
SHORT COMMUNICATION

Atrial activity estimation from atrial fibrillation ECGs by blind
source extraction based on a conditional maximum likelihood
approach

Ronald Phlypo • Vicente Zarzoso • Ignace Lemahieu

Received: 17 September 2009 / Accepted: 7 January 2010 / Published online: 3 February 2010

� International Federation for Medical and Biological Engineering 2010

Abstract This work presents a spatial filtering method

for the estimation of atrial fibrillation activity in the cuta-

neous electrocardiogram. A linear extraction filter is

obtained by maximising the extractor output power on the

significant spectral support of the signal of interest. An

iterative procedure based on a quasi-maximum likelihood

estimator is proposed to jointly estimate the significant

spectral support and the extraction filter. Compared with a

previously proposed spatio-temporal blind source separa-

tion method, our approach yields an improved atrial

activity signal estimate as quantified by a higher spectral

concentration of the extractor output. The proposed meth-

odology can readily be adapted to signal extraction prob-

lems in other application domains.
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1 Introduction

The present work deals with the estimation of the atrial

electrical signal in the electrocardiogram (ECG) of patients

suffering from atrial fibrillation (AF). The ECG consists of

signal recordings obtained from cutaneous electrodes and

reflects the spatio-temporal electrical activity of the heart

as observed on the body surface. It is known that the

contribution of AF measured in the ECG reveals underly-

ing electro-physiological properties [2]. However, due to

the simultaneous presence of atrial activity (AA), ventric-

ular activity, respiration noise, etc. in the ECG, the electro-

physiological parameters associated with AF cannot be

estimated accurately from the ECG and clinical conclu-

sions derived thereof might be erroneous.

A popular technique for the estimation of AF activity

from the observed ECG is based on average beat subtrac-

tion [11, 12]. The underlying approach consists of the

construction of a lead-specific template for the QRS(-T)

complex by averaging over several complexes in a specific

lead. This template is subsequently subtracted from each of

the complexes in the observations by using an appropriate

amplitude scaling factor and temporal alignment. The

major drawback of these methods are their incapability to

deal with observed waveforms that deviate from the tem-

plate waveform, since the model assumes a stationary

waveform observed in each complex with zero-mean noise.

Also, the remainder contains all activity except the com-

plexes and thus includes the AF waveforms, but also nui-

sance signals resulting from other physiological processes

and noise (power line noise, electromagnetic interferences,

etc.). In addition, the average beat subtraction approach is

unable to efficiently exploit the spatial diversity available

in the multi-lead ECG, that is, the fact that each lead

captures the electro-physiological phenomena under study

from a different spatial position.

In this work, we propose a direct approach to the esti-

mation of the AF activity from the ECG based on spatial

filtering and the narrowband character of the atrial signal.

After transforming the observations into the frequency

domain, we resort to the method of maximal variance in the
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conditional distribution tails (MaxViT), a generic source

extraction algorithm recently proposed in [10]. The Max-

ViT method estimates the extraction filter by maximising a

quasi-conditional likelihood criterion conditioned on a

presence indicator associated with the source of interest. In

the context of AA extraction, the presence indicator cor-

responds to the significant spectral support of the atrial

signal, so that the process is equivalent to the maximization

of the output-signal spectral concentration (SC) in the AF

band. However, when the presence indicator is not

explicitly available, as is the case in our problem, or is

badly estimated, the estimation quality can deteriorate

considerably. To overcome this difficulty, we offer here a

solution to the estimation of the AF contribution in the

ECG by jointly estimating the presence indicator (the

spectral support of the AF) and the extraction filter.

2 Methods

2.1 Blind source extraction

In what follows, we will focus on source extraction methods

to solve the AA estimation problem. Source extraction

exploits explicitly the spatial diversity by searching for

spatial filters (i.e. specific linear combinations of the lead

outputs) that yield an estimate of the source of interest. Since

the ECG electrode potentials are quasi linear with respect to

the electrical cardiac activity for a spatially fixed source

configuration [9], we may assume the following instanta-

neous, linear mixture model for the observed ECG, y 2 R
M :

y ¼ As ð1Þ

where s 2 R
N are the source signals and A 2 R

M�N is a full

column rank mixing matrix (M C N). The latent variables in

the model are both the mixture matrix A and the sources s.

A common strategy to estimate the source of interest, sj,

consists of obtaining a full separation of the observations

into the sources s, followed by a posterior selection. The

full separation problem is based on a search for HT 2
R

N�M as an estimate for A�1 (or its pseudo-inverse if

M = N). To narrow down the class of admissible solutions

for H, a source model needs to be imposed on s. The most

frequent source models in literature are the uncorrelated

Gaussian distributed sources without temporal structure

[8], mutually uncorrelated, spectrally coloured sources

with non-proportional spectra [1, 14] or the mutually

independently distributed sources [5, 7]. Since (linear)

independence is not affected by scaling or permutation, the

sources s can only be estimated up to the ambiguities PKs;

where P 2 R
N�N and K 2 R

N�N are, respectively, a per-

mutation matrix and a non-degenerate diagonal scaling

matrix. Independent Gaussian sources can only be esti-

mated up to a more general rotation matrix. If HT is a

matrix of separation filters, we thus obtain x ¼ HT As ¼
PKs: Focussing on the estimation of sj only, we thus need

to select or identify a posteriori that xi which is the best

estimation of our source of interest sj (up to scale).

The above mentioned approaches to source separation

are optimal when all of the sources belong to one and the

same model family, but suboptimal for the separation of a

mixture of sources when those sources do not all belong to

the same model family [13]. This can intuitively be

explained from the fact that independence measures do not

take into account temporal structures and cannot deal with

Gaussian distributed signals, whereas the exploitation of

non-proportional spectra do not take into account the

spectrally spread energy of temporally impulsive wave-

forms with a rapidly vanishing autocorrelation function.

Unfortunately, the co-existence of temporally autocor-

related Gaussian sources and impulsive non-Gaussian

sources is common in bio-electrical measurements. A

typical example are the ECG signals recorded during AF

episodes, where the impulsive ventricular activity (QRS-T

complex) is superimposed to the AA contribution which

has a significant autocorrelation function; see Fig. 1. It has

already been shown in [4] that neither the method of sec-

ond order blind identification (SOBI) [1], nor the method of

independent component analysis (ICA) [5, 7] alone can

estimate the atrial contribution. A possible solution has

been proposed in [4], introducing the spatio-temporal blind

source separation (ST-BSS) as a two stage, hybrid algo-

rithm. First, source estimates are obtained using ICA. Next,

the source subspace of the near Gaussian sources are

estimated by putting an upper threshold on the normalised

excess kurtosis values of the ICA components. This sub-

space is then decomposed into its source estimates by

means of SOBI. Finally, the estimates resulting from the
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Fig. 1 [Top] A 2 s ECG fragment and [Down] its spectrum obtained by the discrete Fourier transform. The spectrum of the AA has been

estimated by the presented method
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latter stage, having a peak in the 3–9 Hz band, are selected

as the activities related to AF. Unfortunately, the choice of

the threshold is empirical and needs to be tuned to the data

in hand. The authors propose a general threshold of 1.5

subject to inter- and intrapatient variability. In addition, the

two-stage approach is not immune to propagating errors

from the ICA subspace estimation stage to the SOBI

component estimation stage.

On the other hand, most of the source separation algo-

rithms are based on a pre-whitening stage or alternate

between signal estimation and deflation of the observation

space. While the pre-whitening based algorithms propagate

the errors introduced by a whitening of the observations to

the final processing stage [3], the estimation–deflation

strategy does not generally guarantee the extraction of the

source of interest before all other sources, so that the

estimate xj accumulates the errors over all the previous

estimates xi, Vi \ j [6]. In this work, we propose to aim

directly at the source of interest. Moreover, neither defla-

tion, nor pre-whitening are needed, alleviating the limita-

tions imposed by these processing steps.

2.2 Spectral concentration

We aim at estimating a spatial filter h 2 R
M; yielding x ¼

hT y as an estimate for sj. Let us define fm as the modal

frequency of the AF, fs the sampling frequency, ~uðf Þ as the

Fourier transform of a vector valued time series u(t)

evaluated at the frequency f ;U½a; b�
u ¼ <

R b
a

~uðf Þ~uHðf Þdf
h i

and Uu ¼ U½0; fs=2�
u : The SC of x is given by

SCð~xÞ ¼ U½0:82fm;1:17fm�
x

Ux
ð2Þ

In [4], the SC from Eq. (2) has been proposed as a perfor-

mance evaluation parameter for the estimation of AF. This is

justified because the spectrum of AA is highly concentrated

around the modal frequency, whereas the other contributions

in the ECG typically have a larger bandwidth. Hence, SC will

generally be maximal only if x contains no more than the AF

contribution. According to this idea, we could use Eq. 2 as an

objective function to estimate the extraction filter, since we

have U½0:82fm;1:17fm�
x ¼ hTU½0:82fm;1:17fm�

y h and Ux ¼ hTU~yh

from the linearity of the Fourier transform, and thus Ĥ ¼
arg maxH SCðHT yÞ: However, maximising Eq. 2 is only

possible if fm is known. Unfortunately, fm is generally not

available as prior information and that explains the difficulty

in using Eq. 2 in the estimation of sj.

2.3 SC as a MaxViT contrast

Interestingly, the SC in Eq. 2 has the form of the MaxViT

contrast function presented in [10]. Define by IEf�g the

mathematical expectation and by IEf�jeg the mathematical

expectation conditioned on the event e. In short, the theory

of MaxViT states that

WðxÞ ¼
hT< E ~y~yH jI~sj

� �� �
h

hT< Ef~y~yHg½ �h
ð3Þ

with

I~sj
if j~sjj �C

I~sj
otherwise

�

is a contrast for the extraction of sj for any arbitrary con-

stant C [ 0 under the following conditions:

C1: < IEf~sj~s
�
i g

� �
¼ 0; 8i 6¼ j

C2: < IEf~sj~s
�
i I~sj
g

�
� �

¼ 0; 8i 6¼ j
�

C3:
< IEfj~sjj2jI~sj

g½ �
< IEfj~sjj2g½ � �

< IEfj~sij2jI~sj
g½ �

< IEfj~sij2g½ � ; 8i 6¼ j:

In addition, the determination of ĥ through the MaxViT

contrast can be carried out algebraically as the major

generalised eigenvector of <½Ef~y~yHg��1<½Ef~y~yH
�
�I~sj
g�:

Remark that the above conditions are also fulfilled, in

particular, if the variable sj is independently distributed

with respect to si, Vi = j [10]. This is a reasonable

assumption when we consider the AA with respect to the

other contributions in the ECG during AF. Remark that the

MaxViT criterion (Eq. 3) and the SC index (Eq. 2) become

equivalent if the significant atrial frequency band, that is,

the frequencies for which the atrial source j~sjj verifies I~sj

corresponds to the interval [0.82fm, 1.17fm]. In practice,

however, the value of fm is unknown, so that the MaxViT

method needs to be modified to estimate both the modal

frequency (or the closely related indicator function I~sj
) and

the extraction filter.

2.4 MaxViT contrast for atrial signal extraction

As explained above, Eq. 2 cannot be used as a contrast

function, since we do not know fm. However, we know that

the AF activity has a rather compact support in the fre-

quency domain, hence the use of SC as a performance

parameter [4]. For a sampling frequency, fs, the SC is

defined on a relative bandwidth Df/(fs/2) = 0.25 fm/(fs/

2) = 0.5 fm/fs. Assume we have F frequency samples in

[0, fs/2], then SC is calculated on S = 0.5 fm/fs 9 F = (1 - a) 9

F samples. Now, if we want to render S independent from

fm, we could choose a such that S is higher or equal than

the number of samples used in the calculation of SC for

fm = 9 Hz; e.g. for fs = 1 kHz, a good choice would be

a = 0.995. Interestingly, parameter a can be linked to a

presence indicator I~sj
: Consider

I~sj
: j~sjj � caðj~sjjÞ

I~sj
: j~sjj\caðj~sjjÞ

�

ð4Þ
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where caðj~sjjÞ is the a-th (0 B a B 1) percentile with

respect to the distribution pðj~sjjÞ; defined as a ¼R caðj~sjjÞ
0

pðj~sjjÞdj~sjj: Hence, caðj~sjjÞ can be seen as an adap-

tive threshold. Assuming x&sj, then we may consider an

estimation Î~sj
of I~sj

by replacing caðj~xjÞ for caðj~sjjÞ in Eq. 4.

The above leads us to the following iterative procedure

for the simultaneous estimation of the significant atrial

frequency band and the extraction filter, somewhat inspired

by the reference-based blind extraction method of [15]. The

typical AF frequency band (3, 9) Hz is first divided into

eight equal subbands in a logarithmic scale. Each of these

subbands is used as an initial guess for the presence indi-

cator Î
½0�
~sj

of the AA. Using this guess, we compute the

frequency-domain MaxViT estimate, which yields an

extractor output ~x½1� ¼ ðĤ½1�ÞT~y: From ~x½1�; we obtain Î
½1�
~sj

according to the percentile-based procedure explained in

the previous paragraph, and the MaxViT estimator is

applied again to maximise the power spectral density of the

extractor output associated to the new spectral support. By

repeating this iteration until convergence, one atrial esti-

mate per initial subband is obtained. Among them, we

retain that with highest SC [Eq. 2].

3 Results

3.1 Synthetic data

As a synthetic dataset we use 12 second windows of 12-

lead ECG (fs = 1 kHz) recorded during normal sinus

rhythm on which we superimpose simulated AF activity

sAF. The AF activity has been created along the lines of

[12]. We choose fm (f0 in [12]) uniformly from (4, 8) Hz,

whereas all other parameters in the model are chosen

randomly within the same order of magnitude as the

originally specified parameters in [12]. The synthetic sAF is

mixed into the observation by a random mixing vector aAF

with i.i.d. entries drawn from a Gaussian distribution. The

estimation of sAF is evaluated through the measure 1 -

|q(x, sAF)|, where q is Pearson’s correlation coefficient. As

a comparison, we also include the solution obtained by the

optimal Wiener filter, given by sWiener
AF ¼ EfsAFygT

EfyyTg�1y; which is the best possible linear estimator in

the mean squared error sense, when the signal of interest is

available as a reference. In Fig. 2a, the mean over 1,000

Monte Carlo realisations is shown for the respective fre-

quency bands that result in the best estimate (evaluated

through its SC) after 20 iterations. In Fig. 2b we display the

number of realisations for which we reached the separation

state, i.e. 1 - |q(x, sAF)| \ -20 dB, as a function of the

iteration number.

3.2 Patient data

Electrocardiogram (ECG) data from 30 patients (fs =

1 kHz, 12 leads) have kindly been made available to us by

the Hemodynamics Department of Valencia University

Hospital, Spain and ITACA-Bioingenieria, Polytechnic

University of Valencia, Spain. We apply the same algo-

rithm to this dataset and compare the obtained SC with the

results by the ST-BSS method presented in [4]. In Fig. 3,

we give the results as DSC = SC[MaxViT] - SC[STBSS] and

Dfm = fm
[MaxViT] - fm

[STBSS]. We have DSC ¼ 5:27% and

rDSC ¼ 14:25%:

To show the convergence of the joint estimation of the

atrial spectral presence indicator I~sj
and the filter h, an

illustrative example is given in Fig. 4.

4 Discussion

From Fig. 3, we observe that the MaxViT estimate gen-

erally offers a higher SC than the estimate obtained with

the method of [4] and this for a similar modal frequency.

The SC can be used as a performance measure for the

estimation of the AF contribution in the ECG as it is cor-

related with the AA estimation quality in the synthetic

recordings Castells et al. [4]. Hence, our technique proves

0 5 10 15 20
−30

−20

−10

0

iteration

1−
|ρ

| (
dB

) MaxViT
Wiener

(a)

0 5 10 15 20
0

500

1000

iteration

co
un

ts

(b)Fig. 2 The results as obtained

on a synthetic dataset. a 1 -

|q(x, sAF)| as a function of the

iteration number and b the

number of realisations for which

1 - |q(x, sAF)| \ -20 dB as a

function of the iteration number
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Fig. 3 Results on real data. The obtained SC and fm from the

estimate of MaxViT with respect to those obtained from the estimate

of the hybrid method of [4]
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superior in the majority of cases. Moreover, this increase in

quality can be obtained with a decrease in computational

complexity.

The optimisation strategy chosen in this paper is

somewhat related to that of Xerri and Borloz [15], but

retains all the benefits of the MaxViT technique [10]. More

precisely, by contrast to [15], our approach can deal with

any source probability densities, can target the specific

source of interest, and does not require any correction term

for certain source distributions.

5 Conclusion

The proposed method estimates the AF contribution in the

ECG by maximising the power of the spatial filter output

on the significant spectral support of the source of interest.

The estimated signal obtained with the iterative version of

the quasi-maximum likelihood based MaxViT method

generally shows a higher SC than the estimate obtained

from a related BSS-based two-stage hybrid method, and is

thus associated with an improved atrial signal estimation

quality. As a consequence, the estimated atrial contribution

is expected to give rise to refined spatial, spectral and

temporal characterisation of AF, which should be the

subject of further research.
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