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ABSTRACT

In the blind equalization of multi-input multi-output (MIMO) fi-
nite impulse response communication channels, co-channel inter-
ference (CCI) is typically cancelled by exploiting the properties of
digital modulations, such as their finite alphabet (FA). This contri-
bution takes advantage of the mutual independence of the users’
signals through the application of independent component ana-
lysis (ICA). We demonstrate that ICA-based CCI suppression re-
markably improves an FA-based approach. In addition, proposed
ICA-assisted minimum mean square error receivers are shown to
enhance the conventional detection capabilities of MIMO equal-
ization methods relying on channel identification. The particular
structure of the MIMO model yields a simplified detection scheme
with improved performance at a reduced computational cost.

1. INTRODUCTION

Owing to their fundamental relevance in current as well as fu-
ture wireless networks, communication systems where multiple
users simultaneously transmit digital information through a com-
mon transmission medium have become a major focus of research
attention. In such scenarios, co-channel interference (CCI) caused
by other users adds to the intersymbol interference (ISI) gener-
ated by multipath propagation, hindering the reception of the sig-
nal(s) of interest. Space-time equalization techniques are required
to mitigate the channel effects, in terms of both ISI and CCI, thus
improving signal detection at the receiving end. Although training
sequences can be used, proceeding blindly proves clearly advant-
ageous [1], which gives rise to the blind channel identification and
equalization (BIE) problem.

When spatio-temporal diversity is exploited in the form of
multiple antennas and/or time oversampling, the sensor output ad-
opts the so-called multi-input multi-output (MIMO) signal model.
Typically, the multipath propagation effects are well approximated
by finite impulse response (FIR) filters, and then the MIMO model
is characterized by a channel matrix composed of the polyphase
coefficients. Hence, one can first identify the channel matrix and
then employ a conventional detector, such as zero-forcing or min-
imum mean square error (MMSE), to obtain the source symbols
from the channel estimate [2, 3, 4]. The main drawback of this
approach is the requirement of estimating a ‘nuisance’ parameter
such as the channel matrix, when the actual parameters of interest
are, in most cases, the users’ symbols. As a result, inaccuracies
in the channel estimate have a detrimental effect in the detection
performance. Direct symbol detection without channel estimation
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is also feasible [1, 5]. This type of methods treat the source data as
deterministic sequences, and so the benefit of sparing the channel
estimation is attained at the expense of a loss of consistency with
respect to the sample size [5].

A two-stage processing is necessary for space-time equaliza-
tion [1, 5, 6]. In the first stage, second-order statistics (SOS) are
able to cancel ISI by taking advantage of the structural properties
of the channel and the source data (or correlation) matrices. An
instantaneous linear mixture of the source signals (i.e., a CCI-only
cancellation problem) is resolved in a second stage. To achieve
the source separation, most proposed methods exploit properties
inherent to digital signals, such as their constant modulus (CM)
or finite alphabet (FA). For instance, the family of iterative least
squares algorithms — with projection (ILSP), with enumeration
(ILSE), and with subspace fitting (ILSF) [1, 5, 7] — utilize the FA
property. For CM signals [8] or simple modulations (BPSK) [9]
closed-form solutions are available, but global convergence of the
ILSx-type of methods is not generally guaranteed [1, 7], even in
the absence of noise [10]. In techniques relying on previous chan-
nel identification, the above ISI/CCI-removal steps are implicitly
carried out when estimating the channel matrix, and actually take
effect at detection.

The present contribution exploits another very plausible prop-
erty: the statistical independence of the users’ signals. We demon-
strate by computer simulations that benefiting from source inde-
pendence through the use of an independent component analysis
(ICA) tool can lead to dramatic improvements in CCI-cancellation
performance, compared to an FA-based method. In addition, it was
recently proved [11] that an ICA-based refinement can enhance
the robustness of conventional data detection in a particular direct-
sequence code-division multiple access (DS-CDMA) model. We
verify in this paper that analogous conclusions apply in the more
generic FIR-MIMO framework, where ICA-assisted MMSE de-
tection schemes are shown to compensate for channel estimation
errors, yielding remarkable performance gains relative to the con-
ventional MMSE receiver.

Notations. Symbol In refers to then × n identity matrix;
(·)T, (·)H and(·)−1 indicate the transpose, Hermitian (conjugate-
transpose) and inverse matrix operators, respectively; E[·] repres-
ents the mathematical expectation;⊗ and� stand for the Kro-
necker and elementwise product, respectively.

2. SIGNAL MODEL

Let us consider a digital communications system where:
(A1) K users transmit, at a known constant rate1/Ts, zero-mean
unit-variance mutually-independent information-bearing i.i.d. sym-
bolss(n) = [s1,n, . . . , sK,n]T ∈ CK ;

In Proc. ISSPA-2003, 7th International Symposium on Signal Processing and its Applications, Paris, France, July 1-4, 2003.



(A2) the receiving sensor, with a spatio-temporal diversity (product
of antenna elements and oversampling factor) ofL, outputs vector
samplesx(n) = [x1,n, . . . , xL,n]T ∈ CL;
(A3) the channel effects (including transmission and propagation
delays, phase shifts, amplitude attenuation, CCI and multipath-
induced ISI) can be modelled by means ofM th-order FIR filters
with matrix coefficientsH(k) ∈ CL×K , k = 0, 1, . . . , M ;
(A4) the zero-mean additive noisev(n) ∈ CL at the sensor output
has covariance matrixσ2IL and is independent of the transmitted
symbols.

Under the above assumptions, the MIMO model can be ex-
pressed as:

x(n) =

M∑
k=0

H(k)s(n− k) + v(n) (1)

with n = M, . . . , Nd + M − 1, whereNd represents the num-
ber of observed symbol periods. StackingN consecutive received
signal vector samples leads to the matrix model:

xn = Hsn + vn (2)

with sn = [s(n+N −1)T, s(n+N −2)T, . . . , s(n−M)T]T,

H =


H(0) · · · H(M) 0 · · · 0

0 H(0) · · · H(M) · · · 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 H(0) · · · H(M)


(3)

xn = [x(n + N − 1)T, x(n + N − 2)T, . . . , x(n)T]T, and
a similar definition forvn, n = M, . . . , Nd + M − N . We
also assume in the sequel that the block-Toeplitz channel matrix
H ∈ CLN×K(M+N) is full column rank, which imposes obvious
necessary restrictions on its dimensions. More elaborate sufficient
conditions are given in [6].

The objective of blind channel identification is to estimate
the channel matrixH from the only observation of sensor vec-
tors [x(M), . . . , x(Nd + M − 1)]. Blind equalization is con-
cerned with the estimation of the transmitted data symbolsS =
[s(0), . . . , s(Nd + M − 1)] from the receiving sensor output.

3. ICA-BASED CCI CANCELLATION

The extension to the multiuser case of BIE methods originally de-
signed for the single-user case resolves ISI but is unable to cancel
CCI. The blind channel identification method of [2] is based on the
special structure exhibited by the source autocorrelation matrices
in the i.i.d. case. It is proved in [4] that in the multiuser case the
estimated channel matrix is of the form̂H = H(IM+N ⊗ QH),
with Q ∈ CK×K an unknown unitary matrix. In the noiseless
case, this estimated channel matrix results in the ISI-free spatial
mixture

Y = QS (4)

Analogously, the extension to the multiuser case of the subspace
approach of [3] producesY = AS, whereA ∈ CK×K is an ar-
bitrary (not necessarily unitary) regular matrix [1]. Similar results
are obtained in the extended direct symbol estimation method of
[5], where the matrix characterizing the remaining spatial mixture
is also unitary (at least for a sufficient number of symbols) [1].

In summary, the blind separation problem of instantaneous lin-
ear mixtures given by eqn. (4) needs to be solved in a second pro-
cessing step. Previous works have focused on benefiting from the
CM or FA properties of digital transmissions [1, 5, 7, 8, 9], but
herein we opt to take advantage of the users’ mutual independence.
Due to the i.i.d. assumption, one must resort to ICA techniques re-
lying on higher-order statistics (HOS). The use of HOS constrains
the source components to be non-Gaussian, which is verified by
most digital modulations. We select the kurtosis-based fixed-point
FastICA algorithm [12] for its robustness and rapid convergence
properties. Generically, assume thatC andT denote the number
of columns ofQ andY, respectively. For complex-valued sources,
the FastICA updating rule at iterationk takes the form [11]:

1. Update:Q̂k = 1
T
Y

(
|Ŝk−1|2 � Ŝk−1

)H − 2Q̂k−1, with

Ŝk−1 = Q̂H
k−1Y.

2. Symmetric decorrelation:̂Qk ← Q̂k(Q̂H
k Q̂k)−1/2.

The orthogonal projection on the set of unitary matrices of Step 2
can be efficiently carried out aŝQk ← UVH from the SVD
Q̂k = UΣVH. As termination criterion we choose∣∣∣trace

(
|Q̂H

k Q̂k−1|
)
/C − 1

∣∣∣ < 10−3/T. (5)

In our experiments, less than2C iterations are typically required
for convergence in high SNR environments. For low SNR or in-
sufficient sample length, the algorithm may not converge, so we
set the above maximum number of iterations as an additional ter-
mination test. After convergence (or termination otherwise), the
channel estimate can be updated asĤ ← Ĥ(IM+N ⊗ Q̂). If a
direct symbol estimation is used, the source symbols can be ob-
tained from the final update of̂S. The channel matrix can then be
estimated (if needed) via, e.g., LS fitting [5].

4. ICA-AIDED SYMBOL DETECTION

4.1. MMSE-ICA Detection

Let Ĥ be the channel estimate obtained by a blind identification
method. The linear MMSE detector is given byŝn = GHxn, with
G = R−1

x Ĥ, whereRx = E[xnxH
n ] is the sensor-output cov-

ariance matrix. The so-called subspace MMSE detector is derived
from the eigenvalue decomposition of the sample estimate ofRx

[10]. LetW ∈ CK(M+N)×LN be the whitening matrix, i.e., a lin-
ear transformation such thatzn = Wxn fulfils Rz = IK(M+N).
It is a simple algebraic exercise to prove that the MMSE detector
adopts the equivalent alternative form̂sn = G̃Hzn, with

G̃ = WĤ. (6)

The idea developed in [11] for a DS-CDMA signal model con-
sists of carrying out the detection with the separating matrixG̃′

provided by an ICA algorithm initialized with̃G. The rationale
behind this notion is to refine the MMSE solution by exploiting the
independence of the source components. This objective is reason-
able because, as pointed out in [11], the conventional MMSE only
exploits (implicitly) SOS, whereas ICA also takes into account
HOS in its search for independence. Indeed, this MMSE-ICA de-
tection scheme is shown to mitigate performance drops caused by
timing, channel or model-order estimation errors in the conven-
tional receiver [11]. The simulations of Sec. 5 demonstrate ana-
logous features in the more general signal model of eqn. (2).



4.2. Simplified MMSE-ICA Detection

The peculiarities of the FIR-MIMO model enables the simplific-
ation of the hybrid MMSE-ICA detector. In particular, the com-
ponents of the vectorsn are stacked time-shifted versions of the
source symbolss(n), and thus it suffices to estimate its firstK
components. By virtue of eqn. (6),s(n) can be MMSE-detected
via ŝ(n) = G̃H

Kzn where

G̃K = WĤK (7)

andĤK represents the firstK columns of the estimated channel.
Matrix G̃K can then be used as the initial point of the ICA al-
gorithm. Looking at the structure of the true channel matrixH in
(3), eqn. (7) could be further simplified intõGK = WKĤ(0),
whereWK corresponds to the firstK columns of the whitening
matrix andĤ(0) is an estimate of matrix tapH(0). Although the
effects of this further simplification are worth investigating, we
only consider the form (7) hereafter. The relevant fact is that the
number of columns to be updated is now reduced by a factor of
M +N with respect to matrix̃G, with the consequent decrease in
computational complexity. This simplified MMSE-ICA detection
scheme is not only more computationally efficient, but also out-
performs the full MMSE-ICA detector, as it will be illustrated in
Sec. 5.

Note that the choice of the firstK columns ofĤ to construct
matrix G̃K is somewhat arbitrary and may indeed be statistic-
ally suboptimal. Its advantage over otherK-column block choices
needs to be analyzed. Nevertheless, simulation results indicate that
the beneficial effects of the above selection are already significant.

4.3. Switching Strategy

In low SNR or short sample size scenarios, the application of the
ICA refinement may actually worsen the results of the conven-
tional detector. In the CDMA environment [11], the MMSE-ICA
solution was only chosen when the prior information provided by
the conventional receiver was fairly preserved in the ICA refine-
ment, i.e., when the initial and final vectors of the ICA algorithm
were sufficiently correlated. We extend this criterion to the MIMO
model by switching to the MMSE-ICA solution of Sec. 4.1 if

IRe
(
trace(G̃HG̃′)

)
> 0.8K(M + N) (8)

where IRe(·) denotes the real part of its complex argument, and us-
ing the conventional MMSE detector otherwise. Using a threshold
of 0.8K, this switching rule is made applicable to the simplified
MMSE-ICA solution of Sec. 4.2.

5. SIMULATION RESULTS

We simulate a wireless communication system in whichK = 5
users transmit QPSK-modulated information across a frequency-
selective channel with a maximum delay spread ofM + 1 = 5
symbol periods. A smoothing factor ofN = 5 combined with
a spatio-temporal diversity level ofL = 10 result in a50 × 45
channel matrix with a condition number of around 100. Since,
by construction, the simplified detector only estimatess(n) for
n = M +N−1 to Nd +M−1, we define the signal mean square
error as

SMSE=
1

K(Nd −N + 1)

Nd+M−1∑
n=M+N−1

‖ŝ(n)− s(n)‖2 (9)

although similar results are obtained with a performance criterion
based on‖ŝn − sn‖2. The SMSE is averaged overν Monte Carlo
iterations, withνNd > 105.

The first experiment evaluates the noise-free scenario for a
varying number of observed symbol periods. For ISI cancellation,
we use the extended version [4] of the blind channel identifica-
tion method of [2]. This method (‘TON94’) is then followed by
a CCI-cancellation stage based on ILSF [1] or ICA (Sec. 3). The
ILSF is initialized at the identity matrix. The case of perfect chan-
nel estimation is also considered. After identifying the channel,
the transmitted symbols are estimated by one of the three detec-
tion schemes explained in Sec. 4: subspace MMSE, MMSE-ICA
and simplified MMSE-ICA. The latter two detectors include the
switching strategy of Sec. 4.3. The results of Fig. 1 show that
ICA-based CCI cancellation proves consistently superior to the
FA-based approach, with up to 10-dB improvements for the sim-
plified MMSE-ICA receiver. In addition, ICA-based CCI removal
seems to effectively compensate for channel identification errors,
since it reaches the performance obtained under perfect channel
knowledge. Also, the ICA-assisted detectors notably improve the
conventional MMSE receiver, with gains exceeding the 15 dB in
the simplified MMSE-ICA method with ICA-based CCI suppres-
sion.

The effects of additive white complex-Gaussian noise are as-
sessed in Fig. 2, with an average SNR per sensor component of
trace(HHH)/(σ2LN) and fixedNd = 500 symbol periods. The
optimal MMSE curve corresponds to the MMSE receiver with per-
fect channel and sensor covariance matrix estimates. Again, a su-
perior behaviour of the ICA-based CCI-cancellation and detection
techniques is evidenced.

Figs. 3–4 consider the extended direct symbol estimation al-
gorithm of [5] (‘LIU95’), followed by the ILSF/ICA CCI-removal
stage. The ICA-based approach seems to overcome the lack of
consistency observed in the results of the ILSF method. Remark
that the appropriate use of ICA enables channel-identification based
blind equalization reach the performance of direct symbol estim-
ation. This latter technique surpasses the optimal MMSE receiver
over certain SNR range, which is an interesting outcome worthy
of further investigation.

6. CONCLUSIONS

We have considered the exploitation of the mutual statistical inde-
pendence between the users’ signals for CCI cancellation and data
detection in the BIE of FIR-MIMO channels. The use of ICA for
CCI cancellation outperforms the FA-based ILSF algorithm, both
in direct symbol estimation and channel-identification based meth-
ods. In the latter, the ICA-assisted MMSE detection strategy fur-
ther increases the robustness, relative to the conventional MMSE
receiver, against channel-estimation inaccuracies. The peculiar
structure of the FIR-MIMO model leads to a simplified ICA-aided
MMSE detector, with improved performance at a lower computa-
tional cost. As an added advantage of the ICA-based BIE methods,
the prior knowledge of system parameters such as users’ modu-
lations or signature sequences is spared, with the consequent in-
crease in versatility. These features make ICA-based techniques
very promising not only in future commercial wireless systems,
but also in non-cooperative military scenarios.
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Figure 1: Detection performance vs. sample size, SNR=∞.
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Figure 2: Detection performance vs. SNR,Nd = 500.
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identification and equalization of MIMO FIR channels based on
second-order statistics and blind source separation,” inProc. DSP-
2002, 14th International Conference on Digital Signal Processing,
Santorini, Greece, July 1–3, 2002, vol. I, pp. 135–138.

[5] H. Liu and G. Xu, “Closed-form blind symbol estimation in digital
communications,”IEEE Transactions on Signal Processing, vol. 43,
no. 11, pp. 2714–2723, Nov. 1995.

100 200 300 400 500 600 700
−30

−25

−20

−15

−10

−5

0

5

sample size, N
d

S
M

S
E

 (d
B

)

LIU95 + ILSF
LIU95 + ICA
TON94 + ICA + simp. MMSE−ICA

Figure 3: Detection performance vs. sample size, SNR=∞.

0 10 20 30 40 50 60 70 80
−30

−25

−20

−15

−10

−5

0

5

SNR (dB)

S
M

S
E

 (d
B

)

LIU95 + ILSF
LIU95 + ICA
TON94 + ICA + simp. MMSE−ICA
optimal MMSE

Figure 4: Detection performance vs. SNR,Nd = 500.

[6] K. Abed-Meraim, P. Loubaton, and E. Moulines, “A subspace al-
gorithm for certain blind identification problems,”IEEE Transac-
tions on Information Theory, vol. 43, no. 2, pp. 499–511, Mar. 1997.

[7] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of syn-
chronous co-channel digital signals using an antenna array. Part I:
Algorithms,” IEEE Transactions on Signal Processing, vol. 44, no.
5, pp. 1184–1197, May 1996.

[8] A.-J. van der Veen and A. Paulraj, “An analytical constant modulus
algorithm,” IEEE Transactions on Signal Processing, vol. 44, no. 5,
pp. 1136–1155, May 1996.

[9] A.-J. van der Veen, “Analytical method for blind binary signal sep-
aration,” IEEE Transactions on Signal Processing, vol. 45, no. 4, pp.
1078–1082, Apr. 1997.

[10] X. Wang and H. V. Poor, “Blind equalization and multiuser detection
in dispersive CDMA channels,”IEEE Transactions on Communica-
tions, vol. 46, no. 1, pp. 91–103, Jan. 1998.

[11] T. Ristaniemi and J. Joutsensalo, “Advanced ICA-based receivers for
block fading DS-CDMA channels,”Signal Processing, vol. 82, no.
3, pp. 417–431, Mar. 2002.

[12] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for inde-
pendent component analysis,”Neural Computation, vol. 9, no. 7, pp.
1483–1492, 1997.


	 INTRODUCTION
	 SIGNAL MODEL
	 ICA-BASED CCI CANCELLATION
	 ICA-AIDED SYMBOL DETECTION
	 MMSE-ICA Detection
	 Simplified MMSE-ICA Detection
	 Switching Strategy

	 SIMULATION RESULTS
	 CONCLUSIONS
	 REFERENCES

