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RÉSUMÉ :
L’algorithme a module constant (CMA) est la methode iterative la plus repandue pour l’egalisation aveugle de canaux de

communication. Son implantation implique le choix d’une longueur de pas, constante, dont les performances dependent etroite-
ment. Ce type d’algorithme, qui avait sa raison d’etre lorsque la puissance des calculateurs embarques etait limitee, se justifie
difficilement; pourtant il continue a etre largement utilise. Dans cette contribution, on calcule le pas conduisant au minimum
absolu du critere selon une direction de recherche a chaque iteration, et on montre a travers des simulations informatiques que
l’algorithme CMA a pas optimal converge evidemment bien plus vite que sa version a pas constant, mais aussi qu’il permet dans
la plupart des cas d’eviter le piege des minima locaux. De plus l’accroissement de complexite est relativement faible.

MOTS CLÉS :
CMA, Egalisation aveugle SISO, non gaussien

ABSTRACT:
The constant modulus algorithm (CMA) is the most widespread iterative method for blind equalization of digital commu-

nication channels. Its implementation typically involves a constant step-size parameter, on which the algorithm’s performance
strongly depends. This type of algorithm, whose use was justified when computational power was limited, is much less jus-
tified nowadays; yet, it is still widely employed. In this Letter, the step size with globally minimizes the cost function along
the search direction is calculated analytically at each iteration. Illustrative experiments demonstrate that the resulting optimal
step-size CMA converges much faster and is more robust to initialization than its constant step-size counterpart. These benefits
are achieved at only a modest increase in computational complexity.

KEY WORDS :
CMA, SISO Blind Equalization, non Gaussian
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Abstract

The constant modulus algorithm (CMA) is the most widespread iterative method for blind

equalization of digital communication channels. Its implementation typically involves a constant

step-size parameter, on which the algorithm’s performance closely depends. In the past, this type

of algorithm was justified on the grounds of limited computational power, but it continues to be

widely employed nowadays despite its well-known drawbacks, such as convergence to local extrema

and trade-off between convergence rate and accuracy. These shortcomings can be alleviated with

the technique developed in this paper, whereby the step size leading to the absolute minimum of

the CM criterion along the search direction is calculated algebraically at each iteration. Experiments

demonstrate that the resulting optimal step-size CMA (OS-CMA) avoids the local minima more often

and converges in fewer iterations than its constant step-size counterpart or the recently proposed

recursive least squares CMA (RLS-CMA). The potential increase in complexity introduced by the

optimal step-size calculation is relatively modest, and can easily be afforded by the computational

power currently available.

Index Terms

Blind equalization, constant modulus algorithm, optimum adaption coefficient, algebraic methods,

steepest descent minimization.
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I. I NTRODUCTION

An important problem in digital communications is the recovery of the data symbols transmitted

through a distorting medium. The constant modulus (CM) criterion is arguably the most widespread

blind channel equalization principle [1], [2]. The CM criterion generally presents local extrema —

often associated with different equalization delays — in the equalizer parameter space [3]. This

shortcoming renders the performance of gradient-based implementations, such as the well-known

constant modulus algorithm (CMA), very dependent on the equalizer impulse response initialization.

Even when the absolute minimum is found, convergence can be severely slowed down for initial

equalizer settings with trajectories in the vicinity of saddle points [4], [5]. The constant value of the

step-size parameter (or adaption coefficient) must be carefully selected to ensure a stable operation

while balancing convergence rate and final accuracy (misadjustment or excess mean square error). The

stochastic gradient CMA (SG-CMA) drops the expectation operator and approximates the gradient of

the criterion by a one-sample estimate, much in the LMS fashion. This rough approximation generally

leads to slow convergence and poor misadjustment, even if the step size is carefully selected.

The most attractive feature of the SG-CMA lies in its simplicity, and indeed its use was rightly

justified on the grounds of the limited computational power available in the past. For the same

reasons, strategies proposed to alleviate the drawbacks of this type of algorithms were then deemed

to be impractical. However, the enhanced computing capabilities of current digital signal processors

(DSPs) enable the practical implementation of some of these strategies. Block (or fixed-window)

methods obtain a more precise gradient estimate from a batch of channel output samples, improving

convergence speed and accuracy [6]. Tracking capabilities are preserved as long as the channel remains

stationary over the observation window. The block-gradient CMA (simply denoted as CMA hereafter)

is particularly suited to burst-mode transmission systems. Unfortunately, the multimodal nature of the

CM criterion sustains the negative impact of local extrema on block implementations. The recently

proposed recursive least squares CMA (RLS-CMA) [7], which operates on a sample-by-sample basis,

also proves notably faster and more robust than the SG-CMA. The derivation of the RLS-CMA relies

on an approximation to the CM cost function in stationary or slowly varying environments, where

block implementations may actually prove more efficient in exploiting the available information (the

received signal burst). Moreover, the problems posed by local extrema are not addressed by the RLS

approach.

Analytical solutions to the minimization of the CM criterion were developed in [8], [9]. After

solving a linearized LS problem, these methods require to recover the right structure of the solution

space when multiple equalization solutions exist. The structuring process is equivalent to the joint
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diagonalization of the matrix set associated with the unstructured solution space. In the general case,

this joint diagonalization can be achieved through a matrix QZ iteration for which convergence proof

has not yet been found. In addition, special modifications are required for input signals with a one-

dimensional (i.e., binary) alphabet [8]–[10].

Hence, the CM criterion is a rational function in several variables (the equalizer filter taps)

whose exact minimization is computationally too expensive. Simpler alternatives based on gradient-

descent or recursive implementations also present some deficiencies, as commented above. A judicious

compromise consists of performing consecutive one-dimensional absolute minimizations of the cost

function. This technique, known as exact line search or steepest descent, is generally considered

inefficient [11]. However, it was first observed in [12] that the value of the adaption coefficient that

leads to the absolute minimum of most blind cost functions along a given search direction can be

computed algebraically. Although never implemented, it was conjectured that the use of this algebraic

optimal step size could not only accelerate convergence but also avoid local extrema in some cases.

The goal of the present paper is the theoretical development and experimental evaluation of the optimal

step-size CMA (OS-CMA) derived from this idea. It is demonstrated that the OS-CMA shows higher

immunity to local extrema than the CMA and RLS-CMA, and converges in fewer iterations at an

affordable overall computational cost.

After briefly reviewing CM-based equalization in Section II, the OS-CMA is derived and analyzed

in Section III. The experiments of Section IV evaluate the performance of the OS-CMA relative to

the CMA and RLS-CMA. Conclusions are drawn in Section V.

II. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbols{sn} are transmitted at a known baud-rate1/T through a time dispersive

channel with impulse responseh(t). The channel is assumed linear and time-invariant (at least over

the observation window), with a stable, causal and possibly non-minimum phase transfer function,

and comprises the transmitter pulse-shaping and receiver front-end filters. Assuming perfect synchro-

nization and carrier-residual elimination, fractionally-spaced sampling by a factor ofP yields the

discrete-time channel output

xn =
∑

k

hksn−k + vn (1)

in which xn = [x(nT ), x(nT + T/P ), . . . , x(nT + T (P − 1)/P )]T ∈ CP , x(t) denoting the

continuous-time baseband received signal. Similar definitions hold forhk and the additive noisevn.

Eqn. (1) represents the so-called single-input multiple-output (SIMO) signal model, and reduces to

the single-input single-output (SISO) model forP = 1. The SIMO model is also obtained if spatial
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diversity (e.g., an antenna array) is available at the receiver, with or without time oversampling, and

can easily be extended to the multiple-input (MIMO) case.

To recover the original data symbols from the received signal, a linear equalizer is employed

with finite impulse response spanningL baud periodsf = [fT
1 , fT

2 , . . . , fT
L ]T ∈ CD, D = PL,

fk = [fk,1, fk,2, . . . , fk,P ]T ∈ CP , k = 1, . . . , L. This filter produces the output signalyn = fHx̃n,

where x̃n = [xT
n , xT

n−1, . . . , xT
n−L+1]

T ∈ CD. The equalizer vector can be blindly estimated by

minimizing the CM cost function [1], [2]:

JCM(f) = E
{(
|yn|2 − γ

)2}
(2)

whereγ = E{|sn|4}/E{|sn|2} is a constellation-dependent parameter. The CMA is a gradient-descent

iterative procedure to minimize the CM cost. Its update rule reads

f ′ = f − µg (3)

whereg def= ∇JCM(f) = 4E
{
(|yn|2 − 1)y∗nx̃n} is the gradient vector at pointf , andµ represents the

step-size parameter. In the sequel, we assume that a block of lengthNd baud periodsxn is observed

at the channel output, from whichN = (Nd − L + 1) vectorsx̃n can be constructed.

III. O PTIMAL STEP-SIZE CMA

A. Steepest-Descent Minimization

Steepest-descent minimization consist of finding the absolute minimum of the cost function along

the line defined by the search direction (typically the gradient) [11]:

µopt = arg min
µ

JCM(f − µg). (4)

In general, exact line search algorithms are unattractive because of their relatively high complexity.

Even in the one-dimensional case, function minimization must usually be performed using costly

numerical methods. However, as originally observed in [12], the CM costJCM(f − µg) is a rational

function in the step sizeµ. Consequently, it is possible to find the optimal step sizeµopt in closed

form among the roots of a polynomial inµ. Exact line minimization of function (2) can thus be

performed at relatively low complexity.

B. Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the derivative ofJCM(f − µg) with respect to

µ is the 3rd-degree polynomial

p(µ) = d3µ
3 + d2µ

2 + d1µ + d0 (5)
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with real-valued coefficients given by

d3 = 2E{a2
n}, d2 = 3E{anbn}, d1 = E{2ancn + b2

n}, d0 = E{bncn} (6)

wherean = |gn|2, bn = −2IRe(yng∗n), and cn = (|yn|2 − γ), with gn = gHx̃n. Alternatively, the

coefficients of the OS-CMA polynomial can be obtained as a function of the sensor-output statistics

as:

d3 = Cgggg, d2 = −3IRe(Cgggf )

d1 = 2Cffgg + IRe(Cfgfg)− γCgg, d0 = IRe(γCfg − Cfffg) (7)

whereCabcd
def= E{aHx̃x̃HbcHx̃x̃Hd} =

∑
ijkl E{x̃ix̃

∗
j x̃kx̃

∗
l }a∗i bjc

∗
kdl, and Cab

def= aHRx̃b, with

Rx̃ = E{x̃x̃H} denoting the sensor-output covariance matrix. The latter procedure needs to compute

in advance the sensor-output covariance matrixRx̃ and 4th-order moments E{x̃ix̃
∗
j x̃kx̃

∗
l }, 1 6

i, j, k, l 6 D. Coefficients (6)–(7) are derived in Appendix A.

Having obtained its coefficients through any of the above equivalent procedures, the roots of

polynomial (5) can be extracted as explained in the next section. The optimal step size corresponds to

the root attaining the lowest value of the cost function, thus accomplishing theglobal minimization

of JCM in the gradient direction. Onceµopt has been determined, the filter taps are updated as in (3),

and the process is repeated with the new filter and gradient vectors, until convergence. This algorithm

is referred to asoptimal step-size CMA (OS-CMA).

To improve numerical conditioning in the determination ofµopt, gradient vectorg should be

normalized beforehand. This normalization does not cause any adverse effects since the relevant

parameter is the search directiong̃ = g/‖g‖. Accordingly, vectorg is substituted bỹg to compute

polynomial coefficients (6)–(7) and update rule (3).

C. Root Extraction

The roots of polynomial (5) can be found through standard analytical procedures such as Cardano’s

formula, or more efficient iterative methods [13], [14]. The MATLAB code of a general algorithm

for extracting the roots of a 3rd-degree polynomial is given in Appendix B [11]. This code is valid

for polynomials with real or complex coefficients. When the coefficients of the step-size polynomial

are real-valued [cf. (6)–(7)], further simplifications may still be introduced to this simple routine.

Concerning the nature of the roots, only two options are possible: either all three roots are real,

or one is real and the other two form a complex conjugate pair. In the first case, one needs to check

which of the tree real roots provide the lowest value ofJCM(f−µg). In the second case, the real root

typically provides the lowest value of the cost function. In scenarios composed of real-valued signals
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and filters, one of the complex roots sometimes provides the lowestJCM. However, an increase in

the equalizer output mean square error (MSE) is also observed, which invalidates that option; the real

root should always be preferred.

D. Convergence Analysis

Although a rigorous theoretical analysis of the OS-CMA convergence characteristics is beyond the

scope of this paper, a brief preliminary comment can already be made in this section.

By design of steepest-descent methods, gradient vectors at consecutive iterations are orthogonal,

which, depending on the initialization and the shape of the cost-function surface, may slow down

convergence [11]. In the OS-CMA, gradient orthogonality is expressed as IRe(gHg′) = 0, with g′ =

∇JCM(f ′). In our experiments, the OS-CMA always converged in less iterations than its constant step-

size counterpart. In addition, the frequency of misconvergence to local extrema is notably diminished

with the use of the optimal step-size strategy. These claims will be empirically demonstrated in

Section IV.

E. Computational Complexity

The computational load of the OS-CMA is mainly due to the calculation of the polynomial

coefficients (6) or (7). In practice, mathematical expectation is approximated by sample averaging

across the observed signal burst. The computational cost of these averages in (6) is of order O(ND)

per iteration, for data blocks composed ofN sensor vectors̃xn. The cost per iteration of the alternative

procedure (7) is approximately of order O(D4). Consequently, this latter method should be preferred

over the former whenN > D4. However, the second procedure needs to compute in advance the

sensor-output 4th-order statistics, E{x̃ix̃
∗
j x̃kx̃

∗
l }, 1 6 i, j, k, l 6 D, incurring in an additional cost of

O(ND4) operations. This initial load may render the second method more costly even whenN > D4,

especially if convergence is achieved in few iterations.

Table I provides more precise figures for the OS-CMA computational cost in terms of the number

of real floating point operations orflops (a flop represents a multiplication followed by an addition;

multiplies and divisions are counted as flops as well). Also shown are the values for other CM-

based algorithms such as the SG-CMA, the (block-gradient) CMA, and the RLS-CMA. Real-valued

signals and filters are assumed; analogous values can similarly be obtained for the complex-valued

scenario. The cost of extracting the roots of the step-size polynomial does not depend on the relevant

equalization parameters(D,N) and can be considered negligible (see Section III-C). The derivation

of the flop counts is tedious but straightforward, and is hence omitted in this paper.
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IV. EXPERIMENTAL RESULTS

Some computer experiments demonstrate the faster convergence rate of the OS-CMA relative to

the constant step-size block CMA and the RLS-CMA, and its ability to escape the attraction basin

of undesired equilibria in the CM cost surface. Bursts ofNd = 200 baud periods are observed at the

output of aT/2-spaced channel (P = 2) excited by a BPSK source (γ = 1) and corrupted by AWGN

with 10-dB SNR. Iterations are stopped when‖f ′ − f‖/‖f‖ < 0.1µ/
√

N , where‖ · ‖ denotes the

Euclidean norm, andµ is the constant step size chosen for the conventional CMA in each experiment.

A higher bound of 1000 iterations is also set. For the sake of a meaningful comparison, the same

signal bursts and termination test are used in all methods.

Experiment 1.The first channel has an impulse responseha = [0.2, 0.5, 1, −0.1]T (see [5,

Section 2.4, pp. 82–83]). ForL = 1, the minimum mean square error (MMSE) equalizers for delays

zero and one aref (0)
MMSE = [0.18, 1.54]T and f (1)

MMSE = [0.91, −0.31]T, with theoretical MSE of

−7.11 and−11.92 dB, respectively. Fig. 1a plots the contour lines of the CM cost function (2) in

the equalizer parameter space for a received burst. Also shown are the trajectories of the constant

step-size CMA (3) for different arbitrary initializations of the equalizer tap vector, withµ = 10−2.

Over the 16 initial points, the average number of iterations and computational cost (total number

of flops) necessary for convergence are shown in Table II. Convergence could be accelerated with a

larger value ofµ, but at the expense of compromising the algorithm’s stability. Fig. 1b–c display the

CM cost and output MSE history, respectively, for the initial points labelled A to D in Fig. 1a. Points

A–B converge to the CM local minima (close to the suboptimal-delay MMSE equalizer), whereas

points C–D do so to the CM global minima (near the optimal-delay MMSE equalizer). The equalizer

output signal after convergence from point A is displayed in Fig. 1d. The suboptimal-delay equalizer

is not able to sufficiently open the eye of the output signal for a successful symbol detection or

transfer to decision-directed (DD) operation.

Under identical system conditions and signal realization, Fig. 2a shows the trajectories of the

OS-CMA equalizer for the same set of initial points. The OS-CMA successfully avoids the local

minima, converging in all tested cases near the optimum-delay MMSE equalizer. The algorithm’s fast

convergence (requiring only an average of 12 iterations, compared to the 245 iterations needed by

the CMA) can be clearly appreciated in the CM-cost and output-MSE history plots of Fig. 2b–c. It

is interesting to remark the trajectory from point A: after falling right next to a local minimum, the

algorithm is able to traverse it, finally converging to an absolute minimum and providing the final

equalizer output shown in Fig. 2d. The eye is now sufficiently open for DD-mode transfer, or even

for direct symbol detection with an appropriate threshold.
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Fig. 3 and the final column in Table II summarize the results by the RLS-CMA with the typical

forgetting factorλ = 0.99 and inverse covariance matrix initialized at the identity (δ = 1). The

observed signal block is reused as many times as required. The method presents the same drawbacks

as the conventional CMA, converging to the global solution only if properly initialized. Due to its

sample-by-sample operation, the RLS-CMA shows the slowest convergence rate in terms of iterations;

however, its low cost per iteration is able to maintain a satisfactory overall complexity.

Experiment 2.The performance of the OS-CMA in a higher-dimensional CM surface is illustrated

with the channelhb = [0.7571, −0.2175, 0.1010, 0.4185, 0.4038, 0.1762]T and a 4-tap equalizer

(L = 2) with double-spike initializationf0 = [1, 1, 0, 0]T/
√

2 (second example of [5, Section 2.4,

pp. 82–83]). This system presents the theoretical output MMSE vs. equalization delay profile of

Fig. 4: delay 1 provides the best MMSE performance, delay 0 following close behind; the worst

performance is obtained at delay 3. The CM-cost and output MSE evolution of the constant step-

size CMA (µ = 0.5), OS-CMA, and RLS-CMA (λ = 0.99) averaged over 1000 independent signal

blocks are displayed in Figs. 5a–b. The normalized histogram of the equalization delay obtained

by the three methods is shown in Fig. 5c, whereas Table III summarizes their computational cost.

As already observed in [4], [5], CMA’s convergence is slowed down by the presence of two saddle

points. Moreover, the CMA often ends in a suboptimum equalization delay. By contrast, the OS-CMA

seems to avoid the saddle areas and converges with higher probability near the optimum-delay MMSE

equalizer in a few iterations. The RLS-CMA gets trapped in the worst equalization delay more often

than the two other methods. The subsequent poor average MSE after convergence is not offset by

the method’s low complexity in this experiment. The CMA, OS-CMA and RLS-CMA converged

to one of the best two equalization delays (0 and 1) with probability of76%, 96.9% and 81.2%,

respectively. The OS-CMA obtains the best performance at an affordable total cost which, due to its

fast convergence, always lies well below that of the conventional CMA. Fig. 5d further illustrates the

superiority of the OS-CMA for a particular signal burst.

Experiment 3.To test the methods’ robustness to equalizer initialization in the previous setting,

the equalizer filter taps are randomly drawn from a zero-mean unit-variance Gaussian distribution

before processing each of the 1000 signal blocks. The same initialization is used for all methods. An

adaption coefficientµ = 0.025 is chosen to prevent divergence of the conventional block CMA. The

results in Fig. 6 and Table IV indicate that the OS-CMA converges in about an order of magnitude

fewer iterations and with higher probability (86.6%) near the optimal MMSE equalization delay than

the CMA (67.8%) and the RLS-CMA (73.1%). Also, its computational cost is close to the latter’s

and notably improves the former’s.
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V. CONCLUSIONS

Global line minimization of the CM cost function can be carried out algebraically by finding

the roots of a 3rd-degree polynomial with real coefficients. The closed-form expressions of these

coefficients have been provided. Compared to the classic constant-step size CMA and the RLS-

CMA, the optimum step-size CMA (OS-CMA) converges to the optimum MMSE delay equalizer

with higher probability, thus yielding the best equalization performance among the tested methods. In

addition, the OS-CMA shows the fastest convergence, though its overall complexity can sometimes

exceed that of the RLS-CMA. Taking into account the computational power featured by current

DSP hardware, this complexity increase is relatively modest. In consequence, the optimal step-size

strategy arises as a promising practical approach to improving the performance of blind equalizers in

burst-mode transmission systems. Although this paper has focused on the SIMO signal case, totally

analogous results hold in the basic SISO scenario.

Future lines of inquiry include the incorporation of the optimum step-size scheme in alternative

blind and semi-blind equalization criteria and its theoretical performance analysis.

APPENDIX A: COEFFICIENTS OFSTEP-SIZE POLYNOMIAL

Method 1:

Let f ′ = f − µg. ThenJCM(f ′) = E{(|f ′Hx̃n|2 − γ)2}. Calling yn = fHx̃n and gn = gHx̃n, we

have |f ′Hx̃n|2 = µ2|gn|2 − 2µIRe(yng∗n) + |yn|2. Hence,JCM(f ′) = E{(anµ2 + bnµ + cn)2}, with

an = |gn|2, bn = −2IRe(yng∗n) and cn = (|yn|2 − γ). Expanding the square results inJCM(f ′) =

µ4E{a2
n}+2µ3E{anbn}+µ2E{b2

n +2ancn}+2µE{bncn}+E{c2
n}. Taking the derivative with respect

to µ and eliminating common constant factors, we finally arrive at the polynomial with the coefficients

shown in (6).

Method 2:

JCM(f ′) = E
{(
|f ′Hx̃|2−γ

)2} = E{|f ′Hx̃|4}−2γE{|f ′Hx̃|2}+γ2. In the first place, E{|f ′Hx̃|2} =

E{f ′Hx̃x̃Hf ′} = µ2Cgg − 2µIRe(Cfg) + Cff , whereCab = aHRx̃b, Rx̃ = E{x̃x̃H}, a, b ∈ CD.

Similarly, let us denote

Cabcd = E{aHx̃x̃HbcHx̃x̃Hd} =
D∑

i,j,k,l=1

E{x̃ix̃
∗
j x̃kx̃

∗
l }a∗i bjc

∗
kdl, with a ,b, c, d ∈ CD

which shows the symmetry propertiesCabcd = Ccdab = Ccbad = Cadcb = C∗
badc. Then, after some

algebraic simplifications, we can express

E{|f ′Hx̃|4} = µ4Cgggg − 4µ3IRe(Cgggf ) + 2µ2[2Cffgg + IRe(Cfgfg)]− 4µIRe(Cfffg) + Cffff .
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Combining the previous expressions, taking the derivative with respect to variableµ and eliminating

common constant factors, one arrives at the polynomial with the coefficients given in (7).

APPENDIX B: MATLAB C ODE FOR3RD-DEGREEPOLYNOMIAL ROOT EXTRACTION

function r = pol3roots(pol);

%Roots of a 3rd-degree polynomial with real or complex coefficients.

%SYNTAX: r = pol3roots(pol);

% r = [r1; r2; r3] : roots

% pol = [a3, a2, a1, a0] : coefficients of polynomial

% a3.xˆ3 + a2.xˆ2 + a1.x + a0.

pol = pol/pol(1); %transform into monic polynomial

a = pol(2); b = pol(3); c = pol(4);

Q = (aˆ2 - 3*b)/9; R = (2*aˆ3 - 9*a*b + 27*c)/54;

Q3 = Qˆ3; R2 = Rˆ2;

if isreal(Q) & isreal(R) & ( R2 < Q3 )

th = acos(R/sqrt(Q3));

r = -2*sqrt(Q)*cos((th + 2*pi*[-1:1]’)/3) - a/3;

else

sq = sqrt(R2 - Q3);

A = -(R + sign(real(conj(R)*sq))*sq)ˆ(1/3);

if abs(A) < eps, B = 0; else B = Q/A; end

i = sqrt(-1); ApB = A + B; AmB = i*sqrt(3)*(A - B);

r = [ApB; (-ApB + AmB)/2; -(ApB + AmB)/2] - a/3;

end
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TABLE I

COMPUTATIONAL COST IN NUMBER OF FLOPS FOR SEVERALCM-BASED ALGORITHMS. D: NUMBER OF TAPS IN

EQUALIZER VECTOR; N : NUMBER OF DATA VECTORS IN OBSERVED SIGNAL BURST.

SG-CMA CMA OS-CMA RLS-CMA

FLOPS Method 1 Method 2

initialization — — — N
[(

D+3
4

)
+

(
D+1

2

)]
—

per iteration 2(D + 1) 2N(D + 1) N(6D + 15) + 2D 6D4 + 3D2 + 2D + 9 D(4D + 7)

TABLE II

AVERAGE COMPUTATIONAL COST FOR CONVERGENCE OF THECM-BASED METHODS INEXPERIMENT 1 (FIGS. 1–3).

CMA OS-CMA RLS-CMA

COST Method 1 Method 2

iterations 245 12 426

total flops(×103) 294 64.8 3.1 12.8

TABLE III

AVERAGE COMPUTATIONAL COST FOR CONVERGENCE OF THECM-BASED METHODS INEXPERIMENT 2 (FIGS. 4–5).

CMA OS-CMA RLS-CMA

COST Method 1 Method 2

iterations 127 24 40

total flops(×103) 252.7 186.5 47.4 3.7

TABLE IV

AVERAGE COMPUTATIONAL COST FOR CONVERGENCE OF THECM-BASED METHODS INEXPERIMENT 3 (FIGS. 4

AND 6).

CMA OS-CMA RLS-CMA

COST Method 1 Method 2

iterations 565 38 286

total flops(×103) 1124.4 295.2 69.8 26.3
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Fig. 1. Performance of the constant step-size CMA for channelha, with L = 1 and µ = 10−2. (a) Contour lines and

algorithm’s trajectories for various equalizer initializations; ‘+’: initial point; ‘×’: final point; ‘◦’: optimal-delay MMSE

solution; ‘�’: suboptimal-delay MMSE solution. (b) CM-cost evolution for initial points A–D. (c) Equalizer output MSE

evolution for initializations A–D. (d) Equalizer output signal after convergence from point A.



14

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

f
1

f 2

A B

C D

(a)

1 2 3 4 5
−14

−12

−10

−8

−6

−4

−2

0

iteration number

M
S

E
 (

dB
)

A
B
C
D

(c)

1 2 3 4 5
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration number

J C
M

 (
dB

)

A
B
C
D

(b)

50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sample number

y n

(d)

Fig. 2. Performance of the OS-CMA for channelha, with L = 1. (a) Contour lines and algorithm’s trajectories for

various equalizer initializations; ‘+’: initial point; ‘×’: final point; ‘◦’: optimal-delay MMSE solution; ‘�’: suboptimal-

delay MMSE solution. (b) CM-cost evolution for initial points A–D. (c) Equalizer output MSE evolution for initializations

A–D. (d) Equalizer output signal after convergence from point A.
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Fig. 3. Performance of the RLS-CMA for channelha, with L = 1 and λ = 0.99. (a) Contour lines and algorithm’s

trajectories for various equalizer initializations; ‘+’: initial point; ‘×’: final point; ‘◦’: optimal-delay MMSE solution; ‘�’:

suboptimal-delay MMSE solution. (b) CM-cost evolution for initial points A–D. (c) Equalizer output MSE evolution for

initializations A–D. (d) Equalizer output signal after convergence from point A.
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Fig. 5. Performance of the CMA (µ = 0.5), OS-CMA and RLS-CMA (λ = 0.99) for channelha, with L = 2 and

double-spike first-tap initialization. (a) CM-cost evolution averaged over 1000 signal realizations. (b) Equalizer output MSE

evolution averaged over 1000 signal realizations. (c) Normalized histogram of equalization delay after convergence. (d)

Equalizer output MSE evolution for a particular signal realization.
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Fig. 6. Performance of the CMA (µ = 0.025), OS-CMA and RLS-CMA (λ = 0.99) for channelha, with L = 2 and

random Gaussian equalizer initialization. (a) CM-cost evolution averaged over 1000 signal realizations. (b) Equalizer output

MSE evolution averaged over 1000 signal realizations. (c) Normalized histogram of equalization delay after convergence.
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