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SUMMARY

Blind space–time equalization of multiuser time-dispersive digital communication channels consists of
recovering the users’ simultaneously transmitted data free from the interference caused by each other and
the propagation effects, without using training sequences. In scenarios composed of mutually independent
non-Gaussian i.i.d. users’ signals, independent component analysis (ICA) techniques based on higher-order
statistics can be employed to refine the performance of conventional linear detectors, as recently shown in a
code division multiple access environment (Signal Process 2002; 82:417–431). This paper extends these
results to the more general multi-input multi-output (MIMO) channel model, with the minimum mean
square error (MMSE) as conventional equalization criterion. The time diversity introduced by the
wideband multipath channel enables a reduction of the computational complexity of the ICA post-
processing stage while further improving performance. In addition, the ICA-based detector can be tuned to
extract each user’s signal at the delay which provides the best MMSE. Experiments in a variety of
simulation conditions demonstrate the benefits of ICA-assisted MIMO equalization. Copyright # 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Blind space–time equalization}motivation. Future wireless communication systems are expected
to support a wide variety of high data rate multimedia applications [1, 2]. Increased transmission
speeds combined with multipath propagation environments result in highly time-dispersive (or
frequency selective) channels, which introduce severe intersymbol interference (ISI) in the
received signal [3]. Novel multiple access techniques are currently being investigated whereby
simultaneous transmission of different users in the same time–frequency slot is allowed (e.g.
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spatial division multiple access, SDMA). This overlapped sharing of channel resources enhances
bandwidth utilization at the expense of an increased level of co-channel interference (CCI).
Signal processing techniques for space–time equalization aim at the cancellation of CCI and ISI
at the receive antenna output, and the recovery of the transmitted users’ data [4]. Traditionally,
equalization is aided with the transmission of training or pilot sequences, which makes a poor
use of the available bandwidth and is not feasible or practical in certain scenarios [5, 6]; hence
the enormous research interest aroused by blind equalization techniques since the seminal works
of References [7–11].

SIMO model. In the single-user case, the use of receivers with spatially separated multiple
antenna elements and/or oversampling (i.e. sampling faster than the baud rate) leads to the
single-input multiple-output (SIMO) signal model. Compared to the conventional single-output
(SISO) case, SIMO systems exhibit two remarkable features [12–14]: first, non-minimum phase
channels can be blindly identified using only second-order statistics (SOS); second, finite impulse
response (FIR) channels can be perfectly equalized, in the noiseless case, using FIR filters.

MIMO model}ICA-based CCI-cancellation. The multiuser scenario is naturally described by
the multiple-input multiple-output (MIMO) signal model. This model also arises in systems with
multiple transmitter antennas (using, e.g. spatial multiplexing), even if just a single user is
present. The MIMO extensions of SIMO equalization techniques are able to suppress ISI,
resulting in a memoryless CCI-only cancellation problem [5, 15–17]. This latter can then be
resolved using source separation techniques based on the finite alphabet or constant modulus
properties of digital modulations [5,18–20]. Alternatively, the mutual statistical independence
between the users’ signals can be exploited through the use of independent component analysis
(ICA) [21] based on higher-order statistics (HOS) [15, 22–24]. The main advantage of HOS-
based ICA techniques is that, under mild conditions (typically, that at most one of the sources
be Gaussian [23]), signal recovery is guaranteed regardless of the source constellation and
spectral characteristics [24].

Channel identification and optimum-delay estimation. Blind multichannel equalization can be
performed with (e.g. References [12, 13, 25]) or without (e.g. References [5, 26, 27]) previous
channel identification. Channel identification-based equalization presents the main drawback
that inaccuracies in the channel estimate have a detrimental effect on the signal detection stage.
However, a channel estimate may prove useful in a variety of tasks such as power control,
propagation characterization, or source localization and tracking. More importantly, knowl-
edge of the channel structure makes it possible to select the equalization delay which yields
optimum performance. The equalized signal mean square error (MSE) for a given delay depends
on the corresponding column of the channel matrix, as shown in the exact MSE expression for
the linear minimum mean square error (MMSE) equalizer [28] as well as in the approximated
Cram!eer–Rao lower bound of Reference [29]. Even direct equalization methods require to
estimate the channel response from the equalized output in order to perform optimum delay
selection [27, 30]. In addition, Reference [27] needs to compute the equalizers for all delays
before discerning the optimum solution. The iterative procedure described in Reference [31]
avoids channel estimation, but its convergence to the optimum-delay equalizer is only
conjectured and is not theoretically guaranteed; the procedure is also computationally
expensive.

ICA-based detection. The exploitation of HOS through ICA proves useful in refining
conventional linear detection, as recently demonstrated in Reference [1] in a particular code
division multiple access (CDMA) model. The ICA refinement alleviates the negative impact of
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channel estimation errors on the equalization performance. Similar results are obtained in
Reference [32] in the more generic MIMO model, where it is shown that ICA-aided MMSE
equalization outperforms the conventional MMSE receiver. Furthermore, the time redundan-
cies of the MIMO model allow certain simplifications which yield considerable performance
improvements with significant computational savings.

Contribution. The purpose of this paper is to elaborate on the findings of Reference [32]. We
propose the use of ICA for the simultaneous extraction of the users’ signals at their respective
optimal MMSE equalization delays. The subsequent performance gains are achieved at only a
modest increase in computational load relative to the conventional receiver. We also intend to
carry out, through simulation, a more rigorous experimental analysis of ICA-assisted blind
detection in MIMO digital communication systems.

Outline of the paper. Section 2 summarizes the signal model and mathematical preliminaries.
Section 3 presents the theory behind ICA-aided optimum-delay equalization, which is the core
of our contribution. An experimental study is reported in Section 4. The concluding remarks of
Section 5 bring the paper to an end.

Notations. Vectors and matrices are denoted by boldface lowercase and uppercase symbols,
respectively; C is the set of complex numbers; In refers to the n� n identity matrix; ð�ÞT; ð�ÞH,
ð�Þ�1 and ð�Þy indicate the transpose, Hermitian (conjugate-transpose), inverse and Moore-
Penrose pseudoinverse matrix operators, respectively; ðaÞi is ith component of vector a; jjAjj2F ¼
traceðAAHÞ ¼ traceðAHAÞ denotes the Frobenius norm of matrix A; Reð�Þ denotes the real part
of its complex argument; Ef�g represents the mathematical expectation;� and� stand for the
Kronecker and elementwise product, respectively.

2. SIGNAL MODEL

Let us consider a multiuser communication system composed of

(A1) K users transmitting, at a known constant baud rate, zero-mean unit-variance mutually
independent non-Gaussian i.i.d. data symbols sðnÞ ¼ ½s1ðnÞ; . . . ; sK ðnÞ�T 2 C

K ;
(A2) a receiver with vector output xðnÞ ¼ ½x1ðnÞ; . . . ; xLðnÞ�T 2 C

L;
(A3) FIR channels (including pulse-shaping and receive filter effects) spanning at most M þ 1

symbols, with matrix coefficients HðkÞ 2 CL�K ; k ¼ 0; 1; . . . ;M ; where the channel order M
is assumed to be known and the channel taps fixed over the observation window,

(A4) zero-mean additive noise vðnÞ 2 CL independent of the data sources.

Symbols n and k above represent discrete-time indices relative to the baud period. The
receiver output components in (A2) are not necessarily associated with spatially separated
physical devices. Since digital signals are cyclostationary, oversampling or fractionally spaced
sampling (i.e. taking more than a sample per baud period) can induce extra ‘virtual’ sensors
[12, 13]. The virtual channels are given by the phases of the physical channels, a phase
corresponding to a baud-sampled sequence of the impulse response with a different time origin.
Space–time processing operates on the spatial (physically separated sensors) as well as the
temporal dimension [4, 5]. Although time- or space-only processing may suffice in theory,
improved ISI-CCI suppression can be achieved by joint space–time processing [4]. Assumptions
(A3) model block (or time-non-selective or slowly) fading channels, typical of low mobility
systems, with small to moderate Doppler spread values.
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Under the above assumptions, the MIMO model can be expressed as

xðnÞ ¼
XM
k¼0

HðkÞsðn� kÞ þ vðnÞ ð1Þ

Stacking N consecutive received signal vector samples leads to the matrix model

xn ¼ Hsn þ vn ð2Þ

with sn ¼ ½sðnÞ
T; sðn� 1ÞT; . . . ; sðn�M � N þ 1ÞT�T 2 CKðMþNÞ

H ¼

Hð0Þ � � � HðMÞ 0 � � � 0

0 Hð0Þ � � � HðMÞ � � � 0

..

. . .
. . .

. . .
. . .

. ..
.

0 . . . 0 Hð0Þ � � � HðMÞ

2
6666664

3
7777775

ð3Þ

xn ¼ ½xðnÞ
T;xðn� 1ÞT; . . . ;xðn� N þ 1ÞT�T 2 CLN ; and analogous definition for vn: For conve-

nience, we call P ¼ LN ; C ¼ M þ N ; and D ¼ KC:
The objective of blind MIMO equalization is to estimate the source signals sðnÞ from the only

observation of the receiving sensor output xðnÞ: This process involves ISI cancellation (time
equalization) and CCI suppression (space equalization). These tasks can be performed by first
identifying the channel taps

H ¼ ½Hð0Þ; Hð1Þ; . . . ;HðMÞ� ð4Þ

which are then ‘inverted’ to estimate the sources. The block-Toeplitz channel matrix H 2 CP�D

in Equation (2) must be full column rank. An obvious necessary condition is that L > K: the
number of sensors must be strictly higher than the number of sources, i.e. sufficient spatio-
temporal diversity must be available; also, N5KM=ðL� KÞ; which sets a lower bound on the
equalizer length. A sufficient condition for the invertibility of H is that the subchannels be
coprime, that is, that they do not share any common zeros [12]. More elaborate sufficient
conditions are given in Reference [33].

Even if the channel matrix is invertible, inherent indeterminacies exist. Without any further
prior knowledge on the sources or the mixing system besides assumptions (A1) and (A3), the
channel matrix tapsHðkÞ can at best be identified up to a common post-multiplicative factor KC;
where C 2 CK�K is a permutation matrix and K 2 CK�K a non-singular diagonal matrix with
unit-norm diagonal elements. These phase and permutation indeterminacies are unavoidable
but admissible ambiguities in blind estimation.

In the sequel, it is assumed that the channel matrix H (or, equivalently, the channel tap matrix
H) has been estimated through a suitable blind MIMO identification method (as those of, e.g.
References [5, 16, 17, 32]). Our primary concern is the estimation (i.e. detection or equalization)
of the source signals s from the sensor output x by using the identified channel. In blind space–
time equalization techniques based on previous channel identification, ISI-CCI suppression is
implicitly carried out during channel estimation, and actually takes effect at the detection stage.
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3. ICA-AIDED DETECTION

3.1. Linear detection

Even if the channel is perfectly known, the estimation of the source signals in a noisy model like
(1)–(2) is not a trivial task. The maximum likelihood sequence estimator is the optimal detector,
but its computational load can be prohibitive in scenarios involving a large number of users and
highly dispersive channels [3]. Trading off complexity for performance, linear receivers are based
on the estimation of a linear transformation G 2 CP�D fulfilling certain (sub)optimality
criterion; data are then detected as #ssn ¼ GHxn: The zero forcing (ZF) detector aims at the joint
minimization of ISI and CCI in the absence of noise, and can thus be expressed as the least-
squares problem

GZF ¼ arg min
G
jjGHH� IDjj

2
F ð5Þ

The solution to (5) is readily computed as GZF ¼ ðHHHÞ�1H ¼ ðHyÞH: The ZF detector can lead
to severe noise amplification in noisy scenarios. This drawback is avoided by the minimum mean
square error (MMSE) equalizer

GMMSE ¼ arg min
G

E jjGHxn � snjj
2

� �
ð6Þ

with closed-form solution GMMSE ¼ R�1x H; where Rx ¼ EfxxHg represents the sensor-output
covariance matrix. Due to its enhanced properties at low signal-to-noise ratio (SNR), we adhere
to the MMSE detector in the following. The development is analogous for ZF equalization.

3.2. ICA refinement

Imprecisions, e.g. due to finite sample size, in the estimation of the channel matrix or the sensor
covariance matrix have a negative impact on the detection of the transmitted data symbols. To
alleviate this detrimental effect, the higher-order statistical independence of the users’ signals can
be exploited. Under the spatio-temporal independence assumption of (A1), model (2)
corresponds to a problem of blind separation of independent sources in instantaneous linear
mixtures, which can be solved with the statistical tool of ICA based on HOS [21]. From this
perspective, the source estimation can be carried out without previous channel identification by
applying an ICA method directly and then using a simple algorithm to identify and group each
user’s delays [24, 34, 35]. Although this fully blind ICA approach is conceptually simple, the
computational complexity of separating D ¼ KðM þ N Þ independent components can become
excessive, even with a moderate number of users, in systems with long delay spreads as a result
of high data rates [24].

The rationale behind ICA-assisted detection consists of taking advantage of the available
channel estimate as an initial point in the ICA search. Two main benefits can be derived from
this refinement. Firstly, since conventional detection (Equations (5)–(6)) only makes use
(implicitly) of SOS, the exploitation of HOS by ICA is expected to mitigate performance drops
caused by estimation errors at the channel identification stage. Secondly, if these channel
identification errors are moderate, the initialization provided by the channel estimate may
already be quite close to the ICA solution, thus decreasing the convergence time and
computational complexity of the ICA post-processing block. The idea of ICA-refined detection
was originally proposed in Reference [1] in the context of a DS-CDMA signal model. In
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Reference [32], the ICA-based MMSE refinement was extended to the more general MIMO
model, and is reproduced below for the sake of completeness.

Consider the whitened sensor output zn ¼Wxn; in which the whitening matrix W 2 CD�P

constrains Rz ¼ ID: Matrix W can easily be computed from the eigenvalue decomposition
(EVD) of Rx; and involves second-order space–time decorrelation, power normalization and
projection on the signal subspace. The MMSE estimate of sn accepts the equivalent expression
#ssn ¼ *GGHzn; with

*GG ¼W #HH ð7Þ

In the noiseless case, detection matrix *GG is unitary. Hence, the whitened outputs can be regarded
as a spatio-temporal unitary linear mixture of the users’ data. To exploit the source statistical
independence, an ICA method can operate on the whitened signals zn with a separating matrix
initialized at the conventional MMSE detection matrix *GG: Final detection is then performed
with the separating matrix #GG provided by the ICA algorithm at convergence. The use of HOS
constrains the users’ data to be non-Gaussian (Assumption (A1)), which is verified by most
digital modulations of practical significance. We select the fixed-point FastICA algorithm based
on kurtosis optimization [21, 36] for its robustness and rapid (cubic) convergence properties.
Assume that T consecutive whitened column vectors are stored in matrix Z ¼ ½z0; z1; . . . ; zT�1� 2
CD�T : The FastICA algorithm can be outlined as follows [1, 21, 36]:

1. Initialize #GG0 as the projection of *GG onto the set of unitary matrices.
2. For k50; repeat steps below until convergence.
3. #SSk ¼ #GGH

k Z:
4. Update #GGkþ1 ¼ 1

T Zðj
#SSk j

2� #SSkÞ
H � g #GGk :

5. Symmetric decorrelation #GGkþ1  #GGkþ1ð #GGH
kþ1

#GGkþ1Þ
�1=2:

In Step 4, g ¼ 3 for real-valued sources (e.g. BPSK modulations) and g ¼ 2 for complex-
valued sources. The orthogonal projection on the set of unitary matrices of Steps 1 and 5 admits
an efficient implementation in terms of the singular value decomposition (SVD) #GG ¼ URVH as
#GG UVH: As a statistically significant termination criterion we choose

1

D
traceðj #GGH

kþ1
#GGk jÞ � 1

����
����510�3

T
ð8Þ

That is, iterations are stopped when the column vectors of #GGkþ1 and #GGk lie in directions which
are sufficiently close (in terms of a sample-size based threshold). In preliminary experiments, less
than 2D iterations are typically required for convergence in high SNR environments and
sufficient sample size. For low SNR or insufficient sample length, the algorithm may not
converge, so the above maximum number of iterations is set as an additional termination test.
Excluding the symmetric decorrelation step, the computational complexity of the FastICA
algorithm is of order OðDT Þ floating point operations (flops) per column of #GG per iteration.

Note that the authors of Reference [1] were involved in extracting the signal of a single user of
interest, whereas we aim at the simultaneous demodulation of all existing users (including all the
spatially multiplexed data substreams of each user, if multiple transmit antennas are employed).
Furthermore, the parameterization in the CDMA model of Reference [1] only accounts for
channels with short delay spreads (more precisely, a delay spread of less than half the symbol
period is considered in that reference). By contrast, the more general MIMO model of
Equations (1)–(2) enables a more realistic characterization of wideband channels with longer
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delay spreads.z More importantly, Reference [1] extracts the user-of-interest’s signal at a fixed
delay. However, long delay spreads make it possible to extract the users’ data at alternative
delays, which can lead to potential performance improvements. Unlike fully blind ICA, where
no control over the extracted delay is possible, we will see next that ICA-based MIMO
equalization can be fine-tuned to carry out detection at the best delay for each user, thus
improving performance while reducing computational cost.

3.3. Optimal delay selection

The previous sections have reviewed linear detectors that estimate all the components of the
source vector sn simultaneously, and how this conventional detection can be enhanced with the
use of ICA. However, most of the detected signals are redundant, since C ¼ M þ N time-shifted
versions of each of the K users are recovered, whereas a single time delay suffices in practice. The
time redundancy introduced by the multipath channel in the MIMO model (2) enables the
choice of the equalization delay providing the best MMSE performance for each user. This
choice is simplified thanks to the channel matrix estimate obtained in the blind identification
stage.

The MMSE detector of the ith source signal, 14i4K; with delay 04d4ðC � 1Þ; is given by
the corresponding column of GMMSE:

Gi;d ¼ R�1x hi;d ð9Þ

in which hi;d denotes the ðKd þ iÞth column vector of channel matrix H: The resulting MMSE
can be obtained analytically as [28]

MMSEi;d ¼ Efj#ssiðn� dÞ � siðn� dÞj2g ¼ 1� hHi;dR
�1
x hi;d ð10Þ

Optimum MMSE equalization for the ith user is achieved at delay

di ¼ argmin
d

MMSEi;d ð11Þ

Hence, from the available estimate of the channel matrix and the sensor output covariance
matrix, it is possible to compute the equalizer that will detect each source signal with the lowest
MMSE.

In practice, estimation errors caused by finite sample length may produce negative values of
MMSE in Equation (10). However, in our experience the shape of the MMSE performance
variation as a function of the equalization delay as well as the position of the optimum delay do
not suffer significant changes relative to the theoretical solution.

3.4. Simplified ICA refinement

Once the optimal delay of each source has been selected, the corresponding columns of the
estimated channel can be used to initalize the ICA post-processing stage. Let those columns be
stored in matrix #HHK ¼ ½h1;d1 ; h2;d2 ; . . . ; hK;dK �: Then

*GGK ¼W #HHK ð12Þ

zMore details about the differences and relationships between channel models based on physical multipath parameters
and on the channel impulse response can be found in Reference [4].
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is the associated MMSE detector, which can serve as starting point for the ICA refinement
(with the obvious modification of K for D in termination test (8)). In this manner, the ICA
algorithm searches only for the K independent components associated with the users’ signals at
their respective optimum MMSE delay. This search for the optimum-delay components not
only improves performance, but also leads to a reduction in computational complexity by a
factor of C per iteration, which can be remarkable in highly time dispersive channels. In
addition, since fewer independent components are sought, the ICA algorithm would also be
expected to take fewer iterations to converge. These benefits will be put to the test in the
experiments of Section 4.

This simplified MMSE-ICA detection scheme, which arises from the time redundancy
induced by wideband multipath propagation, was originally proposed in Reference [32] for zero-
delay equalization only. Herein, we improve on the original definition by allowing arbitrary
delays and, in particular, those providing optimum MMSE performance for each user
transmission.

3.5. Switching

The ICA refinement may converge to a solution far from optimal, worsening rather
than improving the results of the conventional detector. Experimental results indicate
that this undesirable outcome only occurs in low SNR scenarios or when processing
short sample sizes. At low SNR, noise becomes dominant relative to the users’ data
in signal model (1)–(2). As a result, ICA will ‘perceive’ the noise as the actual sources,
and thus will seek independence among the noise components. This misguided search
will most probably yield a wrong equalization solution. Erroneous HOS estimation
due to short observation windows can cause analogous adverse effects in the ICA
refinement.

To avoid this degeneracy, a ‘branch switching’ criterion can be proposed along the
lines of Reference [1]. By virtue of this criterion, the MMSE-ICA solution is deemed
as favourable when the prior information provided by the conventional receiver is fairly
preserved at the output of the ICA stage, that is, when the initial and final separating
vectors (the columns of #GG0 and #GG; respectively) are sufficiently correlated. This criterion can
easily be extended to the MIMO model by switching to the MMSE-ICA solution of Section 3.2
whenever [32]

x¼4
1

D
Reðtraceð #GGH #GG0ÞÞ > t ð13Þ

where t 2�0; 1½ is a suitably selected threshold (e.g. Reference [1] chooses t ¼ 0:8); the
conventional MMSE detector is otherwise employed. Using K instead of D in the above
expression, the switching rule is readily made applicable to the simplified MMSE-ICA solution
of Section 3.4.

The usefulness of this switching strategy is arguable if the accuracy of the prior information
acquired before detection (e.g. the proximity between the true and the identified channel)
is poor. In such an event, the proposed switching could wrongly rule out ICA solutions that
are actually advantageous compared to those of the linear MMSE receiver, which would
be operating on erroneous information. This switching rule is tested in the simulations of
next section.
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4. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the comparative performance of the ICA-assisted equalizers under a
variety of simulation conditions, and illustrates some points of the previous theoretical
exposition. A communication system composed of K ¼ 5 simultaneous QPSK-modulated users
is simulated in a frequency-selective block fading channel introducing ISI from a maximum of
M ¼ 4 consecutive baud periods. The channel filter taps are randomly drawn from a complex
Gaussian distribution and hence model (up to the pulse-shaping and receive filters) a Rayleigh
propagation environment. A spatio-temporal oversampling level of L ¼ 10 and a smoothing
factor of N ¼ 5 result in a 50� 45 channel matrix H: Additive white Gaussian noise with
covariance matrix Rv ¼ s2IL is present at the sensor output; the SNR is given by

SNR ¼
traceðHHHÞ

s2L
ð14Þ

Equalization performance is measured by the signal mean square error (SMSE)

SMSE ¼
1

K

XK
i¼1

Efj#ssiðn� #dd iÞ � siðn� #dd iÞj2g ð15Þ

where #dd i represents the equalization delay selected for the ith user, which is obtained by the
optimality criteria of Section 3.3 from the channel and covariance matrix estimates. Similarly,
the channel identification accuracy can be assessed with the channel normalized mean square
error (CMSE)

CMSE ¼
jj #HH�Hjj2F
jjHjj2F

ð16Þ

where #HH is the estimated channel tap matrix. Performance parameters are averaged over n
independent Monte Carlo (MC) iterations, with nNd5105; where Nd is the observation length in
baud periods. As a quality index for the optimum-delay estimation performance we define the
delay root mean square error (DRMSE)

DRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

1

K

XK

i¼1
ð #dd ðjÞi � diÞ

2

r
ð17Þ

where #dd
ðjÞ
i represents the ith-source delay estimate at MC iteration j; and theoretical values di are

obtained from Equation (11) by plugging the true channel and covariance matrices in Equation (10).

4.1. Perfect channel knowledge

We first consider the scenario where the channel is assumed to be perfectly known or estimated,
i.e. CMSE ¼ 0: As a result, all errors in the MMSE equalizer are due exclusively to the finite-
sample estimation of the sensor covariance matrix (or, equivalently in this case, of the noise
variance), which is computed from Nd observed symbol periods. For instance, this scenario
could simulate a training-based channel estimation preamble during transmission.

Performance vs sample size. Figure 1 shows the performance of the conventional MMSE, the
MMSE-ICA and the simplified MMSE-ICA receivers against the sample size Nd ; for SNR ¼
20 dB and a fixed channel matrix with condition number around 100. The ICA post-processing
has difficulties to converge at low sample size, as shown by the number of FastICA iterations in
Figure 2. A performance degradation is consequently observed when the switching criterion of
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Section 3.5 is not implemented. However, as Nd gets sufficiently high the ICA receivers
outperform the conventional equalizer, with the simplified MMSE-ICA obtaining the most
efficient performance and approaching faster the theoretical lower bound. The iteration count of
the latter then falls below 1=C times that of the full MMSE-ICA (Figure 2). According to
Section 3.2, this means a reduction in flops by a factor of C2:

Equalization delay. Figure 1 also compares the theoretical MMSE for the optimal- and the
zero-delay equalizers, which emphasizes the gain that can be achieved by using the former.
Illustrating this gain as well, Figure 3 plots the MMSE against the equalization delay for each
source. The estimated optimum delay appears consistent and asymptotically unbiased, as shown
in Figure 4. However, to keep the delay estimation accuracy more samples are needed as the
SNR increases.
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Figure 1. Equalization performance vs sample size, with CMSE ¼ 0; SNR ¼ 20 dB:
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Figure 2. Number of FastICA iterations vs sample size in the simulation of Figure 1.
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Switching threshold. In a bid to shed some light on the choice of the switching threshold t;
Figure 5 displays the loci of the average performance gain introduced by the ICA-aided
detectors relative to the conventional MMSE, and their respective average correlation coefficient
x; for various SNRs (0 , 20, 40, 60 dB;1). The plots indicate that t� 0:8 and t� 0:6 are good
threshold choices for the MMSE-ICA and the simplified MMSE-ICA equalizer, respectively. In
practice, the exact figures do not seem too critical. The ‘switch’ curves of Figure 1 were obtained
with t ¼ 0:8 for both ICA detectors, and such value has provided satisfactory results in all our
experiments in a variety of different scenarios.

Performance vs SNR. The sensor covariance matrix estimation errors due to finite sample size
cause interference flooring in the MMSE detector performance at high SNR, as soon as the
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sampling error overcomes the additive noise present at the sensor output. The success of ICA-
based post-detection in tackling this adverse phenomenon is illustrated in Figure 6, which shows
the performance of the different equalization schemes against the additive noise power, with an
observation window of Nd ¼ 500 baud periods and the same general conditions as above.
MMSE-ICA alleviates the MMSE performance flooring by about 6 dB; whereas the simplified
MMSE-ICA receiver provides a striking improvement of over 15 dB: Equivalently, the ICA
detectors require about 3 and 12 times less samples, respectively, than the MMSE to achieve the
same performance at high SNR.
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Figure 5. ICA performance gain vs correlation coefficient x for the scenario
of Figure 1 and different SNRs.
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Figure 7 shows that in low noise the MMSE-ICA actually converges in less iterations than the
simplified MMSE-ICA. Hence, the ratio of C between both iteration counts seems to occur at
moderate SNR levels only. On the other hand, Figure 8 illustrates again that more samples are
needed to maintain the optimum-delay estimation quality as the SNR increases. This outcome,
also observed in Figure 4, is closely related to the flooring effect commented above.
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Figure 7. Number of FastICA iterations vs SNR in the experiment of Figure 6.
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4.2. Blindly identified channel

In the experiments that follow, the channel is estimated from the sensor data using a suitable
blind MIMO identification method. We choose the extension of the SIMO algorithm of
Reference [12] followed by an ICA-based CCI-cancellation step, as explained in References
[16, 24]. System parameters such as the channel order and the signal-subspace dimension are
assumed as known.

Performance vs sample size. Figure 9 shows the detectors’ performance as a function of the
observed window size, when the sensor output SNR is 30 dB: The ICA-assisted equalizers
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Figure 9. Blind equalization performance vs sample size, SNR ¼ 30 dB:
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require around 500 samples to improve the conventional detector. This minimum sample length
reduces for higher SNR (results for the noiseless case under similar simulation conditions can be
found in Reference [32]). The theoretical optimal-delay MMSE lies around �25 dB; which the
ICA methods are unable to reach due to an erroneous delay estimation (dashed line of
Figure 11). Channel identification errors now join covariance matrix imprecisions in hindering
an accurate delay detection. Indeed, the CMSE reaches only around �6 dB from about 700
samples in this simulation (dotted line in Figure 10). Despite the higher iteration count shown
by the simplified MMSE-ICA in Figure 12, further experiments demonstrate that for high Nd

and SNR both methods require approximately the same number of FastICA iterations.
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Figure 11. Delay estimation performance for the simulation conditions of Figure 9 and different SNRs.
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Figure 12. Number of FastICA iterations vs sample size in the simulation of Figure 9.
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Performance vs SNR. Figure 13 indicates that the ICA receivers outperform the MMSE
detector with as few as Nd ¼ 200 observed symbol periods, for a sensor output SNR above
40 dB: The benefits of the switching scheme can also be observed above that SNR value. The
obtained CMSE at several sample lengths is shown in Figure 14. Delay estimation only accurate
for sufficient window sizes at low SNR (Figure 15), as anticipated in the experiments with
perfect channel knowledge. FastICA iteration counts for this simulation are displayed in Figure
16. The simplified MMSE-ICA method requires fewer iterations than the MMSE-ICA over
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Figure 13. Blind equalization performance vs SNR, Nd ¼ 200:
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most of the SNR range, approaching the C factor at low SNR. In terms of flops, the simplified
MMSE-ICA has proven less costly than the MMSE-ICA equalizer in all our experiments.

5. CONCLUSIONS

The users’ statistical-independence, non-Gaussian, i.i.d. assumptions can be exploited to refine
blind MIMO linear equalization through the use of ICA techniques based on HOS. The time
diversity introduced by the wideband multipath channel leads to a simplification of the ICA-
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Figure 16. Number of FastICA iterations vs SNR for the simulation of Figure 13.
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assisted MMSE detector with improved performance and lower computational cost, by
searching only for the equalization delays providing optimum MMSE for each user. The
extension of these results to the SIMO model is straightforward.

It has been observed that a satisfactory optimum-delay detection depends on an accurate
channel and sensor covariance matrix estimation, as well as a trade-off between SNR and
observation length, whereby the required sample size increases as the noise power decreases.
Nevertheless, even in situations where the channel and the delay estimates were rather
inaccurate, the ICA-assisted detectors have been able to improve in all cases the conventional
MMSE equalizer in moderate to high SNR and sample-size conditions. These conditions (e.g.
just a few hundreds of observed baud periods) can be considered as realistic in practical
scenarios.

Further work will consider the improvement of the optimum-equalization delay estimation,
and will compare the ICA-aided methodology to other blind MIMO equalization schemes.
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