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An effective technique to monitor the quality of wavelength-division-multiplexed
(WDM) channels is presented. This process uses a blind signal separation (BSS)
method based on higher-order-statistics (HOS), and an optical-loop structure to
extract the baseband channels from the WDM transmission. From the recon-
structed baseband waveforms, a series of WDM transmission quality parameters
are evaluated. Relative to previously proposed methods for WDM-channel
monitoring, the HOS-based optical-loop procedure shows reduced complexity,
improved cost efficiency, and better performance. © 2004 Optical Society of
America

OCIS codes:060.4510, 060.4230.

1. Introduction

For the proper management of WDM transmission systems and particularly optical net-
works that use optical add–drop multiplexing (OADM) and optical cross connect (OXC),
it is essential to monitor a variety of channel-performance parameters such as signal-to-
noise ratio (SNR), bit-error rate (BER), andQ factor without compromising transparency.
Traditional methods for WDM channel monitoring use tunable optical filters, phased-array
demultiplexers, or photodiode arrays with diffraction gratings [1].

The disadvantage of these methods is that complex (expensive) optical components are
involved.

In an effort to reduce the number of expensive optical components, cost-effective mon-
itoring solutions aim to perform most of the processing electronically. The (spatial) in-
dependence between the transmitted WDM channels has been exploited in recent studies
[2–4]. The technique presented in Ref. [3] can be used to reconstruct the complete channel
waveforms, from which performance parameters can be measured. Along the lines of Ref.
[4], wavelength-dependent attenuators (WDAs) are employed to obtain additional obser-
vations of the WDM signal, each observation considered as a mixture of the constituent
channels. Because the WDA has an adjustable nonlinear relation between the wavelength
and the output power, the independent channels contribute with different strengths to each
observation, and sufficient spatial diversity is available for a suitable blind signal separation
(BSS) method to recover the original transmitted waveforms.

The symmetric adaptive decorrelation (SAD) technique of Ref. [5] was adopted as a
separation device. This particular technique, however, has a number of deficiencies. On
the one hand, its complexity is of orderO(N!) for anN-channel WDM transmission. On
the other hand, the method has inherent stability and convergence difficulties—including
spurious nonseparating solutions [5]—which may hinder the monitoring process in practi-
cal cases. More specifically, the method is based on second-order statistics, which causes
problems with identification in the separation of spectrally white sources. In Refs. [6] and
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[7], each channel uses a unique set of WDA and photodetector, which makes this technique
less efficient with increasing number of channels.

In this paper we overcome these shortcomings with a more cost-effective optical-loop
structure to WDM monitoring, but still applying BSS based on higher-order statistics
(HOS), and provide a satisfactory solution of WDM quality evaluation through the re-
constructed baseband waveforms. In Section2, the system setup is described in sufficient
detail for understanding the computer experiments that follow. Three BSS methods are re-
viewed in Section3, and these are subsequently applied in the following experiments. In
Section4 are described quality-monitoring parameters from WDM transmissions. Simula-
tions are described and results are presented in Section5. Finally, the paper is concluded in
Section6.

2. System Description

Figure1 shows a system setup of the proposed WDM channel monitoring scheme. A small
fraction of each of theN channels’ WDM signal is coupled out of the network with an
asymmetric power splitter. A predetermined period of time, say,T1, of this split optical
signal is then sent into an optical loop, which contains a delay fiber and an optical pump,
to generate a periodic optical signal sequence of repeating signal fractionT1 for N times,
each period of the signal is spaced from the other by a predetermined period of “all-zeros.”
An adjustable WDA [6] is used to attenuate this sequence. The WDA is synchronized with
the optical switch; thus the attenuation factors for each period of signal fractionT1 are
adjusted to be different from one another. This synchronization is implemented by relating
the driving voltage of the WDA to the optical switch; the required switching speed of the
optical switch and WDA is related toT1, thus the length of the delay fiber, and the length of
the “all-zero” sequences used to space the “T1” sequences. An optical pump is also applied
to compensate the power coupled out of the optical loop. The attenuated optical signal
sequence is converted into an electrical signal sequence by a photodetector. The purpose of
the loop and WDA structure is to generate several linear mixtures of the WDM channels,
which a BSS method can later use for extracting the WDM channels separately. From the
reconstructed WDM waveforms, quality parameters such as eye diagrams,Q factor, and
BER can be estimated.
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Fig. 1. Experimental setup.

The wavelength-dependent attenuating procedure above is a form of nonlinear optical
signal processing, which can compensate the loss of wavelength information caused by the
conversion from optical domain to electrical domain [4]. By applying appropriate electrical
signal processing methods, up to some extent, we do not need to know the details of this
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nonlinear optical signal processing (i.e., the WDA). In Section3 we show that BSS methods
based on HOS can be applied to extract the WDM signals.

3. WDM Signal Extraction Using HOS-Based BSS

Let yi (k), 1≤ i ≤M, denote theM observed photocurrents of theN-channel WDM signal
(M ≥ N), wherek represents a discrete time index. Accordingly, letsi (k), 1≤ i ≤ N, rep-
resent the channel (or source) baseband data, multiplexed within the WDM signal and thus
not directly observable.

Direct photodetection of the WDM transmission causes all wavelength information to
be lost. As a result, with additive noise terms neglected, the detected signal appears as a
weighted linear combination of the baseband data:

yi (k) =
N

∑
j=1

hi j sj (k) , 1≤ i ≤M. (1)

Coefficientshi j represent the WDA effects over channelj in observed photocurrenti. Hence
the observation vectory = [y1, . . . ,yM]T (symbolT denoting the transpose operator) and the
channel vectors= [s1, . . . ,sN]T fulfill at any time instant the linear model:

y = Hs, (2)

where the elements of the(M×N) mixing matrixH are given by(H)i j = hi j . Equation (2)
corresponds to the BSS model of instantaneous linear mixtures [8].

Separation is generally achievable under two main assumptions:

(A1) the source signals are mutually statistically independent;

(A2) the mixing matrix is full column rank.

Otherwise both entities—H ands—are unknown in model (2). Note that assumption A2
guarantees considerable freedom in the selection of the WDA attenuation patterns.

 

Fig. 2. Two-step approach to BSS.

As in Ref. [4], we aim to perform the monitoring by first extracting the channel wave-
forms from the photocurrent observations, but here we resort to the BSS methods based on
HOS. The use of HOS is restricted to non-Gaussian signals, which is clearly the case in
the problem at hand, with sources composed of digital modulations. Most methods operate
in two steps (Fig.2). The first step is so-called (spatial) prewhitening, which seeks to nor-
malize and decorrelate the observations by means of conventional second-order statistical
analysis (principal component analysis). This operation results in a signal vectorz, which is
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linked to the channel components through an unknown(M×N) orthogonal transformation
Q:

z = Qs. (3)

The second step finds an estimateQ̂ of Q, from which the channel signals can be recon-
structed aŝs = Q̂Tz. Essentially, a linear transformation approximating the inverse ofQ
is sought such that it maximizes the statistical independence between the separator output
components. This is the purpose of independent component analysis (ICA) techniques. In-
dependence can be measured, directly or indirectly, through a variety of different criteria
such as Kullback–Leibler divergence, negentropy, mutual information, maximum likeli-
hood (ML), and so on, leading to an array of different algorithms. The general rationale
behind these techniques as well as more details about them can be found in Ref. [9]. Below
are described the three HOS-based BSS methods used in the experiments reported later in
this paper.

3.A. JADE

Let us denote the fourth-order cumulant of random variables{zi}N
i=1 as

κz
ik jl = Cum

{
zi ,zj ,zk,zl

}
, (4)

which is endowed with a tensor structure. The cross cumulants of independent random vari-
ables are zero, a property that can be used to measure statistical independence. Gaussian
signals have a particular property that all their higher-order (cross and marginal) cumulants
are always zero; thus it is impossible to discern whether a set of Gaussian signals is mixed.
The cumulant tensor of independent non-Gaussian variables shows a diagonal shape, that
is, κs

ik jl = 0 unlessi = j = k = l . Hence the diagonalization of the cumulant tensor would
accomplish the source separation. However, as yet no algebraic tools are available to diag-
onalize a tensor of order higher than two. The JADE (joint approximate diagonalization of
eigenmatrices) method [10] tries to circumvent this difficulty by simultaneously diagonal-
izing a particular set of matrix “slices” of the fourth-order cumulant tensor. This diagonal-
ization can be carried out in a cost-effective manner by means of conventional Jacobi-like
iterations [11] based on planar Givens rotations:

Q =
[
cosθ −sinθ
sinθ cosθ

]
. (5)

It has been proven [10] that this joint diagonalization is associated with a particularcon-
trast function. Contrast functions [12] are an important concept in BSS / ICA, since they
are particularly well suited for signal separation in the presence of noise. The main disad-
vantage of JADE is its computational complexity. The method requires the calculation of
theN4 elements of the fourth-order cumulant tensor, followed by the diagonalization ofN2

matrices with dimensions(N×N), each made from such cumulants. This complexity can
be restrictive in separation problems with a large number of sources.

3.B. EML

In the two-signal case (N = 2), matrixQ becomes a Givens rotation defined by a single
real-valued parameterθ [Eq. (5)]. The estimation ofθ can be accomplished in closed form,
i.e., without any sort of iterative optimization. Several analytic expressions exist, but the
estimator of Ref. [13] presents the advantage that it approximates (using the Gram–Charlier
pdf expansion truncated at fourth order) the maximum-likelihood solution when the source
signals have the same statistics. This is the case in the WDM monitoring problem, in which

© 2004 Optical Society of America
JON 2994 July 2004 / Vol. 3, No. 7 / JOURNAL OF OPTICAL NETWORKING 480



all transmitted channels are composed of bit streams, possibly contaminated by noise and
interference. This estimator expression reads:

θ̂EML =
1
4
∠ [ξsign(γ)] , (6)

with

ξ = (κz
1111−6κz

1122+κz
2222)+ j4(κz

1112−κz
1222) , (7)

γ = κz
1111+2κz

1122+κz
2222, (8)

where j =
√
−1 is the imaginary unit. Notation∠a denotes the principal value of the argu-

ment of complex-valued quantitya. Estimator (6) can be considered as an extension of the
approximate ML solution of [14], thus its name “extended ML” (EML).

To achieve the source estimation forN > 2 channels, the closed-form expression is
applied over each pair of whitened signals until convergence is reached. Since there exist
N(N−1)/2 signal pairs and approximately

(
1+

√
N

)
sweeps over the signal pairs are

usually necessary for convergence, the method’s complexity with respect to the number of
channels is of orderO

(
N5/2

)
. This value is lower than theO(N!) of Ref. [2], especially for

a large number of channels.

3.C. MaSSFOC

The ICA contrast function of Ref. [12] results from certain approximations of negentropy.
Further simplifications show that such contrast admits, in the two-signal case, a closed-
form solution, called the maximum sum of squared fourth-order cumulants (MaSSFOC)
estimator [15]. It was later discovered [16] that MaSSFOC belongs to a wider family of
so-called weighted closed-form estimators (WEs), whose general expression is given by

θ̂WE =
1
4
∠ξWE, (9)

with
ξWE = ωγξ+(1−ω)ξ2

2, 0 < ω < 1, (10)

where
ξ2 = (κz

1111−κz
2222)+ j2(κz

1112+κz
1222) . (11)

The above expression reduces to the EML estimator [Eq. (6)] for ω = 1. Similarly, the
MaSSFOC estimator is obtained withω = 1/2. The approximate ML solution of Ref. [17]
(similar to that for MaSSFOC) is also reached forω = 1/3.

The EML performance degrades when the source kurtosis sum tends to zero [16].
MaSSFOC overcomes this adverse effect, hence proving more robust in the presence of
noise and impulsive interference. This method handles more than two signals in the same
Jacobi-like fashion as the EML.

Finally, it should be noted that the HOS-based methods described in this section ignore
any temporal structure in the processed signals so that spectrally white photocurrents could
also be separated. If the data symbols transmitted by a single user are uncorrelated, such
spectrally white photocurrents could arise when the photodectector output are sampled at
rates as low as the symbol rate. Low sampling frequencies enable us to reduce the speed
requirements, and hence the cost, of the digital signal processing used for WDM channel
extraction and monitoring without sacrificing performance.
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4. Quality Evaluation of WDM Transmissions

Inasmuch as WDM signal waveforms (and thus the eye diagrams) can be reconstructed
in electrical domain, it is not always necessary to use optical methods to obtain WDM
transmission quality information. Several reports have evaluated amplitude histograms,Q
factors, and BER obtained by the electrical technique [18–20]. Reference [18] confirmed
that the degradation of an optical signal due to noise, cross talk, and chromatic dispersion
can be detected from amplitude histograms. However, it is difficult to evaluate SNR degra-
dation quantitatively because the mark level peak in the histograms is not clear when the
chromatic dispersion is large. Reference [19] defined a method to evaluate averageQ factor
from the eye diagrams and amplitude histograms. This method has sensitivity to both the
SNR degradation and pulse distortion of optical signals influenced by chromatic dispersion
in transmission fiber. Reference [20] introduced a technique to evaluate BER through the
Q factor.

As described in Fig.3, the averageQ factor(Qavg) is expressed by [19]

Qavg =
|µ1,avg−µ0,avg|
σ1,avg+σ0,avg

, (12)

whereµi,avg andσi,avg are the mean and standard deviation of the mark (i = 1) and space
(i = 0) levels of all sampled data, respectively.µ is set to the difference of the mean of the
mark and the space levels. Two thresholds are defined with coefficientα lying between 0
and 0.5:

D0,1 = µ0,1±αµ, 0 < α < 0.5. (13)

avg,1µ

avg,0µ

µ

αµ

αµ

avg,1σ

avg,0σ

Number of Times

Amplitude            Amplitude

Time

thresholds

 

Fig. 3. Definition of averagedQ factor.

Histograms with amplitudes larger thanµ1−αµ are regarded as mark level distribu-
tions, whereas histograms with amplitudes smaller thanµ0+αµ are regarded as space level
distributions. This masking process removes the cross-point data and improves measure-
ment accuracy [21].

Although the exact probability density function for optical noise is not exactly Gaus-
sian, a Gaussian approximation can lead to good BER estimates [20]:

BER(D) =
1
2

{
erfc

(
|µ1−D|

σ1

)
+erfc

(
|µ0−D|

σ0

)}
, (14)

whereµ0,1 andσ0,1 are the mean and standard deviation of the mark and space data rails,
D is the decision level, and erfc(x) is a form of the complementary error function given by

erfc(x) =
1√
2π

∫ ∞

x
e−β2/2dβ≈ 1

x
√

2π
e−x2/2, (15)
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where the approximation is nearly exact forx > 3.
In a high-performance optical transmission system, the BER is very low, traditional

quality-monitoring methods need very long time to detect errors in transmission. Equations
(12) and (14) provide fast and simple evaluations of WDM optical transmission quality with
acceptable accuracy, as demonstrated in Section5.

5. Simulations and Results

Illustrative experiments are carried out with the aid of the VPI simulation software, with
the blind separation part implemented in MATLAB code.

First, we demonstrate the technique in a four-channel WDM setup. Four channels at
wavelengths 1551.0, 1554.2, 1557.4, and 1560.6 nm (i.e., 3.2-nm separation), respectively,
compose the WDM signal. The laser sources are modulated with Mach–Zehnder modula-
tors by NRZ data from a pseudorandom binary sequence at a 10-Gbit/s bit rate.

As explained in Section2, a small fraction of the transmitted WDM signal is diverted
from the optical link into the monitoring system through an asymmetric splitter, and a fiber
span of 50 km is included in front of the monitoring point. A block of this WDM signal
fraction is then let into an optical loop. The signal block runs in the loop for four circles,
and at the end of each circle the signal is coupled out of the optical loop. This means that
the output of the optical loop are four blocks of repeated signals, with blocks spaced from
one another by 128-bit all-zeros. These four signal blocks are sent to an optical signal
processor, i.e., the adjustable WDA, sequentially. The adjustable WDA is synchronized
with the optical loop, and is tuned to have different but unknown attenuation on each of
the signal blocks. All these attenuated signal blocks are detected by a p-i-n photodetector,
which generates the corresponding observed photocurrents shown in Fig.4.
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0.6

0  
0.2
0.4
0.6

0  
0.2
0.4
0.6

0 1 2 3 4 5 6 7 8

0  
0.2
0.4
0.6

time (ns)  
Fig. 4. Observed photocurrents in the four-channel experiment.

These electronic signals are then collected and processed by the HOS-based BSS meth-
ods described in Section3 to obtain the signal separation. The normalized (i.e., zero-mean,

© 2004 Optical Society of America
JON 2994 July 2004 / Vol. 3, No. 7 / JOURNAL OF OPTICAL NETWORKING 483



unit-power) channel data estimated by EML method are shown by the solid curves of Fig.
5. A block of 256 bits (32,768 samples) was processed, of which only a short portion is dis-
played in the figure for the sake of clarity. Observe the accuracy with which the estimated
sequences approximate the actual transmitted data (dotted curves).
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Fig. 5. Normalized data sequences in the four-channel experiment. Dotted curves, trans-
mitted data. Solid curves, channel data estimated by the HOS-based BSS method (EML)
from the photocurrents shown in Fig.4.

Eye diagrams for each channel can be plotted from the separated waveforms, shown in
Fig. 6; thus the averageQ factors and BERs for each channel can be evaluated with the
method introduced in Section4.

Table1 gives the averageQ factors of all four channels, with the channel waveforms
extracted by EML, MaSSFOC, and JADE method, respectively. The input power levels at
the Mach–Zehnder modulators are tuned between−38 and−30 dBm, and the coefficient
α in Eq. (13) is set to 0.1, 0.2, 0.3, 0.4, respectively. VPI software estimates BER through a
Gaussian assumption [22], and the estimated averageQ factors are presented in the tables as
well. Comparison of the results shows that the EML method provides the best approach of
Qavg estimation to the industrial simulation software (VPI) withα = 0.3. Figure7 presents
the average BER curves with the channel waveforms extracted by the EML, MaSSFOC, and
JADE method, respectively, which shows that the EML method provides the best approach
of BER estimation to the industrial simulation software (VPI), with the BER curves for
each single channel shown in Fig.8.

The proposed method is also capable of monitoring a higher number of channels. Figure
9shows the observed photocurrents and separation results for an eight-channel WDM trans-
mission with 1.6-nm channel spacing, under the general conditions for the four-channel
experiment. The estimated BER curves for each channel are shown in Fig.10(a), with the
EML method, compared with the results from VPI software shown in Fig.10(b).
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    (c). Channel 3       (d). Channel 4 

Fig. 6. Eye diagrams for the four-channel experiment.

Fig. 7. Comparison of average BER curves from different methods.
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Fig. 8. BER versus input power curves. (a) EML method with the optical loop structure,
(b) Gaussian assumption by VPI.

Fig. 9. (a) Observed photocurrents and (b) separation results for an eight-channel WDM
transmission.
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Table 1. AverageQ Factors 
Average Q-factor Average Q-factor Input power 

(dBm) VPI EML MaSS JADE 
Input power 

(dBm) VPI EML MaSS JADE 
-38 3.7 4.3 4.1 3.4 -38 3.7 4.1 3.6 3.3 
-37 4.5 5.0 4.6 4.0 -37 4.5 4.8 4.1 4.0 
-36 5.2 5.6 5.1 4.5 -36 5.2 5.5 4.8 4.8 
-35 5.8 6.3 5.5 4.9 -35 5.8 6.0 5.2 5.2 
-34 6.3 6.9 6.0 5.4 -34 6.3 6.7 5.5 5.5 
-33 6.7 7.4 6.3 6.0 -33 6.7 7.2 5.7 5.8 
-32 7.3 8.0 6.4 6.4 -32 7.3 7.9 6.0 6.3 
-31 7.8 8.5 6.7 6.7 -31 7.8 8.5 6.2 6.7 
-30 8.5 9.2 6.9 7.1 

 

-30 8.5 8.9 6.6 7.1 
 (a). 0.1α =       (b). 2.0=α  
 

Average Q-factor Average Q-factor Input power 
(dBm) VPI EML MaSS JADE 

Input power 
(dBm) VPI EML MaSS JADE 

-38 3.7 3.9 3.4 3.1 -38 3.7 3.2 2.9 2.6 
-37 4.5 4.6 4.0 3.7 -37 4.5 3.8 3.4 3.1 
-36 5.2 5.3 4.5 4.2 -36 5.2 4.5 4.0 3.7 
-35 5.8 5.9 4.9 4.8 -35 5.8 5.1 4.4 4.2 
-34 6.3 6.3 5.2 5.2 -34 6.3 5.6 4.7 4.6 
-33 6.7 6.7 5.5 5.7 -33 6.7 6.0 5.0 5.1 
-32 7.3 7.2 5.8 6.3 -32 7.3 6.3 5.2 5.7 
-31 7.8 7.8 6.2 6.8 -31 7.8 6.9 5.3 6.1 
-30 8.5 8.6 6.6 7.5 

 

-30 8.5 7.7 5.8 6.6 
 (c). 3.0=α       (d). 4.0=α  
 
 

6. Conclusions

We have proposed and demonstrated an optical transmission monitoring technique that
uses blind signal separation (BSS) methods based on higher-order statistics (HOS), and
an optical-loop structure. This technique shows reduced complexity, reformative cost effi-
ciency, and improved performance.

The EML method provides an approximate optimal solution (in the maximum-
likelihood sense) for the case of two channels, and entails a computational cost of
O

(
N5/2L

)
when processingL-sample blocks of anN-channel WDM signal. For the signal

distributions typically occurring in WDM monitoring, the method presents no undesired
solutions. In addition, the case of spectrally white channels can also be handled, thus al-
lowing beneficial reductions in the rates at which the photocurrents are sampled. Although
the suggested procedure operates on signal blocks (batch processing), fast adaptive imple-
mentations can easily be designed as well [23].

Relative to previously proposed methods [6, 7], the optical-loop structure presented
in this paper has cost-effective features, especially when WDM signals are composed of
a large number of channels. We have found that a combination of the BSS method and
quality measurement methods with associated thresholds that provide averageQ-factor and
BER estimates, with most of the processing in the electrical domain, to yield results close
to those of traditional methods requiring expensive optical components, which simulated
in an industrial simulation package (VPI).

It should be noted that the blind separation approach is not only useful in monitoring but
also effectively demultiplexes the WDM signal. It appears that this feature has enormous
potential for BSS in optical transmission systems.

© 2004 Optical Society of America
JON 2994 July 2004 / Vol. 3, No. 7 / JOURNAL OF OPTICAL NETWORKING 487



Fig. 10. BER versus input power curves. (a) EML method with the optical loop structure;
(b) Gaussian assumption by VPI.
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