spanned byx1 (resp.x2).
• Else,d1 × d2 = 0 implies thatdm are parallel and hence, from (R4)–
(R5), n can be computed from the intersection of the plane spanned by
vectorsxm and the plane perpendicular to eitherdm. If dm are not par-
allel, (R5) guarantees thatn can be obtained from their vector product.

6.2. Rotation Quaternion

It is shown next that the quaternion associated with a rotation around a pole
n applied to pointx resulting in another pointz is given by

enθ/2 =
[
(NZ− ZN)(NX− XN)−1

] 1
2 , (12)

whereN = [[0, n]], X = [[0, x]] andZ = [[0, z]].
From quaternion product (4), we have thatu = vec(NZ− ZN) =

2(n× z) and, similarly,v = vec(NZ− ZN) = 2(n× z). Now, sincex
is rotated aroundn by θ radians to yieldz, it turns out thatu andv are per-
pendicular ton, and separated by the same angular distance. Considering
the associated pure quaternionsU = [[0, u]], V = [[0, v]], and from the
properties summarized in Section 2:VU−1 = [[u · v, u× v]] |u|−2 =
[[cos θ, n sin θ]] = enθ , from which result (12) readily follows. Finally,
observe that, since scalars do commute in the quaternion product, qua-
ternion (−N) also yieldsenθ/2 in (12). In such a case, the equivalent
rotation parameters(−n, −θ) are estimated instead of(n, θ).
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