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Abstract

This paper focuses on the constant power (CP) criterion for blind linear equalization of digital
communication channels. This recently proposed criterion is specially designed for the extraction
of ¢g-ary phase shift keyingqfPSK) signals using finite impulse response equalizers. When zero-
forcing equalizers exist, the CP cost function accepts exact analytic solutions which are unaffected by
undesired local extrema and spare costly iterative optimization. A subspace-based method exploiting
the Toeplitz-like structure of the solution space is put forward to recover the minimum-length
equalizer impulse response from the overestimated-length solutions. The proposed method is more
robust to the equalizer vector configuration than existing techniques. In less ideal scenarios where
the analytic solutions are only approximate minimizers of the criterion, a gradient-descent algorithm
is proposed to minimize the cost function. To reduce the detrimental effects of spurious equilibria
and accelerate convergence, the iterative algorithm is initialized with the approximate closed-form
solution and an optimal step size is incorporated into its updating rule. This optimal step size, which
globally minimizes the cost function along the search direction, can be computed algebraically. A
semi-blind implementation, useful when training data are available, further reduces the impact of local
extrema and enhances the convergence characteristics (particularly the robustness to the equalizer
initialization) of the iterative algorithm from just a few pilot symbols. All these beneficial features are
demonstrated with an experimental study of the proposed CP-based methods in a variety of channels

and simulation conditions.
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I. INTRODUCTION
A. Background

In digital communications, transmission effects such as multipath propagation and limited band-
width produce linear distortion in the emitted signal, causing intersymbol interference (I1SI) at the
receive sensor output. To enable the recovery of the input symbols, channel equalization aims to com-
pensate these distorting effects [1]. Since the late 70’s, the drawbacks of training-based methods [1],
[2] have aroused considerable research interest in the so-ddifedequalization techniques, which
spare the use of bandwidth-consuming pilot sequences and prove especially attractive in broadcast
and non-cooperative scenarios. In the fundamental single-input single-output (SISO) scenario, non-
minimum phase (NMP) channels cannot be blindly identified using only second-order statistics (SOS);
hence, the need for blind SISO equalizers to rely (explicitly or not) on higher-order statistics (HOS)
[3]-[5]. Most blind methods are essentially property restoral techniques: the equalizer filter is updated
S0 as to produce an output signal that recovera @niori known property of the input signal, such
as the finite alphabet or constant modulus of its data symbols.

The constant modulus (CM) criterion [4], [5] — which can be considered as a particular member of
the more general family of Godard’s methods [4] — is arguably the most widespread blind equalization
principle. Although Godard’s methods were proven to be globally convergent in the combined channel-
equalizer parameter space, they were later shown to generally present spurious equilibria in the
equalizer parameter space [6]. Spurious equilibria are those associated with filter tap settings which
cannot sufficiently open the eye pattern of equalizer output signal, so that the detecting device is then
unable to extract the transmitted symbols with a reasonably low probability of error. Often, these
local extrema lie close to minimum mean square error (MMSE) solutions for equalization delays with
high MSE. This shortcoming renders the performance of gradient-based implementations of Godard'’s
criterion very dependent on the initial value of the equalizer impulse response. As discussed in [6],
the misconvergence problems of iterative blind SISO equalization methods calls for the design of
suitable initialization schemes and, perhaps, additional strategies to keep the equalizer tap trajectories
away from undesired local equilibria. An alternative is to develop globally-convergent algorithms free
from spurious extrema.

One such globally-convergent method is developed in [7], which obtains a closed-form solution
for the CM equalizer. The CM criterion is posed as a nonlinear least squares (LS) problem. Through
an appropriate mapping of the equalizer parameter space, the nonlinear setting is transformed into
a linear LS problem subject to a constraint on the solution structure. Recovering the right structure

of the solution space is particularly important when multiple zero-forcing (ZF) solutions exist; for



instance, in all-pole channels with overparameterized equalizers, different ZF equalization delays are
possible. From a matrix algebra perspective, imposing this structure can be considered as a matrix
diagonalization problem, in which the matrix performing the diagonalization of the unstructured
solution matrix is composed of the equalizers’ tap vectors. After obtaining a non-structured LS solution
via pseudoinversion, the minimum-length equalizer is extracted by a subspace-based approach or two
other simpler structuring procedures. LMS and RLS algorithms are also designed to solve the linear
LS problem; hence, they still require structuring after convergence. Alternatively, the linearized LMS
algorithm can be modified to partially impose the appropriate structure. However, the introduction of
nonlinear constraints precludes the formulation of a closed-form solution.

The blind equalization method of [7] is strongly related to the analytical CM algorithm (ACMA)
of [8] for blind source separation, a related but somewhat different problem. ACMA provides, in the
noiseless case, exact closed-form solutions for the spatial filters which extract the source signals from
their observed instantaneous linear mixtures. Interestingly, recovering the separating spatial filters
from a basis of the solution space turns out to be tantamount to the joint diagonalization of the
corresponding matrices. This joint diagonalization can be achieved through a QZ iteration for which
convergence proof has not yet been found. Whether for source separation or equalization, ACMA
requires special modifications to handle input signals with a one-dimensional (i.e., binary) alphabet
[7]-[9]. These modifications give rise to the so-called real ACMA (RACMA) method [9].

Multichannel (fractionally-spaced) implementations are also able to avoid some of the deficiencies
of SISO equalizers. In the first place, single-input multiple-output (SIMO) channels can be blindly
identified using only SOS, regardless of their phase characteristics. Also, finite impulse response
(FIR) SIMO channels can be perfectly equalized, in the absence of noise, by FIR filters. Seminal
methods are presented in [10]-[12]. However, in certain practical scenarios it may not be possible
to achieve the required degree of spatio-temporal diversity, due to lack of excess bandwidth or to
hardware constraints limiting the number of receiving sensors (e.g., antennas in a mobile handset).

This paper is mainly concerned with, but not restricted to, the basic SISO model.

B. Contribution and Outline

The present contribution studies a novel criterion for the blind equalization of digital channels
excited by input signals witl-ary phase shift keyingg(PSK) modulations, for arbitrary > 2. The
criterion can be considered as a modification on the original Godard’s family of blind equalizers, with
a power valugy matched to the signal constellation; thus the suitable nane@mstant power (CP)
criterion. It is shown that if multiple ZF solutions exist — e.g., when the noiseless SISO channel

follows a pure autoregressive (AR) model and the equalizer filter is of sufficient length — the criterion



accepts, much in ACMA's fashion, an exact solution which can be computed analytically, i.e., without
iterative optimization. The minimum-length equalizer impulse response can then be obtained from
a joint decomposition ofjth-order tensors, the so-called rank-1 combination problem [13]. Since
no effective tool has yet been developed for this task, an approximate solution is proposed in the
form of a subspace-based method, which exploits the particular structure of the tensors associated
with satisfactory equalization solutions. As opposed to [7], the subspace method proposed herein
takes into account a whole basis of the solution space. This use of extra information is expected
to increase the algorithm’s robustness to the minimum-length equalizer structure. In addition, our
closed-form blind equalization method naturally deals with binary inputs (e.g., BPSK, MSK) without
further modification.

In additive noise or less ideal channel-equalizer conditions, the CP cost function can be minimized
through a gradient-descent algorithm. The impact of non-equalizing extrema are considerably reduced
by initializing the algorithm with the approximate closed-form solution. In computationally-limited
systems, however, simple initializations may be preferred to more sophisticated, and thus more
complex, alternatives. Whatever the option, the value of the step size (adaption coefficient) that
globally minimizes the cost function along the search direction can be computed analytically at each
iteration. This optimal step size provides remarkable benefits in convergence speed and avoidance
of spurious local extrema, even with conventional (e.g., center-tap) initializations. The CP criterion
is easily modified to operate in semi-blind mode, relevant in typical real scenarios where training
sequences are available. The optimal step size can also be algebraically computed in pilot-assisted
operation. Using just a few pilot symbols, this semi-blind optimal step size algorithm shows an
outstanding robustness to the equalizer filter initialization.

The material is organized as follows. A brief explanation of the problem and the signal model is
given in Sectiof |I. After presenting the CP criterion in Secfioh Il, its closed-form solutions are found
in Sectior] I with the aid of a subspace-based algorithm for recovering the minimum-length equalizer.
Iterative implementations are the focus of Secfign V, featuring the optimal step-size gradient-descent
algorithm. Semi-blind solutions, in block and iterative operation, are put forward in Section VI.
An experimental study is reported in Sectipn |VII. Finally, the summary and concluding remarks
of Section[ VIT| bring the paper to an end. For the sake of clarity, proofs and other mathematical

derivations are postponed to the Appendix.

C. Notations

In the following, scalars, vectors, and tensors (of which matrices are assumed a patrticular case)

will usually be denoted by plain lowercase)(boldface lowercaseaj and boldface uppercasé]



symbols, respectively, the only exceptions being the structures derived from Kronecker tensorial
products, as explained below, refers to the(n x n) identity matrix, wherea9),, is the lengthn
zero vector;(-)T, ()" and(-)~! indicate the transpose, Hermitian (conjugate-transpose) and inverse

matrix operators, respectively;-

| is the conventional 2-norn{A); ;,..;, denotes the entry located
in position (i1, 42, ..., iq) Of gth-order tensoA. C is the set of complex numbers; Rgand Im(-)
denote the real and imaginary part, respectively, of their complex argumént;r&presents the
mathematical expectation. Symbeldenotes the convolution operator, wheregas® and o stand
for the Kronecker, elementwise and outer products, respectively. Given a weetdt’” we define

its gth-order rank-1 Kronecker tensor product#% = ao---oa (e.9.,a®2 = aoca = aal). A
——

symmetric tensoA of orderq and dimensiorl. can be store?j in a vectefecs{ A}, which contains
only theL, = (”;1’1) distinct entries ofA, scaled by the square root of the number of times they
appear so that the Frobenius norm is preserved [13]. In particular, we dafibte vecs{a®?}.
Similarly, given a vectob of dimensionL,, unvecs,{b} denotes the symmetrigth-order tensor

constructed from its entries.

II. PROBLEM STATEMENT AND SIGNAL MODEL

The problem of channel equalization can simply be posed as follows. A digital sigtial=
Y Sn0(t —nT') is transmitted at a known baud-rat¢7’ through a time dispersive channel with
impulse responsk(t). The channel is assumed linear and time-invariant (at least over the observation
window), with a stable, causal and possibly non-minimum phase transfer function. The continuous-
time baseband signal at the receive sensor output is givethy= r(t)+v(t), wherer(t) = h(t)*s(t)
denotes the noiseless observation afyj the additive noise. Assuming perfect synchronization and
carrier-residual elimination, baud-rate sampling produces the discrete-time output

Tp =Tn+Up = Z hisp—k + vy (l)
k

in which z,, = z(nT), and analogous definitions hold fa, s, andv,. Each observed sample
consists of a noisy linear mixture of the original data symbols, an undesired phenomenon known as
ISI. Our goal is to recover the original data symbols from the received signal corrupted by ISI and
noise. To this end, a baud-spaced linear equalizer with impulse response=tdpgs, ..., f|* € CL
is sought so that the equalizer outpyt= f'x,, is a close estimate of the source symbg)swhere
Xp = [Tn, Tn1y vy Tn_Ly1] "

In this paper, the data symbols are assumed to belong ¢eary phase shift keyinggfPSK)
constellation4, = {ak}z;é, with a;, = a¥, in which a? = d depends on the actual constellation; for

instance,(q, d) = (2, 1) for BPSK and(q, d) = (4, —1) for QPSK. By allowing a time-varying,



the above definitions are readily extended to encompass other non-PSK modulations such as MSK
[14], modelled with(q, d,,) = (2, (—1)”). Note that set4, is an Abelian group under complex

multiplication.

I11. A BLIND EQUALIZATION CRITERION FORPSK MODULATIONS
A. The Constant Power Criterion

Sinces,, € A, it follows that s}, = d,. Thus, a somewhat natural cost function to measure the
closeness of the equalizer output to the original data symbols is given byotitstant power (CP)
criterion:

Jo(f) = E{|y? — dul?} = E{|(f'x,)7 — d,|*}. )

Cost function|[(R) is a particular case of the more general class of alphabet polynomial fitting (APF)
criteria, where the equalizer output constellation is matched to the source alphabet, characterized
by the complex roots of a specific polynomial [15], [16]. In the context of blind source separation,
criterion [2) is shown to be equivalent, for sufficiently low noise levels, to the maximum a posteriori
(MAP) principle [17], [18]. In addition, it is proved in [15] that, when the total channel-equalizer
impulse response is of finite length and the input signal sufficiently exciting, the global minima in
the combined noiseless channel and equalizer parameter space of the sample estimate of[driterion (2)
correspond to ZF equalization solutions. However, this result does not assure that the desired solutions
can always be reached or that undesired (non-equalizing) equilibria do not exist when the cost function
is observed from the actual equalizer parameter space, as noted in [6], [19] for Godard’s criterion.
The existence of local extrema in the CP criterion will be illustrated with a few simple experiments
in Section VII.

A sufficient excitation condition for input sequengg consists of observing all possibié’ states
of the K-uplet[s,, sn—1, ..., Sn—K—H]T, where K denotes the total length of the cascaded channel-
equalizer impulse response [15]. The group structure of the PSK alphabet enables the reduction of

the sufficiently-exciting observation length 4 —! (Appendix A).

B. Connections with Existing Criteria

CP functional [(R) bears close resemblance to Godard’s class of cost functions [4], which in the

PSK case shows the general form:
TS ) = E{(Jynl? — 15|} = E{(|f"x0]? — 1)"}. )

For ¢ = 2, the above function corresponds to the CM criterion [4], [5]. For BPSK sources and real-

valued channel and equalizer, the CP and CM criteria are identical; in such a case, we anticipate that



the closed-form treatment of the CP minimization (Sedfion 1V) is equivalent to that of the specialized
ACMA for binary modulations [7], [9]. All PSK constellations being CM, the CM principle is not
discriminant over the set of PSK constellations. Similarly, it is not clear, at least at first glance, how
the more general criterion |(3) could privilege a particular PSK modulation. By contrast, criterion
explicitly takes into account the discrete nature of PSK-type alphabets, so that it should exhibit
enhanced discriminating properties among the CM constellations.

If d, is substituted by the available training symbejs the CP cost function [2) reduces, with
g = 1, to the supervised MMSE equalization principle. This fact will be revisited when designing
the semi-blind methods of Sectién]VI.

IV. BLIND CLOSED-FORM SOLUTIONS

When the channel accepts a noiseless AR model and the FIR equalizer is sufficiently long, perfect
ZF SISO equalization is possible. In particular, the CP criter[gn (2) can be perfectly minimized
(zeroed) and an exact global minimum can be computed in closed-form, that is, without iterative
optimization. This analytic solution can be considered as an extension of the ACMA algorithm [8]
to the CP principle. Consequently, the method may be callelytical constant power algorithm
(ACPA)

A. Obtaining a Basis of the Solution Space

The perfect minimizers of [2) are given by the solutions to the set of equations:
(f%,)? = d,, n=0,1,...,N—1 (4)

whereN = (N;—L+1) and N, denotes the observation length in number of samples. This non-linear
system can be linearized by taking into account tii#itx,,)? = foqty 2 (Appendix A), and can be
compactly expressed as

XMw =d (5)

where X9 = [x{% x7, ..., x5 ] andd = [dy, di, ..., dx—1]. Eqn. [5) is to be solved under
the structural constraint that be written asw = 99, for certainf € C* (Appendix A).

Let us assume an all-pole channel with AR-model orden&fSuch a channel can be equalized
with a minimum-length FIR filtef, composed ofLy = (M + 1) taps. Assume the equalizer filter
is overparameterized, that is, the equalizer lenfithas been overestimated, > Ly. Then P =

(L — Lo+ 1) ZF solutions exist, each of them corresponding to a different equalization delay:

fp = [Og—la fg? OE—p]Ta 1< p <P (6)



Since there areP linearly independent solutions, the dimension of the null spacK %t is equal
to (P — 1). Hence, the solutions t¢](5) can be written as an affine space of thevioemw, +
252‘11 a,w,, Wherewy is a particular solution to the non-homogeneous systemwgnd ker(X9H),
1<p<(P-1).

As in [8], we find it more convenient to work in a fully linear subspace, which is obtained through
a (N x N) unitary transformatiorQ such thatQd = [V'N, 0%_,]T. For instanceQ can be a
Householder transformation [20] or, i is composed ofV equal values, ariV-point DFT matrix.

Then,

rH

QX! = (7)
R
and system[(5) reduces to:
rfiw = VN
(8)
Rw = 0N—1~

subject to the constraint = f©4. Along the lines of [8, Lemma 4], it can be proved (Appendix A)

that this problem is equivalent to solving

Rw = ON_1
©)
w = £
and then scaling the solution to impose
1 N-—1
n=0
or, equivalently,
1 N—-1
Tdle > dn(fx,)7 = 1. (11)
n=0
If dim ker(X9) = (P — 1) and
Ng>L,+Lo—1 (12)

(or N > L, — P), thendim ker(R) = P (Appendix A). Hence, all solutions tRw = 0 are linearly
spanned by a basisvk}f:1 of ker(R). This basis can be computed from the SVDRfby taking
its P least significant right singular vectors. The structured soluti{di,‘?sq}]f:1 are also a basis of

the same subspace and, therefore, a set of sc&h@@ﬁkzl exists such that

P

79 = Zapkwlm 1<p<P (13)
k=1

where matrix(A ), = oy is full rank. The problem of structuring the solution to the linearized system

(5) consists of imposing the rank-1 symmetric Kronecker structure to the m%’;l, which, in



turn, yields{fp}]f:l. This is a particular subspace-fitting problem with structural constraints. In terms

of g-order tensors, eqn. ([L3) can be expressed as
P
F99=3 0 Wi,  1<p<P (14)
k=1
where W), = unvecs,{w;}. This is the rank-1 combination problem: given the $&,}, find

the scalars producing tensors of rank one. The obtained rank-1 tensors will precisely correspond to
{f;?q}. Such a tensor decomposition is, in general, a notoriously non-trivial task (see, e.g., [13], [21]
and references therein).

Before continuing, it is worth remarking that sample-size bound (12) is too restrictive. In prac-
tice, satisfactory closed-form equalization usually requires shorter observation windows, as will be

demonstrated in the experiments of Secfion VII.

B. Solution Structuring: A Subspace-Based Approach

A subspace-based method, reminiscent of [12], can be used to recover the minimum-length equalizer
impulse responsd, from a basis of (generally) unstructured solutiops}?_ . The subspace-
fitting problem [IB) can be compactly written &A = F, with W = [wy, ..., wp| andF =
[£79, ..., £59). SinceA is full rank, matricesW andF span the same column space: rai\§8 =
rang€F). In particular,vu; € ker(WH), ullF = 0F. There aredimker(WH) = (L, — P) such
linearly independent vectors.

Now, since equalization solutions are of the forim (6), the corresponding columBshaive a
particular structure whereby the elements not associated with the minimum-length ediyadiceeall

zero. The remainind.o, = (L°+qq*1) entries formf;’?. Denote bys, the set ofLo, positions off;’?

in £, that is,o, = {j1 + L(jo— 1)+ -+ LI (jy— 1)}, with jiy € [p, p+ Lo—1], k=1, ..., q,
andj; > jo > ... > jg. Accordingly, (u;),, € Croa s the subvector composed of the elememnts
in positionsa,. Let U; = [(w)o,, - - -, (W)s,] € CFa*P. Hence,

WF =0, < UMt =0p. (15)

In total, the above equalities define a set/ofL, — P) linear equations, characterized by matrix
U = Uy, ..., Uy, _p] € CloxP(La=P) 0on the entries of;?. As long asL > L, this linear
system determines, up to a scale, the properly structfﬁ’%xjits scale can later be set via {11) from

a zero-padded version (arfy) of the estimated. In practice,f(?q can be estimated as the least
significant left singular vector of matriXJ. Once matrixF has been reconstructed, an LS estimate
of coefficients{ay,} can be obtained ak;s = (WHW)~'WHF = WTF. These coefficients relate
gth-order tensor§ Wy, } with their rank-1 symmetric tensor decompositipn|(14). Hence, the elements

of Arg solve the rank-1 combination problem.
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To recover the equalizer impulse resporfgefrom its symmetric Kronecker vectorizatioffq,
one can resort to the SVD of a matrix unfolding fﬁq = unvecsq{f(]@q} [22], [23]. Let matrix
Fo € CloxE8 such that(Fo); ;.\ 1o nyiri-2(—1) = (5 Disiais..i,- Then, Fo = foff, with
(t_“o)i2+Lo(13_1)+.A.Lgfz(iq_1) = (f0)i, (f0)s, - - - (fo)s,. Thereforefy can be estimated (up to a scale) as
the most significant left singular vector of the rank-1 matrix unfoldifyg In the presence of noise, it
will generally be impossible to express the estimaﬁﬁﬂ as the symmetric vectorization of a rank-1
tensor; that is, a vectdy cannot be found such th&f? = vecs,{f;’?} holds exactly. As a result, the
matrix unfolding will not be of rank one, and the above SVD-based procedure will yield inaccuracies

which may ultimately limit the equalization performance.

C. Other Structuring Methods

In the context of the CM criterion, a similar subspace-based structuring method was proposed in [7,
Section III.C], which operates on a single (LS) unstructured solution (see also [24]). Such structure-
forcing procedure can be interpreted as the diagonalization of the matrix associated to the unstructured
solution. By contrast, our approach takes advantage of a full basis of the solution subspace, which
should lead to a subsequent increase in robustness, especially forPlafigee method of [22] and
[7, Section III.B] is based on the observation that the Iogntries of a solutionw; are equal to
a1 f N f1y af2s -0 AfLo—15 /@fLo, 0p_4]", from which £, can be extracted. This ingenious
simple method is bound to be inaccurate when either the coeffigignbr the equalizer leading tap
f1 are small relative to the noise level.

To circumvent this drawback, one may notice that fhentries at the bottom ofv;, are equal
to akpfgo_l[()};il, o VA1 A2, - @S Le-1, fr,)T [7, Section 111.B]. This second option can
provide, properly combined with the estimate from the fitséntries, an improved estimate fif In
the experiments of Sectipn VII, we use the following (still suboptimal) LS linear combination. Assume
that the filter estimate from the top and bottom non-overlapping entries of an unstructured solution
are, respectivelyf; = ,f, andf, = B.fy, with fy = fy/||fs||. Then, the unit-norm minimum-length
equalizer LS estimate is given t:fyj = [fl, fg]fy, with v = B8*/|I8|%, B = [B1, B2]*. The coefficients
in B are simply estimated a8; = ||fiH, i = 1, 2. This kind of maximal-ratio combining (MRC)is
reminiscent of the RAKE receiver and the matched filter [25]. Robustness can be further enhanced

by exploiting a whole sefwy,} instead of just one solution.

D. Approximate Solution in the Presence of Noise

In the presence of additive noise at the receive sensor output, the exact solufign to (4) may no

longer exist. An approximate solution in the LS sense can be reached by miniriiigw — d||?,
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always subject to the structural constraint= £f©4. This minimization generally requires an iterative
method, as will be detailed in the next section.

Nevertheless, the guidelines to obtain the exact solution in the noiseless case may still provide a
judicious initialization for the iterative search. After applying transformatipthe LS problem turns
out to be equivalent to the minimization f'w — 1|2+ | Rw||2. To find a basis of the (approximate)
solution space, we look for a set of vectors which mininjjBew |2 (e.g., theP least significant right

singular vectors oR), then structure them as in Sectjon 1¥-B, and finally normalize the solution to

fulfil ctw = 1 [eqns. [(ID)F(T1)].

V. BLIND ITERATIVE SOLUTIONS
A. Gradient-Based Algorithm

In practice, exact ZF equalization may not be feasible, due to the presence of noise, the existence
of an FIR SISO channel, or just because the equalizer length is insufficient. In such cases, the CP
cost function must be iteratively minimized, e.g., via a gradient-descent algorithm. The gradient of
function [2) with respect td is given byV J,(f) = Vrer)J (f) +7Vim) J4(f) and can be expressed
as:

VJ,(£) = E{ (f"x,) 7 [(£x,,)7 — d]*x5 ). (16)

We refer to the resulting iterative method esnstant power algorithm (CPAAs a sensible ini-
tialization, one can use the equalizer vector provided by an ACPA method, such as the approximate
structured solution described in Sectjon Y-D or the unstructured LS solution to the linearized problem

@), fs = (X9M)Td. At each iteration, the equalizer vector is updated in the LMS fashion as
fk+1 =1} — ijq(fk)7 k=0,1,... (17)

The iterations are terminated when

It —8ll _ oy ™
[ £ |
wheren is a small positive constant.

We advocate the use of block (or ‘windowed’) iterative implementations, as opposed to stochastic
algorithms. The latter methods approximate the gradient by using a one-sample estimate, which is
tantamount to dropping the expectation operator. This simplification generally leads to extremely slow
convergence and poor misadjustment. By contrast, the former methods approximate the gradient by its
sample estimate from a block of channel output samples. This more precise gradient estimate improves

convergence speed and accuracy [18], [26]. In addition, tracking capabilities are not necessarily
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sacrificed, since good performance can be obtained from rather small block sizes; it suffices that the
channel be stationary over the (short) observation window.

It is well known that gradient-based optimization algorithms, though simple, are plagued with
a number of drawbacks, such as convergence to spurious local extrema, lack of robustness to ini-
tialization, and slow convergence [6], [19], [27]. These problems persist in block implementations,
although convergence is often faster. When the function to be optimized is quadratic in the unknowns,
more elaborate approaches such as conjugate-direction algorithms alleviate these shortcomings [28].

However, the fact that functiof(2) is not quadratic leads us to seek alternative optimization strategies.

B. Closed-Form Steepest Descent

Steepest descent (or exact line search) methods look for the value of the step size which minimizes

the cost function along the search direction:

Hopt = arg min Jo(f — pg). 19)

A sensible search direction is the gradiegit= VJ,(f). These algorithms are generally unattractive
due to their complexity, for the one-dimensional minimization must usually be performed using costly
numerical methods. Another drawback is the orthogonality of consecutive gradient vectors, which,
depending on the initialization and the shape of the cost-function surface, may slow down convergence
[28].

However, it is observed in [15], [23], [29] that the CP cdstf — pg) is a rational function in the
step sizeu, so thatu,,, can be found in closed form. This fact allows thebal line minimization
of the cost function while reducing complexity. In effept,,; can be found among the roots of the

(2¢ — 1)th-degree polynomiap(u) = Re(32%} b,,u™) where

o Sl 1) - (4 DB ) 0Sm<a-1
S pmi1—g(m+1—=p)E{a},1_,ap}, g<m<2—1

with @, = (=1)7({) (g"xn)P(f"x,)?P, 0 < p < ¢ (Appendix A). The cost function can then be
evaluated at the candidate roots in order to find the global minimum along diregtibinmerical
conditioning is improved by normalizing vectgrbefore evaluating (20).

Although undesired equilibria (especially those lying near flat areas) are not avoided in all cases, our
experiments indicate that thigotimal step-size CPA (OS-CP&gnverges much faster and more accu-
rately than the CPA with constant adaption coefficient. In addition, the frequency of misconvergence
to spurious non-equalizing solutions is remarkably diminished. These benefits will be demonstrated in
Sectior VI|. An analogous optimal step-size algorithm for the CM criterion (OS-CMA) is developed
in [30].
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V1. SEMI-BLIND EQUALIZATION
A. Semi-Blind CP-Based Criterion

The previous sections have developed CP-based equalization algorithms in the fully blind case.
However, practical communication systems typically feature pilot sequences to aid synchronization
and channel equalization. For example, the second-generation GSM wireless system uses 26 out
of the 148 bits in its data frame for training. Exploiting this available information can notably
improve equalization performance. In order to take advantage of these benefits, the CP criterion
can be easily modified to incorporate training symbols, resulting in a semi-blind equalization method.

The minimization of the following hybrid cost function constitutes a semi-blind CP-MMSE criterion:

JSB(f) = /\JMMSE“) -+ (1 — /\)Jq(f) (21)

where Jyvse(f) = E{|y, — st |?} is the pilot-based MMSE cost function, arf@!} denote the
available training symbols. Parameteis a real constant in the interv@, 1] which can be considered

as the relative degree of confidence between the blind- and the training-based parts of the criterion.
By looking at expression[2), it turns out thdinsg can be derived fromJ, by settingg = 1

and substitutings!, for d,,. This equivalence will be useful in simplifying some of the following
mathematical derivations. As in the blind scenario, closed-form and iterative solutions for this semi-

blind CP-based criterion exist and are developed next.

B. Semi-Blind Closed-Form Solutions

AssumelV; training symbols are transmitted and are known to the receiver. We are looking for the

simultaneous solution of the compound system

XHf =5 (22)

XHw =d (23)

subject tow = f9, with X = [xo, x1,..., Xn,—1), X¢ = [X%Z’ X%?+1, X,
S = [So, S1y vy SNtfl]H, andd = [dNt7 dNtJrl, ey dN,ﬂH.

Firstly, let us consider the case of a possibly noisy AR-channel with a sufficiently long equalizer.
An approximate suboptimal solution can be found by combining the solutions computed separately
for both systems. Lefynge be the solution to[(32), anﬁgg the same delay solution t§ (23),
computed as in SectiV. Unfoldnvecs,{f52} into an (L x L¢~') matrix Fcp as described at
the end of Sectiop TV-B. Then, the joint solution [0 {22)4(23) can be approximated as the left singular

vector of matrixFsg = [Mynse, (1 — A)Fcp]. In the noiseless case, solutiofigyisg and fcp are
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exact, identical, and equal to the left singular vector of rank-1 magix; an iterative search is not
necessary.

In the case of an FIR channel, no exact solutior td (22}J—(23) exists even in the absence of noise.
Still, the systems can be solved separately in the LS sense, and their respective solutions combined
by the SVD-based procedure just described. The combined solution can initialize an iterative search

aiming to refine the approximate closed-form result.

C. Semi-Blind lterative Solutions

As in the fully-blind case, cost functiof (1) can be iteratively minimized using a steepest-descent
gradient-based algorithm in which the the optimal step size can be algebraically computed at each

iteration. The equalizer impulse response is updated as:
i1 =t — pVisp(fr), k=0,1,... (24)

where VJsg(f) = AV use(f) + (1 — A)VJ,(f). Criterion [18) still remains valid for checking
convergence. Due to the relationship between the CP and the MMSE cost functions, gvatligits

can readily be computed by settigg= 1 and substituting:, for d,, in expression[(16). By virtue of

the same relationship, the step size which minimizes funciignalong directiong = VJsg(f) can

be found among the roots of the composite polynomial B&nse (1) + (1 — A)pcp(r)), where

pcp and pyvsg are obtained as in expansidn [(20) from the appropriate valugsaofd d,,. Note

that for A = 1 the above iterative procedure reduces to the well-known least mean squares (LMS)

algorithm for supervised MMSE equalization.

VIl. EXPERIMENTAL RESULTS

This section reports some computer simulations to evaluate the performance of the CP-based
methods elaborated in this paper.

Blind ACPA solutionsThe first experiment compares the performance of the closed-form blind
equalization methods of Sectign]IV. The methods compared are the direct LS solution without
structuring (‘LS, no struct’); the structuring method of [22] from the top non-overlapping sections
of the LS solution (‘'LS, top’);idem from the bottom sections (‘LS, bottom’); the MRC of the top
and bottom parts as explained in Sectjon IV-C (‘LS, top+bottoriagm from the whole basis of
solutions (‘basis, top+bottom’); and the subspace method of Sectior) IV-B (‘basis, subspace’). The

performance of the supervised MMSE receiver is also computed as a reference. In the first simulation
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set-up, a QPSK signal (= 4) excites a simple AR-1 channel

1

with pole atp = 0.5, well approximated by an order-50 FIR truncation. ISl is perfectly removed by
the equalizeffy, = [1, —0.5]", which presents a dominant leading tap. The equalizer minimum length
is Ly = 2, but an overestimated length &f = 5 is chosen, yielding? = 4 possible ZF solutions,
which are just delayed versions of each other [as jn (6)]. Additive white complex circular Gaussian
noise is present at the channel output, with signal-to-noise ratio (SNR) giver{|b}? EE{|v|?}.
Blocks of N; = 100 symbol periods are observed, and performance parameters are averaged over
v independent Monte Carlo (MC) runs, withV,; > 10°. Fig.@ plots the symbol error rate (SER)
obtained by the different analytic methods as a function of the SNR. The performance of direct LS
solution makes apparent the need for structuring. Using the bottom part of the LS solution exhibits
similarly poor results, with a rather low noise tolerance. By contrast, the other methods present a
superior performance, just 2-3 dB above the MMSE bound. Interestingly, taking the top part of the
LS solution proves best for moderate SNR values in this scenario. This superiority depends, however,
on the equalizer tap configuration, as demonstrated in the next example.

We repeat the above experiment but moving the AR channel pole=t02, and taking a stable
causal implementation of the channel transfer function

1

Hl2) = 150

2] < 2 (26)

by shifting the truncated impulse response. The minimum-length equalizer now befomés —2] 7T,

with dominant trailing tap. Fid.|2 shows the closed-form blind equalization results. The performance
of the LS-top method considerably degrades, being very similar to that of the LS-bottom method
in the previous experiment. The performance of the subspace structuring method remains almost the
same as in the simulation of F[g. 1, thus showing its robustness to the relative weights of the equalizer
coefficients.

Fig. [3 evaluates the sample size requirements of the closed-form solutions, under the general
conditions of the first experiment and SNR 15 dB. Satisfactory equalization from a basis of the
solution space is achieved even below the limit imposed by (12) for this simulation exaxpte 1.

The subspace approach provides the most efficient results for short observation windows.

CPA solutions — basins of attractiofihe next experiments assess the CP-based iterative methods,
both in blind (Section V) and semi-blind (Sectipn V]-C) operation. We obséfye= 200 symbols
with SNR = 10 dB at the output of channeli;(z) excited by a BPSK input. The contour lines

(in the equalizer parameter space) of the logarithm of the blind CP crit¢rjon (2) calculated from the
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data are plotted in Fig.]4a. The solid lines display the trajectories of the equalizer taps updated with
the CPA [[IF), from 16 different initial configurations amd= 10~° in termination criterion[(18).
Convergence points are marked with a cross. A step;sizel 0~2 was chosen for fastest convergence
without compromising stability. The plot also represents the delay zero and one MMSE solutions
fumseo = [0.85, —0.38]T and fuvse 1 = [0, 0.70]%, which provide an output MSE 0f-8.66

and —4.98 dB, respectively. From most of the initial points the algorithm converges to the desired
solutions, close to the optimal-delay MMSE equalizer. However, the algorithm gets sometimes stuck
at spurious stable extrema located4gt, 0.58], near the suboptimal MMSE equalizer. The basins

of attraction of these undesired equilibria are not negligible, and may have a significant negative
impact on equalization performance. The method requires, on average, about half thousand iterations
to converge (Tablf I).

The spurious convergence points of the CPA correspond to the theoretical values obtained in [19,
Section I11.C] for the CM criterion£[0, 0.65]. Indeed, as already pointed out in Sectjon 1)I-B, for
g = 2 and real-valued source and filters the CM and CP criteria coincide.

Under identical conditions and the same observed data, the tap trajectories for the OS-CPA (Sec-
tion [V-B) are obtained as in Fig] 4b. Not only are undesired solutions avoided, but convergence is
notably accelerated relative to the previous case: just over ten iterations suffice[{Table I).

Using V; = 10 pilot symbols and a confidence parameket 0.5, the contour lines of the semi-
blind CP criterion[(2]1) follow the shape displayed in Fig. 5a. The introduction of training data alters
the CP cost function by emphasizing the minimum near the MMSE solution while naturally vanishing
the previously acceptable equilibrium across the origin. The use of the optimal step size still leads
to good equalization solutions (Figl 5b) and, again, remarkably speeds up convergencg| (Table I).

Non-minimum phase channéMe now evaluate performance on the non-minimum phase channel

of [7], given by

Hs(z) = (—0.033 +0.0145) + (0.085 — 0.0395)z ! — (0.232 — 0.1365) 272 + (0.634 — 0.445;) 23
+(0.070 — 0.233;) 2~ — (0.027 4+ 0.0715)2 > — (0.023 + 0.012)275. (27)

This order-6 FIR channel can be well equalized with a length-3 FIR filtgr=£ 3), but we choose

L = 5. From a data block ofV; = 100 symbols and using several structuring procedures, the blind
closed-form CP methods display the SER performance shown in the dashed lines [of Fig. 6. The
closed-form solutions are then used to initialize the OS-CPA described in Sgdtion V, yielding the
solid curves in Fig[ |6. The gradient iterations refine the analytical estimates, approaching the MMSE

bound.
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The performance of the semi-blind CP methods is summarized irj Fig. 7, for the same simulation
setting with V; = 10 pilot symbols and\ = 0.5. Depending on the window length employed to
calculate the MMSE solution, two MMSE curves are obtained as a reference: using just the pilot
sequence, as would occur in a conventional receiver, and using the whole data block (MMSE bound).
The benefits of the semi-blind approach are noteworthy. Firstly, the performance of the analytic
solutions is considerably enhanced compared to blind operation. Secondly, the semi-blind OS-CPA
shows identical performance irrespective of initialization, following quite closely the MMSE bound.
The exploitation of ‘blind symbols’ in addition to the training period improves the conventional
receiver, and nearly reaches the MMSE bound while considerably increasing the effective data
throughput. Also, the convergence rate is improved relative to the fully-blind case, particularly at
low SNR, as depicted in Fif] 8.

Influence of pilot-sequence lengtext, we evaluate the CP criterion performance as a function
of the proportion of data block symbols used for training. In the previous scenaso ((.5), two
blind ACPA methods are combined with the MMSE solution to generate respective closed-form
estimates: the direct LS solution (without structuring), and the subspace-based structuring procedure
from a basis of solutions. The OS-CPA is initialized with the center-tap filter and the analytical
subspace-based estimate. Results are displayed in|Fig. 9. The subspace-based structuring, as expected,
worsens as less data are considered in the blind part of the criterion [cf[ efn. (12)]. The performance
and convergence speed of the semi-blind OS-CPA seem independent of initialization, although the
subspace approach slightly improves the center-tap initial filter in the blind case (0% of training).
Note that the performance of a given conventional receiver with up to 30% of pilot symbols can be
attained by operating in semi-blind mode with a shorter training preamble, and hence a higher spectral
efficiency. A peak in SER and convergence time is observed around 90% of training symbdls|(Fig. 10).
This outcome could be due to the fact that the few symbols in the blind part of the criterion hinder
the convergence to the MMSE solution imposed by the pilot symbols. Nevertheless, both performance
indices drop to the MMSE limit when the whole observed block is used for training.

Influence of parametek. The performance of the semi-blind methods as a function of confidence
parameten is illustrated in Figs| 11-12, obtained in the same scenario Njth- 10 pilot symbols.

As expected, performance improves as more weight is laid on the known data.=Far the blind
part of the criterion is dropped altogether and the equalization entirely relies on just a few training
symbols, thus the increase in SER up to the conventional MMSE receiver level. Accordingly, this
increase is not observed in larger training windows. Over a wide range(iafughly in the interval
[0.3, 0.9]), the influence of initialization on the performance and convergence speed of the semi-

blind OS-CPA seems unimportant, and for practically any|0, 1] the semi-blind iterative methods
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improve the conventional equalizer. 12 also shows that a value of the confidence parameter exists
(A = 0.7) for which the cost-function surface is best adapted to the operation of the optimal step-size
gradient-descent algorithm, so that convergence is achieved in the lowest number of iterations. This
optimal value of\ will generally depend on the specific system conditions, sample size and SNR.
Comparison with CM criterionA final experiment makes an illustrative comparison between the
CP and CM criteria in semi-blind operation (10% training). A co-channel interferer with the same
modulation as the desired signal (QPSK) and a given signal-to-interference ratio (SIR) is added at the
output of channeH3(z). The respective top-structuring analytic solutions are first obtained, and then
used as initial points for the optimal-step size iterations. Figs. 13—14 show that, although the ACPA
solution is poorer than ACMA's in this particular scenario, the OS-CPA improves its CM counterpart

with half the number of iterations.

VIIl. SUMMARY AND CONCLUSIONS

The present work has focused on the CP criterion for blind linear equalization of digital communica-
tion channels excited by PSK signals. When exact ZF solutions exist (as in all-pole SISO channels),
the global minima can be reached in closed-form. These non-iterative solutions are unaffected by
the existence of spurious (non-equalizing) local extrema in the cost-function surface. Through an
appropriate transformation the non-linear criterion can be linearized; then the structure of the solution
must be restored. The algebraic treatment is similar to ACMA's, but the analytic solutions to the CP
criterion (ACPA) do not need to be specialized to handle binary modulations. Obtaining a basis of the
solution space allows the design of more robust structure-forcing methods to recover the minimum-
length equalizer from the solutions to the linearized problem. In simulations, the proposed subspace-
based approach has effectively proven more robust than simpler structuring methods. Algebraically, the
subspace method solves a particular instance of the rank-1 tensor combination problem. In simulations,
the blind analytic solutions show a restricted tolerance to noise, especially for long equalizers. The
key issue limiting performance is probably the SVD-based procedure described in Sgectiohs 1V-B
and[VI-B for extracting the equalizer vector from the estimated symmetric tensor.

When the algebraic solution is only an approximation (e.g., when no exact ZF equalizer exist),
or when it is too costly to compute, iterative techniques are necessary to seek the global minima of
the criterion; an iterative method can also be used to refine a good algebraic guess. An exact line
search gradient-descent block algorithm has been proposed in which the optimal step size is computed
analytically at each iteration. This algorithm (OS-CPA) shows a very fast convergence and is able to
avoid spurious local extrema.

The CP criterion is easily modified to include training information. Indeed, the conventional
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supervised MMSE principle can be seen as a special case of CP equalization. With just a few pilot
symbols, the analytic solutions’ noise tolerance is ameliorated. The semi-blind OS-CPA performs
near the MMSE bound at a fraction of the bandwidth cost and is very robust to the equalizer-filter
initialization.

In short, the CP criterion has been endowed with a number of strategies aiming to reduce the

impact of spurious local minima and slow convergence in iterative blind equalizers:

1) informed initialization with closed-form solutions,
2) block iterative operation,
3) global line minimization with algebraically-computed optimal step size, and

4) incorporation of training data.

These strategies are not exclusive to the CP principle but can also benefit other equalization criteria.
Further lines of inquiry could include the theoretical study of spurious extrema in the CP criterion;
the improvement of the SVD-based procedure for recovering the equalizer vector; the robust automatic
detection of the number of ZF solutions and extraction of the optimum-delay equalizer [31]; the

optimal choice of pilot-confidence parameter(e.g., based on an asymptotic analysis of variance);
the impact of carrier residual [23], [29]; and a thorough theoretical and experimental comparison of

the CP principle with other equalization schemes such as the CM criterion.

APPENDIXA: PROOFS

Section[I-Aj
e Number of input states for PSK modulations.

Let [to, ..., tx_1]* be the cascaded equalizer-channel impulse response vector, assuming a total
length of K taps. The number of different equation$ = d,, is determined by the possible states of
vector[s,, ..., sn_x+1]'. SuchK-uplets can takg” different states. However, we have thgt=
(o tesn—r)? = (sn(to+ 30y thdn—i))? = (to+ orsy trdn_r)?, Wheres,_j = s, s, 5. By
virtue of the group property of the PSK alphabgt, ; also belongs to the input signal constellation.
Hence, the number of equations is actually determined by the different values @K'thel )-uplet

[3n-1,..., 8n_x+1)T, which can take at most“~! states. O

Section[IV-At
o (flx, )1 = foatl2a,

(%) = (35;(6); (xn)i)* = 22, . (B)F -+ (£)F (%n)i, - - (%n)i, can be expressed as the sum
of all terms of tensof®?* © x5 or, equivalently, of vectof??* » x7?. This sum is the same as

foatly@a, 0
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¢ Problem [(b) equivalent to probler]| (4).

We need to prove that the set of solutie[rvszk}f:1 of the formwy, = fk,@q is linearly independent if
and only if (iff) the set{f;}Z_, is linearly independent. This can be done along the lines of [8, Proof
of Lemma 3] by considering the matrix unfolding £§f* = unvecs,{f’?}, F;, € CL*L"", defined as
(Fr)iy o+ L(is—1) 4. La—2(ig—1) = (f?q)i1i2i3_,,iq. This matrix can be expressed as the rank-one product
Fi = 8,55, with (8,4 20— 1)+ 20-2(1,—1) = (Be)is (Fe)s, - - - (F)s, - Now, vectors{f,?} are linearly
independent iffEle akf,?q impliesay = 0, k = 1, ..., P. That linear combination vanishes iff
S aif’? is the null tensor or, equivalentl@f:1 aiFy, the zero matrix. Due to the structure of
matrices{F}}, this latter condition necessarily implies that; } be zero iff rank[fi, ... fp]) = P,

i.e., {fy} form a linearly independent set. O

e Problem [(B) equivalent to problern] (9) with scale constrdini (£0}—(11).
We only need to show that’w = /N and [I0){(I]1) are equivalent. Vecte¥ is given by the
product of the first row o, sayq'!, and matrixX?". SinceQd = [V'N, 0}, _,]7, it follows that the

rest of the rows ofQ are orthogonal to vectal. Also, Q is unitary so thaty must be parallel tal;

specifically,q = v/Nd/||d||?. Then,q"X¢" = ¥R S™" " dxx7¢". The scale constraint becomes
T Xonlo dnxi” = 1, which reduces togr 307 da(f!x,)? = 1 whenw = £, 0

o If dimker(X?) = (P—~1)andN > (L, — P) = dimker(R)= P.

Since dimker(R) = (L, — rankR)) and rankR) < (N — 1), it follows that dimker(R) >
(L; — N + 1). Hence, a necessary condition féimker(R) = P is that N > (L, — P) or, in
terms of the observed sample si2é; > (L, + Lo — 1). On the other hand, the number of linearly
independent constraints th&“" can introduce is equal to ra(X") = (L, — P + 1). Due to the
unitarity of Q, such constraints are equivalent to those introducedB§/". Sincerf'w imposes
one such constraint®w must impose the remainind., — P). This is precisely the rank dR, and

proves thaidim ker(R) = P. O

Section[V-B:
e Optimal step-size polynomial.

Jo(f—pg) = E{|en|?}, with &, = £(1) —d,,, whereé(u) = ((f—pg)tx,)?. This latter polynomial
in 12 can be expanded @$u) = Y7 _ a,u?, wherea, = (—1)7(?) (g"x,)?(f"x,,)977. Sinced.J,(f -
1g)/0n = 2E{Re("e,)} 2 2p u), the first-order necessary conditi@/,/0p = 0 reduces to
finding the zeros of(y). It remains to prove that such polynomial accepts the expansion of{edn. (20).
Now, p(r) = E{Re(€”"(¢ — dn))} = Re(E{&1 — &}), with &1(p) = €€ and &2(4) = € dy. As
&p) = Zgzlpappﬂ’*l, the coefficients of(2¢ — 1)th-degree polynomiat;(u) are given by the
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COhVOIutiOn[qaZa (g — 1)a2_1, ..., ai] * [ag, ag—1, ..., ap), which produces
b = Zzlzo(m t1 _p)av*n-i—l—papa 0<m<qg—1 28
m
Zg:m+1—q(m +1 _p)a:l+1fpapv gs<m< 2(] —1

Similarly, the coefficients ofjth-degree polynomiafs (i) are simplyb%) = (m+ 1ay, 1dyn, 0 <
m < (¢ —1). The combination of these two sets of coefficients and the expectation operator leads to
expansion[(20). O
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Fig. 1. Closed-form blind equalization based on the CP criterion for several structuring methods. Gtigfn)elQPSK
input (¢ = 4), Nq = 100 symbol periods, 1000 MC runs.
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Fig. 2. Closed-form blind equalization based on the CP criterion for several structuring methods. GtiafnelQPSK
input (¢ = 4), Nq = 100 symbol periods, 1000 MC runs.
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Fig. 3. Closed-form blind equalization based on the CP criterion for several structuring methods. Qtigfn)elQPSK
input (g = 4), SNR = 15 dB,v MC runs, withvN; > 10°.

@)

Fig. 4. Blind CP cost function contour lines (dashed) and CPA equalizer tap trajectories (solid lines): (a) constant step
size, (b) optimal step size. Channgl (z), BPSK input ¢ = 2), Ng = 200 symbol periods, SNR = 10 dBs" initial
point; ‘x’: final point; ‘o’: optimal-delay MMSE solution;[1": suboptimal-delay MMSE solution.
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(@) (b)

Fig. 5. Semi-blind CP cost function contour lines (dashed) and OS-CPA equalizer tap trajectories (solid line): (a) constant
step size, (b) optimal step size. Chanii&l(z), BPSK input ¢ = 2), Ny = 200 symbol periods/N; = 10 pilot symbols,
SNR = 10 dB,\ = 0.5. ‘e’; initial point; * x': final point; ‘o’: optimum-delay MMSE solution.
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Fig. 6. Blind CP equalization. The OS-CPA is initialized with the corresponding ACPA solution. Chafiie), QPSK
input (¢ = 4), Nqg = 100 symbol periods, 200 MC runs.
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Fig. 7. Semi-blind CP equalization in the simulation of fip. 6 wiXh = 10 pilot symbols and\ = 0.5. The OS-CPA is

initialized with the corresponding ACPA solution.
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Fig. 8. Average number of iterations for the three initializations of the OS-CPA in the experiments df|Figs. 6-7.
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Fig. 9. Impact of the training window length on the performance of the semi-blind CP methods. Ch&ingl QPSK
input (¢ = 4), Ng = 100 symbol periods, SNR = 10 dB) = 0.5, 500 MC runs.
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Impact of confidence parameteron the performance of the semi-blind CP methods. Chahhgk), QPSK
input (g = 4), Ng = 100 symbol periodsN: = 10 pilot symbols, SNR = 10 dB, 500 MC runs.
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Fig. 12. Average number of iterations for the two initializations of the OS-CPA in the

experiment ¢f Fig. 11.
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Fig. 13. Semi-blind equalization with the CP and CM criteria. The analytic solutions are obtained using the top structuring
method. ChanneHs(z), QPSK input § = 4), QPSK co-channel interferefy; = 200 symbol periods,N; = 20 pilot
symbols, 100 MC runs.
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Fig. 14. Average number of iterations in the experiment of Fig. 13.
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