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Abstract

This paper focuses on the constant power (CP) criterion for blind linear equalization of digital

communication channels. This recently proposed criterion is specially designed for the extraction

of q-ary phase shift keying (q-PSK) signals using finite impulse response equalizers. When zero-

forcing equalizers exist, the CP cost function accepts exact analytic solutions which are unaffected by

undesired local extrema and spare costly iterative optimization. A subspace-based method exploiting

the Toeplitz-like structure of the solution space is put forward to recover the minimum-length

equalizer impulse response from the overestimated-length solutions. The proposed method is more

robust to the equalizer vector configuration than existing techniques. In less ideal scenarios where

the analytic solutions are only approximate minimizers of the criterion, a gradient-descent algorithm

is proposed to minimize the cost function. To reduce the detrimental effects of spurious equilibria

and accelerate convergence, the iterative algorithm is initialized with the approximate closed-form

solution and an optimal step size is incorporated into its updating rule. This optimal step size, which

globally minimizes the cost function along the search direction, can be computed algebraically. A

semi-blind implementation, useful when training data are available, further reduces the impact of local

extrema and enhances the convergence characteristics (particularly the robustness to the equalizer

initialization) of the iterative algorithm from just a few pilot symbols. All these beneficial features are

demonstrated with an experimental study of the proposed CP-based methods in a variety of channels

and simulation conditions.
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I. I NTRODUCTION

A. Background

In digital communications, transmission effects such as multipath propagation and limited band-

width produce linear distortion in the emitted signal, causing intersymbol interference (ISI) at the

receive sensor output. To enable the recovery of the input symbols, channel equalization aims to com-

pensate these distorting effects [1]. Since the late 70’s, the drawbacks of training-based methods [1],

[2] have aroused considerable research interest in the so-calledblind equalization techniques, which

spare the use of bandwidth-consuming pilot sequences and prove especially attractive in broadcast

and non-cooperative scenarios. In the fundamental single-input single-output (SISO) scenario, non-

minimum phase (NMP) channels cannot be blindly identified using only second-order statistics (SOS);

hence, the need for blind SISO equalizers to rely (explicitly or not) on higher-order statistics (HOS)

[3]–[5]. Most blind methods are essentially property restoral techniques: the equalizer filter is updated

so as to produce an output signal that recovers ana priori known property of the input signal, such

as the finite alphabet or constant modulus of its data symbols.

The constant modulus (CM) criterion [4], [5] — which can be considered as a particular member of

the more general family of Godard’s methods [4] — is arguably the most widespread blind equalization

principle. Although Godard’s methods were proven to be globally convergent in the combined channel-

equalizer parameter space, they were later shown to generally present spurious equilibria in the

equalizer parameter space [6]. Spurious equilibria are those associated with filter tap settings which

cannot sufficiently open the eye pattern of equalizer output signal, so that the detecting device is then

unable to extract the transmitted symbols with a reasonably low probability of error. Often, these

local extrema lie close to minimum mean square error (MMSE) solutions for equalization delays with

high MSE. This shortcoming renders the performance of gradient-based implementations of Godard’s

criterion very dependent on the initial value of the equalizer impulse response. As discussed in [6],

the misconvergence problems of iterative blind SISO equalization methods calls for the design of

suitable initialization schemes and, perhaps, additional strategies to keep the equalizer tap trajectories

away from undesired local equilibria. An alternative is to develop globally-convergent algorithms free

from spurious extrema.

One such globally-convergent method is developed in [7], which obtains a closed-form solution

for the CM equalizer. The CM criterion is posed as a nonlinear least squares (LS) problem. Through

an appropriate mapping of the equalizer parameter space, the nonlinear setting is transformed into

a linear LS problem subject to a constraint on the solution structure. Recovering the right structure

of the solution space is particularly important when multiple zero-forcing (ZF) solutions exist; for
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instance, in all-pole channels with overparameterized equalizers, different ZF equalization delays are

possible. From a matrix algebra perspective, imposing this structure can be considered as a matrix

diagonalization problem, in which the matrix performing the diagonalization of the unstructured

solution matrix is composed of the equalizers’ tap vectors. After obtaining a non-structured LS solution

via pseudoinversion, the minimum-length equalizer is extracted by a subspace-based approach or two

other simpler structuring procedures. LMS and RLS algorithms are also designed to solve the linear

LS problem; hence, they still require structuring after convergence. Alternatively, the linearized LMS

algorithm can be modified to partially impose the appropriate structure. However, the introduction of

nonlinear constraints precludes the formulation of a closed-form solution.

The blind equalization method of [7] is strongly related to the analytical CM algorithm (ACMA)

of [8] for blind source separation, a related but somewhat different problem. ACMA provides, in the

noiseless case, exact closed-form solutions for the spatial filters which extract the source signals from

their observed instantaneous linear mixtures. Interestingly, recovering the separating spatial filters

from a basis of the solution space turns out to be tantamount to the joint diagonalization of the

corresponding matrices. This joint diagonalization can be achieved through a QZ iteration for which

convergence proof has not yet been found. Whether for source separation or equalization, ACMA

requires special modifications to handle input signals with a one-dimensional (i.e., binary) alphabet

[7]–[9]. These modifications give rise to the so-called real ACMA (RACMA) method [9].

Multichannel (fractionally-spaced) implementations are also able to avoid some of the deficiencies

of SISO equalizers. In the first place, single-input multiple-output (SIMO) channels can be blindly

identified using only SOS, regardless of their phase characteristics. Also, finite impulse response

(FIR) SIMO channels can be perfectly equalized, in the absence of noise, by FIR filters. Seminal

methods are presented in [10]–[12]. However, in certain practical scenarios it may not be possible

to achieve the required degree of spatio-temporal diversity, due to lack of excess bandwidth or to

hardware constraints limiting the number of receiving sensors (e.g., antennas in a mobile handset).

This paper is mainly concerned with, but not restricted to, the basic SISO model.

B. Contribution and Outline

The present contribution studies a novel criterion for the blind equalization of digital channels

excited by input signals withq-ary phase shift keying (q-PSK) modulations, for arbitraryq > 2. The

criterion can be considered as a modification on the original Godard’s family of blind equalizers, with

a power valueq matched to the signal constellation; thus the suitable name ofconstant power (CP)

criterion. It is shown that if multiple ZF solutions exist — e.g., when the noiseless SISO channel

follows a pure autoregressive (AR) model and the equalizer filter is of sufficient length — the criterion
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accepts, much in ACMA’s fashion, an exact solution which can be computed analytically, i.e., without

iterative optimization. The minimum-length equalizer impulse response can then be obtained from

a joint decomposition ofqth-order tensors, the so-called rank-1 combination problem [13]. Since

no effective tool has yet been developed for this task, an approximate solution is proposed in the

form of a subspace-based method, which exploits the particular structure of the tensors associated

with satisfactory equalization solutions. As opposed to [7], the subspace method proposed herein

takes into account a whole basis of the solution space. This use of extra information is expected

to increase the algorithm’s robustness to the minimum-length equalizer structure. In addition, our

closed-form blind equalization method naturally deals with binary inputs (e.g., BPSK, MSK) without

further modification.

In additive noise or less ideal channel-equalizer conditions, the CP cost function can be minimized

through a gradient-descent algorithm. The impact of non-equalizing extrema are considerably reduced

by initializing the algorithm with the approximate closed-form solution. In computationally-limited

systems, however, simple initializations may be preferred to more sophisticated, and thus more

complex, alternatives. Whatever the option, the value of the step size (adaption coefficient) that

globally minimizes the cost function along the search direction can be computed analytically at each

iteration. This optimal step size provides remarkable benefits in convergence speed and avoidance

of spurious local extrema, even with conventional (e.g., center-tap) initializations. The CP criterion

is easily modified to operate in semi-blind mode, relevant in typical real scenarios where training

sequences are available. The optimal step size can also be algebraically computed in pilot-assisted

operation. Using just a few pilot symbols, this semi-blind optimal step size algorithm shows an

outstanding robustness to the equalizer filter initialization.

The material is organized as follows. A brief explanation of the problem and the signal model is

given in Section II. After presenting the CP criterion in Section III, its closed-form solutions are found

in Section IV with the aid of a subspace-based algorithm for recovering the minimum-length equalizer.

Iterative implementations are the focus of Section V, featuring the optimal step-size gradient-descent

algorithm. Semi-blind solutions, in block and iterative operation, are put forward in Section VI.

An experimental study is reported in Section VII. Finally, the summary and concluding remarks

of Section VIII bring the paper to an end. For the sake of clarity, proofs and other mathematical

derivations are postponed to the Appendix.

C. Notations

In the following, scalars, vectors, and tensors (of which matrices are assumed a particular case)

will usually be denoted by plain lowercase (a), boldface lowercase (a) and boldface uppercase (A)
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symbols, respectively, the only exceptions being the structures derived from Kronecker tensorial

products, as explained below.In refers to the(n × n) identity matrix, whereas0n is the length-n

zero vector;(·)T, (·)H and (·)−1 indicate the transpose, Hermitian (conjugate-transpose) and inverse

matrix operators, respectively;‖ · ‖ is the conventional 2-norm.(A)i1i2...iq
denotes the entry located

in position(i1, i2, . . . , iq) of qth-order tensorA. C is the set of complex numbers; IRe(·) and IIm(·)

denote the real and imaginary part, respectively, of their complex argument; E{·} represents the

mathematical expectation. Symbol∗ denotes the convolution operator, whereas⊗, � and ◦ stand

for the Kronecker, elementwise and outer products, respectively. Given a vectora ∈ CL we define

its qth-order rank-1 Kronecker tensor product asa⊗q = a ◦ · · · ◦ a︸ ︷︷ ︸
q

(e.g.,a⊗2 = a ◦ a = aaT). A

symmetric tensorA of orderq and dimensionL can be stored in a vectorvecs{A}, which contains

only theLq =
(
L+q−1

q

)
distinct entries ofA, scaled by the square root of the number of times they

appear so that the Frobenius norm is preserved [13]. In particular, we denotea�q = vecs{a⊗q}.

Similarly, given a vectorb of dimensionLq, unvecsq{b} denotes the symmetricqth-order tensor

constructed from its entries.

II. PROBLEM STATEMENT AND SIGNAL MODEL

The problem of channel equalization can simply be posed as follows. A digital signals(t) =∑
n snδ(t − nT ) is transmitted at a known baud-rate1/T through a time dispersive channel with

impulse responseh(t). The channel is assumed linear and time-invariant (at least over the observation

window), with a stable, causal and possibly non-minimum phase transfer function. The continuous-

time baseband signal at the receive sensor output is given byx(t) = r(t)+v(t), wherer(t) = h(t)∗s(t)

denotes the noiseless observation andv(t) the additive noise. Assuming perfect synchronization and

carrier-residual elimination, baud-rate sampling produces the discrete-time output

xn = rn + vn =
∑

k

hksn−k + vn (1)

in which xn = x(nT ), and analogous definitions hold forhk, sn and vn. Each observed sample

consists of a noisy linear mixture of the original data symbols, an undesired phenomenon known as

ISI. Our goal is to recover the original data symbols from the received signal corrupted by ISI and

noise. To this end, a baud-spaced linear equalizer with impulse response tapsf = [f1, . . . , fL]T ∈ CL

is sought so that the equalizer outputyn = fHxn is a close estimate of the source symbolssn, where

xn = [xn, xn−1, . . . , xn−L+1]T.

In this paper, the data symbols are assumed to belong to aq-ary phase shift keying (q-PSK)

constellationAq = {ak}q−1
k=0, with ak = ak, in which aq = d depends on the actual constellation; for

instance,(q, d) = (2, 1) for BPSK and(q, d) = (4, −1) for QPSK. By allowing a time-varyingd,
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the above definitions are readily extended to encompass other non-PSK modulations such as MSK

[14], modelled with(q, dn) =
(
2, (−1)n

)
. Note that setAq is an Abelian group under complex

multiplication.

III. A B LIND EQUALIZATION CRITERION FORPSK MODULATIONS

A. The Constant Power Criterion

Sincesn ∈ Aq it follows that sq
n = dn. Thus, a somewhat natural cost function to measure the

closeness of the equalizer output to the original data symbols is given by theconstant power (CP)

criterion:

Jq(f) = E{|yq
n − dn|2} = E{

∣∣(fHxn)q − dn

∣∣2}. (2)

Cost function (2) is a particular case of the more general class of alphabet polynomial fitting (APF)

criteria, where the equalizer output constellation is matched to the source alphabet, characterized

by the complex roots of a specific polynomial [15], [16]. In the context of blind source separation,

criterion (2) is shown to be equivalent, for sufficiently low noise levels, to the maximum a posteriori

(MAP) principle [17], [18]. In addition, it is proved in [15] that, when the total channel-equalizer

impulse response is of finite length and the input signal sufficiently exciting, the global minima in

the combined noiseless channel and equalizer parameter space of the sample estimate of criterion (2)

correspond to ZF equalization solutions. However, this result does not assure that the desired solutions

can always be reached or that undesired (non-equalizing) equilibria do not exist when the cost function

is observed from the actual equalizer parameter space, as noted in [6], [19] for Godard’s criterion.

The existence of local extrema in the CP criterion will be illustrated with a few simple experiments

in Section VII.

A sufficient excitation condition for input sequencesn consists of observing all possibleqK states

of theK-uplet [sn, sn−1, . . . , sn−K+1]T, whereK denotes the total length of the cascaded channel-

equalizer impulse response [15]. The group structure of the PSK alphabet enables the reduction of

the sufficiently-exciting observation length toqK−1 (Appendix A).

B. Connections with Existing Criteria

CP functional (2) bears close resemblance to Godard’s class of cost functions [4], which in the

PSK case shows the general form:

JG
q (f) = E{(|yn|q − |sn|q)2} = E

{(
|fHxn|q − 1

)2}
. (3)

For q = 2, the above function corresponds to the CM criterion [4], [5]. For BPSK sources and real-

valued channel and equalizer, the CP and CM criteria are identical; in such a case, we anticipate that
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the closed-form treatment of the CP minimization (Section IV) is equivalent to that of the specialized

ACMA for binary modulations [7], [9]. All PSK constellations being CM, the CM principle is not

discriminant over the set of PSK constellations. Similarly, it is not clear, at least at first glance, how

the more general criterion (3) could privilege a particular PSK modulation. By contrast, criterion

(2) explicitly takes into account the discrete nature of PSK-type alphabets, so that it should exhibit

enhanced discriminating properties among the CM constellations.

If dn is substituted by the available training symbolsst
n, the CP cost function (2) reduces, with

q = 1, to the supervised MMSE equalization principle. This fact will be revisited when designing

the semi-blind methods of Section VI.

IV. B LIND CLOSED-FORM SOLUTIONS

When the channel accepts a noiseless AR model and the FIR equalizer is sufficiently long, perfect

ZF SISO equalization is possible. In particular, the CP criterion (2) can be perfectly minimized

(zeroed) and an exact global minimum can be computed in closed-form, that is, without iterative

optimization. This analytic solution can be considered as an extension of the ACMA algorithm [8]

to the CP principle. Consequently, the method may be calledanalytical constant power algorithm

(ACPA).

A. Obtaining a Basis of the Solution Space

The perfect minimizers of (2) are given by the solutions to the set of equations:

(fHxn)q = dn, n = 0, 1, . . . , N − 1 (4)

whereN = (Nd−L+1) andNd denotes the observation length in number of samples. This non-linear

system can be linearized by taking into account that(fHxn)q = f�qHx�q
n (Appendix A), and can be

compactly expressed as

XqHw = d (5)

whereXq = [x�q
0 , x�q

1 , . . . , x�q
N−1] and d = [d0, d1, . . . , dN−1]H. Eqn. (5) is to be solved under

the structural constraint thatw be written asw = f�q, for certainf ∈ CL (Appendix A).

Let us assume an all-pole channel with AR-model order ofM . Such a channel can be equalized

with a minimum-length FIR filterf0 composed ofL0 = (M + 1) taps. Assume the equalizer filter

is overparameterized, that is, the equalizer lengthL has been overestimated,L > L0. Then P =

(L− L0 + 1) ZF solutions exist, each of them corresponding to a different equalization delay:

fp = [0T
p−1, fT

0 , 0T
P−p]

T, 1 6 p 6 P. (6)
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Since there areP linearly independent solutions, the dimension of the null space ofXqH is equal

to (P − 1). Hence, the solutions to (5) can be written as an affine space of the formw = w0 +∑P−1
p=1 αpwp, wherew0 is a particular solution to the non-homogeneous system andwp ∈ ker(XqH),

1 6 p 6 (P − 1).

As in [8], we find it more convenient to work in a fully linear subspace, which is obtained through

a (N × N) unitary transformationQ such thatQd = [
√

N, 0T
N−1]

T. For instance,Q can be a

Householder transformation [20] or, ifd is composed ofN equal values, anN -point DFT matrix.

Then,

QXqH =

rH

R

 (7)

and system (5) reduces to:  rHw =
√

N

Rw = 0N−1.
(8)

subject to the constraintw = f�q. Along the lines of [8, Lemma 4], it can be proved (Appendix A)

that this problem is equivalent to solving Rw = 0N−1

w = f�q
(9)

and then scaling the solution to impose

cHw = 1, with c =
1

‖d‖2

N−1∑
n=0

dnx�q
n (10)

or, equivalently,
1

‖d‖2

N−1∑
n=0

dn(fHxn)q = 1. (11)

If dim ker(XqH) = (P − 1) and

Nd > Lq + L0 − 1 (12)

(or N > Lq −P ), thendim ker(R) = P (Appendix A). Hence, all solutions toRw = 0 are linearly

spanned by a basis{wk}P
k=1 of ker(R). This basis can be computed from the SVD ofR by taking

its P least significant right singular vectors. The structured solutions{f�q
p }P

p=1 are also a basis of

the same subspace and, therefore, a set of scalars{αpk}P
p,k=1 exists such that

f�q
p =

P∑
k=1

αpkwk, 1 6 p 6 P (13)

where matrix(A)kp = αpk is full rank. The problem of structuring the solution to the linearized system

(5) consists of imposing the rank-1 symmetric Kronecker structure to the basis{wk}P
k=1, which, in
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turn, yields{fp}P
p=1. This is a particular subspace-fitting problem with structural constraints. In terms

of q-order tensors, eqn. (13) can be expressed as

f⊗q
p =

P∑
k=1

αpkWk, 1 6 p 6 P (14)

whereWk = unvecsq{wk}. This is the rank-1 combination problem: given the set{Wk}, find

the scalars producing tensors of rank one. The obtained rank-1 tensors will precisely correspond to

{f⊗q
p }. Such a tensor decomposition is, in general, a notoriously non-trivial task (see, e.g., [13], [21]

and references therein).

Before continuing, it is worth remarking that sample-size bound (12) is too restrictive. In prac-

tice, satisfactory closed-form equalization usually requires shorter observation windows, as will be

demonstrated in the experiments of Section VII.

B. Solution Structuring: A Subspace-Based Approach

A subspace-based method, reminiscent of [12], can be used to recover the minimum-length equalizer

impulse responsef0 from a basis of (generally) unstructured solutions{wk}P
k=1. The subspace-

fitting problem (13) can be compactly written asWA = F, with W = [w1, . . . , wP ] and F =

[f�q
1 , . . . , f�q

P ]. SinceA is full rank, matricesW andF span the same column space: range(W) =

range(F). In particular,∀ui ∈ ker(WH), uH
i F = 0T

P . There aredim ker(WH) = (Lq − P ) such

linearly independent vectors.

Now, since equalization solutions are of the form (6), the corresponding columns ofF have a

particular structure whereby the elements not associated with the minimum-length equalizerf0 are all

zero. The remainingL0q =
(
L0+q−1

q

)
entries formf�q

0 . Denote byσp the set ofL0q positions off�q
0

in f�q
p , that is,σp =

{
j1 +L(j2− 1)+ · · ·+Lq−1(jq − 1)

}
, with jk ∈ [p, p+L0− 1], k = 1, . . . , q,

and j1 > j2 > . . . > jq. Accordingly, (ui)σp
∈ CL0q is the subvector composed of the elementsui

in positionsσp. Let Ui = [(ui)σ1 , . . . , (ui)σP
] ∈ CL0q×P . Hence,

uH
i F = 0T

P ⇔ UH
i f�q

0 = 0P . (15)

In total, the above equalities define a set ofP (Lq − P ) linear equations, characterized by matrix

U = [U1, . . . , ULq−P ] ∈ CL0q×P (Lq−P ), on the entries off�q
0 . As long asL > L0, this linear

system determines, up to a scale, the properly structuredf�q
0 ; its scale can later be set via (11) from

a zero-padded version (anyfp) of the estimatedf0. In practice,f�q
0 can be estimated as the least

significant left singular vector of matrixU. Once matrixF has been reconstructed, an LS estimate

of coefficients{αkp} can be obtained aŝALS = (WHW)−1WHF = W†F. These coefficients relate

qth-order tensors{Wk} with their rank-1 symmetric tensor decomposition (14). Hence, the elements

of ÂLS solve the rank-1 combination problem.
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To recover the equalizer impulse responsef0 from its symmetric Kronecker vectorizationf�q
0 ,

one can resort to the SVD of a matrix unfolding off⊗q
0 = unvecsq{f�q

0 } [22], [23]. Let matrix

F0 ∈ CL0×Lq−1
0 such that(F0)i1,i2+L0(i3−1)+...Lq−2

0 (iq−1) = (f⊗q
0 )i1i2i3...iq

. Then,F0 = f0f̄T
0 , with

(f̄0)i2+L0(i3−1)+...Lq−2
0 (iq−1) = (f0)i2(f0)i3 . . . (f0)iq

. Therefore,f0 can be estimated (up to a scale) as

the most significant left singular vector of the rank-1 matrix unfoldingF0. In the presence of noise, it

will generally be impossible to express the estimatedf̂�q
0 as the symmetric vectorization of a rank-1

tensor; that is, a vectorf0 cannot be found such thatf̂�q
0 = vecsq{f⊗q

0 } holds exactly. As a result, the

matrix unfolding will not be of rank one, and the above SVD-based procedure will yield inaccuracies

which may ultimately limit the equalization performance.

C. Other Structuring Methods

In the context of the CM criterion, a similar subspace-based structuring method was proposed in [7,

Section III.C], which operates on a single (LS) unstructured solution (see also [24]). Such structure-

forcing procedure can be interpreted as the diagonalization of the matrix associated to the unstructured

solution. By contrast, our approach takes advantage of a full basis of the solution subspace, which

should lead to a subsequent increase in robustness, especially for largeP . The method of [22] and

[7, Section III.B] is based on the observation that the topL entries of a solutionwk are equal to

αk1f
q−1
1 [f1,

√
qf2, . . . ,

√
qfL0−1,

√
qfL0 , 0T

P−1]
T, from which f0 can be extracted. This ingenious

simple method is bound to be inaccurate when either the coefficientαk1 or the equalizer leading tap

f1 are small relative to the noise level.

To circumvent this drawback, one may notice that theL entries at the bottom ofwk are equal

to αkP f q−1
L0

[0T
P−1, . . . ,

√
qf1,

√
qf2, . . . ,

√
qfL0−1, fL0 ]T [7, Section III.B]. This second option can

provide, properly combined with the estimate from the firstL entries, an improved estimate off0. In

the experiments of Section VII, we use the following (still suboptimal) LS linear combination. Assume

that the filter estimate from the top and bottom non-overlapping entries of an unstructured solution

are, respectively,̂f1 = β1f̃0 and f̂2 = β2f̃0, with f̃0 = f0/‖f0‖. Then, the unit-norm minimum-length

equalizer LS estimate is given bỹ̂f0 = [̂f1, f̂2]γγγ, with γγγ = βββ∗/‖βββ‖2, βββ = [β1, β2]T. The coefficients

in βββ are simply estimated asβi = ‖f̂i‖, i = 1, 2. This kind of maximal-ratio combining (MRC)is

reminiscent of the RAKE receiver and the matched filter [25]. Robustness can be further enhanced

by exploiting a whole set{wk} instead of just one solution.

D. Approximate Solution in the Presence of Noise

In the presence of additive noise at the receive sensor output, the exact solution to (4) may no

longer exist. An approximate solution in the LS sense can be reached by minimizing‖XqHw−d‖2,
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always subject to the structural constraintw = f�q. This minimization generally requires an iterative

method, as will be detailed in the next section.

Nevertheless, the guidelines to obtain the exact solution in the noiseless case may still provide a

judicious initialization for the iterative search. After applying transformationQ the LS problem turns

out to be equivalent to the minimization of|cHw−1|2 +‖Rw‖2. To find a basis of the (approximate)

solution space, we look for a set of vectors which minimize‖Rw‖2 (e.g., theP least significant right

singular vectors ofR), then structure them as in Section IV-B, and finally normalize the solution to

fulfil cHw = 1 [eqns. (10)–(11)].

V. BLIND ITERATIVE SOLUTIONS

A. Gradient-Based Algorithm

In practice, exact ZF equalization may not be feasible, due to the presence of noise, the existence

of an FIR SISO channel, or just because the equalizer length is insufficient. In such cases, the CP

cost function must be iteratively minimized, e.g., via a gradient-descent algorithm. The gradient of

function (2) with respect tof is given by∇Jq(f) = ∇IRe(f)J(f)+ j∇IIm(f)Jq(f) and can be expressed

as:

∇Jq(f) = E
{
(fHxn)q−1[(fHxn)q − dn]∗xn

}
. (16)

We refer to the resulting iterative method asconstant power algorithm (CPA). As a sensible ini-

tialization, one can use the equalizer vector provided by an ACPA method, such as the approximate

structured solution described in Section IV-D or the unstructured LS solution to the linearized problem

(5), f̂LS = (XqH)†d. At each iteration, the equalizer vector is updated in the LMS fashion as

fk+1 = fk − µ∇Jq(fk), k = 0, 1, . . . (17)

The iterations are terminated when

‖fk+1 − fk‖
‖fk‖

< η/N (18)

whereη is a small positive constant.

We advocate the use of block (or ‘windowed’) iterative implementations, as opposed to stochastic

algorithms. The latter methods approximate the gradient by using a one-sample estimate, which is

tantamount to dropping the expectation operator. This simplification generally leads to extremely slow

convergence and poor misadjustment. By contrast, the former methods approximate the gradient by its

sample estimate from a block of channel output samples. This more precise gradient estimate improves

convergence speed and accuracy [18], [26]. In addition, tracking capabilities are not necessarily
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sacrificed, since good performance can be obtained from rather small block sizes; it suffices that the

channel be stationary over the (short) observation window.

It is well known that gradient-based optimization algorithms, though simple, are plagued with

a number of drawbacks, such as convergence to spurious local extrema, lack of robustness to ini-

tialization, and slow convergence [6], [19], [27]. These problems persist in block implementations,

although convergence is often faster. When the function to be optimized is quadratic in the unknowns,

more elaborate approaches such as conjugate-direction algorithms alleviate these shortcomings [28].

However, the fact that function (2) is not quadratic leads us to seek alternative optimization strategies.

B. Closed-Form Steepest Descent

Steepest descent (or exact line search) methods look for the value of the step size which minimizes

the cost function along the search direction:

µopt = arg min
µ

Jq(f − µg). (19)

A sensible search direction is the gradient,g = ∇Jq(f). These algorithms are generally unattractive

due to their complexity, for the one-dimensional minimization must usually be performed using costly

numerical methods. Another drawback is the orthogonality of consecutive gradient vectors, which,

depending on the initialization and the shape of the cost-function surface, may slow down convergence

[28].

However, it is observed in [15], [23], [29] that the CP costJq(f −µg) is a rational function in the

step sizeµ, so thatµopt can be found in closed form. This fact allows theglobal line minimization

of the cost function while reducing complexity. In effect,µopt can be found among the roots of the

(2q − 1)th-degree polynomialp(µ) = IRe
(∑2q−1

m=1 bmµm
)

where

bm =


∑m

p=0(m + 1− p)E{a∗m+1−pap} − (m + 1)E{a∗m+1dn}, 0 6 m 6 q − 1∑q
p=m+1−q(m + 1− p)E{a∗m+1−pap}, q 6 m 6 2q − 1

(20)

with ap = (−1)p
(
q
p

)
(gHxn)p(fHxn)q−p, 0 6 p 6 q (Appendix A). The cost function can then be

evaluated at the candidate roots in order to find the global minimum along directiong. Numerical

conditioning is improved by normalizing vectorg before evaluating (20).

Although undesired equilibria (especially those lying near flat areas) are not avoided in all cases, our

experiments indicate that thisoptimal step-size CPA (OS-CPA)converges much faster and more accu-

rately than the CPA with constant adaption coefficient. In addition, the frequency of misconvergence

to spurious non-equalizing solutions is remarkably diminished. These benefits will be demonstrated in

Section VII. An analogous optimal step-size algorithm for the CM criterion (OS-CMA) is developed

in [30].
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VI. SEMI-BLIND EQUALIZATION

A. Semi-Blind CP-Based Criterion

The previous sections have developed CP-based equalization algorithms in the fully blind case.

However, practical communication systems typically feature pilot sequences to aid synchronization

and channel equalization. For example, the second-generation GSM wireless system uses 26 out

of the 148 bits in its data frame for training. Exploiting this available information can notably

improve equalization performance. In order to take advantage of these benefits, the CP criterion

can be easily modified to incorporate training symbols, resulting in a semi-blind equalization method.

The minimization of the following hybrid cost function constitutes a semi-blind CP-MMSE criterion:

JSB(f) = λJMMSE(f) + (1− λ)Jq(f) (21)

where JMMSE(f) = E{|yn − st
n|2} is the pilot-based MMSE cost function, and{st

n} denote the

available training symbols. Parameterλ is a real constant in the interval[0, 1] which can be considered

as the relative degree of confidence between the blind- and the training-based parts of the criterion.

By looking at expression (2), it turns out thatJMMSE can be derived fromJq by settingq = 1

and substitutingst
n for dn. This equivalence will be useful in simplifying some of the following

mathematical derivations. As in the blind scenario, closed-form and iterative solutions for this semi-

blind CP-based criterion exist and are developed next.

B. Semi-Blind Closed-Form Solutions

AssumeNt training symbols are transmitted and are known to the receiver. We are looking for the

simultaneous solution of the compound system

XHf = s (22)

XqHw = d (23)

subject to w = f�q, with X = [x0, x1, . . . , xNt−1], Xq = [x�q
Nt

, x�q
Nt+1, . . . , x�q

N−1],

s = [s0, s1, . . . , sNt−1]H, andd = [dNt
, dNt+1, . . . , dN−1]H.

Firstly, let us consider the case of a possibly noisy AR-channel with a sufficiently long equalizer.

An approximate suboptimal solution can be found by combining the solutions computed separately

for both systems. Let̂fMMSE be the solution to (22), and̂f�q
CP the same delay solution to (23),

computed as in Section IV. Unfoldunvecsq{f̂�q
CP} into an (L × Lq−1) matrix FCP as described at

the end of Section IV-B. Then, the joint solution to (22)–(23) can be approximated as the left singular

vector of matrixFSB = [λf̂MMSE, (1− λ)FCP]. In the noiseless case, solutionsf̂MMSE and f̂CP are
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exact, identical, and equal to the left singular vector of rank-1 matrixFSB; an iterative search is not

necessary.

In the case of an FIR channel, no exact solution to (22)–(23) exists even in the absence of noise.

Still, the systems can be solved separately in the LS sense, and their respective solutions combined

by the SVD-based procedure just described. The combined solution can initialize an iterative search

aiming to refine the approximate closed-form result.

C. Semi-Blind Iterative Solutions

As in the fully-blind case, cost function (21) can be iteratively minimized using a steepest-descent

gradient-based algorithm in which the the optimal step size can be algebraically computed at each

iteration. The equalizer impulse response is updated as:

fk+1 = fk − µ∇JSB(fk), k = 0, 1, . . . (24)

where∇JSB(f) = λ∇JMMSE(f) + (1 − λ)∇Jq(f). Criterion (18) still remains valid for checking

convergence. Due to the relationship between the CP and the MMSE cost functions, gradient∇JMMSE

can readily be computed by settingq = 1 and substitutingst
n for dn in expression (16). By virtue of

the same relationship, the step size which minimizes functionJSB along directiong = ∇JSB(f) can

be found among the roots of the composite polynomial IRe
(
λpMMSE(µ) + (1 − λ)pCP(µ)

)
, where

pCP and pMMSE are obtained as in expansion (20) from the appropriate values ofq and dn. Note

that for λ = 1 the above iterative procedure reduces to the well-known least mean squares (LMS)

algorithm for supervised MMSE equalization.

VII. E XPERIMENTAL RESULTS

This section reports some computer simulations to evaluate the performance of the CP-based

methods elaborated in this paper.

Blind ACPA solutions.The first experiment compares the performance of the closed-form blind

equalization methods of Section IV. The methods compared are the direct LS solution without

structuring (‘LS, no struct’); the structuring method of [22] from the top non-overlapping sections

of the LS solution (‘LS, top’);idem, from the bottom sections (‘LS, bottom’); the MRC of the top

and bottom parts as explained in Section IV-C (‘LS, top+bottom’);idem, from the whole basis of

solutions (‘basis, top+bottom’); and the subspace method of Section IV-B (‘basis, subspace’). The

performance of the supervised MMSE receiver is also computed as a reference. In the first simulation
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set-up, a QPSK signal (q = 4) excites a simple AR-1 channel

H1(z) =
1

1− 0.5z−1
, |z| > 0.5 (25)

with pole atρ = 0.5, well approximated by an order-50 FIR truncation. ISI is perfectly removed by

the equalizerf0 = [1, −0.5]T, which presents a dominant leading tap. The equalizer minimum length

is L0 = 2, but an overestimated length ofL = 5 is chosen, yieldingP = 4 possible ZF solutions,

which are just delayed versions of each other [as in (6)]. Additive white complex circular Gaussian

noise is present at the channel output, with signal-to-noise ratio (SNR) given by E{|r|2}/E{|v|2}.

Blocks of Nd = 100 symbol periods are observed, and performance parameters are averaged over

ν independent Monte Carlo (MC) runs, withνNd > 105. Fig. 1 plots the symbol error rate (SER)

obtained by the different analytic methods as a function of the SNR. The performance of direct LS

solution makes apparent the need for structuring. Using the bottom part of the LS solution exhibits

similarly poor results, with a rather low noise tolerance. By contrast, the other methods present a

superior performance, just 2–3 dB above the MMSE bound. Interestingly, taking the top part of the

LS solution proves best for moderate SNR values in this scenario. This superiority depends, however,

on the equalizer tap configuration, as demonstrated in the next example.

We repeat the above experiment but moving the AR channel pole toρ = 2, and taking a stable

causal implementation of the channel transfer function

H2(z) =
1

1− 2z−1
, |z| < 2 (26)

by shifting the truncated impulse response. The minimum-length equalizer now becomesf0 = [1, −2]T,

with dominant trailing tap. Fig. 2 shows the closed-form blind equalization results. The performance

of the LS-top method considerably degrades, being very similar to that of the LS-bottom method

in the previous experiment. The performance of the subspace structuring method remains almost the

same as in the simulation of Fig. 1, thus showing its robustness to the relative weights of the equalizer

coefficients.

Fig. 3 evaluates the sample size requirements of the closed-form solutions, under the general

conditions of the first experiment and SNR= 15 dB. Satisfactory equalization from a basis of the

solution space is achieved even below the limit imposed by (12) for this simulation example,Nd > 71.

The subspace approach provides the most efficient results for short observation windows.

CPA solutions — basins of attraction.The next experiments assess the CP-based iterative methods,

both in blind (Section V) and semi-blind (Section VI-C) operation. We observeNd = 200 symbols

with SNR = 10 dB at the output of channelH1(z) excited by a BPSK input. The contour lines

(in the equalizer parameter space) of the logarithm of the blind CP criterion (2) calculated from the
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data are plotted in Fig. 4a. The solid lines display the trajectories of the equalizer taps updated with

the CPA (17), from 16 different initial configurations andη = 10−5 in termination criterion (18).

Convergence points are marked with a cross. A step sizeµ = 10−2 was chosen for fastest convergence

without compromising stability. The plot also represents the delay zero and one MMSE solutions

fMMSE,0 = [0.85, −0.38]T and fMMSE,1 = [0, 0.70]T, which provide an output MSE of−8.66

and−4.98 dB, respectively. From most of the initial points the algorithm converges to the desired

solutions, close to the optimal-delay MMSE equalizer. However, the algorithm gets sometimes stuck

at spurious stable extrema located at±[0, 0.58], near the suboptimal MMSE equalizer. The basins

of attraction of these undesired equilibria are not negligible, and may have a significant negative

impact on equalization performance. The method requires, on average, about half thousand iterations

to converge (Table I).

The spurious convergence points of the CPA correspond to the theoretical values obtained in [19,

Section III.C] for the CM criterion,±[0, 0.65]. Indeed, as already pointed out in Section III-B, for

q = 2 and real-valued source and filters the CM and CP criteria coincide.

Under identical conditions and the same observed data, the tap trajectories for the OS-CPA (Sec-

tion V-B) are obtained as in Fig. 4b. Not only are undesired solutions avoided, but convergence is

notably accelerated relative to the previous case: just over ten iterations suffice (Table I).

Using Nt = 10 pilot symbols and a confidence parameterλ = 0.5, the contour lines of the semi-

blind CP criterion (21) follow the shape displayed in Fig. 5a. The introduction of training data alters

the CP cost function by emphasizing the minimum near the MMSE solution while naturally vanishing

the previously acceptable equilibrium across the origin. The use of the optimal step size still leads

to good equalization solutions (Fig. 5b) and, again, remarkably speeds up convergence (Table I).

Non-minimum phase channel.We now evaluate performance on the non-minimum phase channel

of [7], given by

H3(z) = (−0.033 + 0.014j) + (0.085− 0.039j)z−1− (0.232− 0.136j)z−2 + (0.634− 0.445j)z−3

+ (0.070− 0.233j)z−4 − (0.027 + 0.071j)z−5 − (0.023 + 0.012j)z−6. (27)

This order-6 FIR channel can be well equalized with a length-3 FIR filter (L0 = 3), but we choose

L = 5. From a data block ofNd = 100 symbols and using several structuring procedures, the blind

closed-form CP methods display the SER performance shown in the dashed lines of Fig. 6. The

closed-form solutions are then used to initialize the OS-CPA described in Section V, yielding the

solid curves in Fig. 6. The gradient iterations refine the analytical estimates, approaching the MMSE

bound.



17

The performance of the semi-blind CP methods is summarized in Fig. 7, for the same simulation

setting with Nt = 10 pilot symbols andλ = 0.5. Depending on the window length employed to

calculate the MMSE solution, two MMSE curves are obtained as a reference: using just the pilot

sequence, as would occur in a conventional receiver, and using the whole data block (MMSE bound).

The benefits of the semi-blind approach are noteworthy. Firstly, the performance of the analytic

solutions is considerably enhanced compared to blind operation. Secondly, the semi-blind OS-CPA

shows identical performance irrespective of initialization, following quite closely the MMSE bound.

The exploitation of ‘blind symbols’ in addition to the training period improves the conventional

receiver, and nearly reaches the MMSE bound while considerably increasing the effective data

throughput. Also, the convergence rate is improved relative to the fully-blind case, particularly at

low SNR, as depicted in Fig. 8.

Influence of pilot-sequence length.Next, we evaluate the CP criterion performance as a function

of the proportion of data block symbols used for training. In the previous scenario (λ = 0.5), two

blind ACPA methods are combined with the MMSE solution to generate respective closed-form

estimates: the direct LS solution (without structuring), and the subspace-based structuring procedure

from a basis of solutions. The OS-CPA is initialized with the center-tap filter and the analytical

subspace-based estimate. Results are displayed in Fig. 9. The subspace-based structuring, as expected,

worsens as less data are considered in the blind part of the criterion [cf. eqn. (12)]. The performance

and convergence speed of the semi-blind OS-CPA seem independent of initialization, although the

subspace approach slightly improves the center-tap initial filter in the blind case (0% of training).

Note that the performance of a given conventional receiver with up to 30% of pilot symbols can be

attained by operating in semi-blind mode with a shorter training preamble, and hence a higher spectral

efficiency. A peak in SER and convergence time is observed around 90% of training symbols (Fig. 10).

This outcome could be due to the fact that the few symbols in the blind part of the criterion hinder

the convergence to the MMSE solution imposed by the pilot symbols. Nevertheless, both performance

indices drop to the MMSE limit when the whole observed block is used for training.

Influence of parameterλ. The performance of the semi-blind methods as a function of confidence

parameterλ is illustrated in Figs. 11–12, obtained in the same scenario withNt = 10 pilot symbols.

As expected, performance improves as more weight is laid on the known data. Forλ = 1, the blind

part of the criterion is dropped altogether and the equalization entirely relies on just a few training

symbols, thus the increase in SER up to the conventional MMSE receiver level. Accordingly, this

increase is not observed in larger training windows. Over a wide range ofλ (roughly in the interval

[0.3, 0.9]), the influence of initialization on the performance and convergence speed of the semi-

blind OS-CPA seems unimportant, and for practically anyλ ∈]0, 1[ the semi-blind iterative methods
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improve the conventional equalizer. Fig. 12 also shows that a value of the confidence parameter exists

(λ ≈ 0.7) for which the cost-function surface is best adapted to the operation of the optimal step-size

gradient-descent algorithm, so that convergence is achieved in the lowest number of iterations. This

optimal value ofλ will generally depend on the specific system conditions, sample size and SNR.

Comparison with CM criterion.A final experiment makes an illustrative comparison between the

CP and CM criteria in semi-blind operation (10% training). A co-channel interferer with the same

modulation as the desired signal (QPSK) and a given signal-to-interference ratio (SIR) is added at the

output of channelH3(z). The respective top-structuring analytic solutions are first obtained, and then

used as initial points for the optimal-step size iterations. Figs. 13–14 show that, although the ACPA

solution is poorer than ACMA’s in this particular scenario, the OS-CPA improves its CM counterpart

with half the number of iterations.

VIII. S UMMARY AND CONCLUSIONS

The present work has focused on the CP criterion for blind linear equalization of digital communica-

tion channels excited by PSK signals. When exact ZF solutions exist (as in all-pole SISO channels),

the global minima can be reached in closed-form. These non-iterative solutions are unaffected by

the existence of spurious (non-equalizing) local extrema in the cost-function surface. Through an

appropriate transformation the non-linear criterion can be linearized; then the structure of the solution

must be restored. The algebraic treatment is similar to ACMA’s, but the analytic solutions to the CP

criterion (ACPA) do not need to be specialized to handle binary modulations. Obtaining a basis of the

solution space allows the design of more robust structure-forcing methods to recover the minimum-

length equalizer from the solutions to the linearized problem. In simulations, the proposed subspace-

based approach has effectively proven more robust than simpler structuring methods. Algebraically, the

subspace method solves a particular instance of the rank-1 tensor combination problem. In simulations,

the blind analytic solutions show a restricted tolerance to noise, especially for long equalizers. The

key issue limiting performance is probably the SVD-based procedure described in Sections IV-B

and VI-B for extracting the equalizer vector from the estimated symmetric tensor.

When the algebraic solution is only an approximation (e.g., when no exact ZF equalizer exist),

or when it is too costly to compute, iterative techniques are necessary to seek the global minima of

the criterion; an iterative method can also be used to refine a good algebraic guess. An exact line

search gradient-descent block algorithm has been proposed in which the optimal step size is computed

analytically at each iteration. This algorithm (OS-CPA) shows a very fast convergence and is able to

avoid spurious local extrema.

The CP criterion is easily modified to include training information. Indeed, the conventional
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supervised MMSE principle can be seen as a special case of CP equalization. With just a few pilot

symbols, the analytic solutions’ noise tolerance is ameliorated. The semi-blind OS-CPA performs

near the MMSE bound at a fraction of the bandwidth cost and is very robust to the equalizer-filter

initialization.

In short, the CP criterion has been endowed with a number of strategies aiming to reduce the

impact of spurious local minima and slow convergence in iterative blind equalizers:

1) informed initialization with closed-form solutions,

2) block iterative operation,

3) global line minimization with algebraically-computed optimal step size, and

4) incorporation of training data.

These strategies are not exclusive to the CP principle but can also benefit other equalization criteria.

Further lines of inquiry could include the theoretical study of spurious extrema in the CP criterion;

the improvement of the SVD-based procedure for recovering the equalizer vector; the robust automatic

detection of the number of ZF solutions and extraction of the optimum-delay equalizer [31]; the

optimal choice of pilot-confidence parameterλ (e.g., based on an asymptotic analysis of variance);

the impact of carrier residual [23], [29]; and a thorough theoretical and experimental comparison of

the CP principle with other equalization schemes such as the CM criterion.

APPENDIX A: PROOFS

Section III-A:

• Number of input states for PSK modulations.

Let [t0, . . . , tK−1]T be the cascaded equalizer-channel impulse response vector, assuming a total

length ofK taps. The number of different equationsyq
n = dn is determined by the possible states of

vector [sn, . . . , sn−K+1]T. SuchK-uplets can takeqK different states. However, we have thatyq
n =

(
∑K−1

k=0 tksn−k)q =
(
sn(t0 +

∑K−1
k=1 tks̃n−k)

)q = (t0 +
∑K−1

k=1 tks̃n−k)q, wheres̃n−k = s−1
n sn−k. By

virtue of the group property of the PSK alphabet,s̃n−k also belongs to the input signal constellation.

Hence, the number of equations is actually determined by the different values of the(K − 1)-uplet

[s̃n−1, . . . , s̃n−K+1]T, which can take at mostqK−1 states. �

Section IV-A:

• (fHxn)q = f�qHx�q
n .

(fHxn)q =
(∑

i(f)
∗
i (xn)i

)q =
∑

i1,...iq
(f)∗i1 . . . (f)∗iq

(xn)i1 . . . (xn)iq
can be expressed as the sum

of all terms of tensorf⊗q∗ � x⊗q
n or, equivalently, of vectorf�q∗ � x�q

n . This sum is the same as

f�qHx�q
n . �
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• Problem (5) equivalent to problem (4).

We need to prove that the set of solutions{wk}P
k=1 of the formwk = f�q

k is linearly independent if

and only if (iff) the set{fk}P
k=1 is linearly independent. This can be done along the lines of [8, Proof

of Lemma 3] by considering the matrix unfolding off⊗q
k = unvecsq{f�q

k }, Fk ∈ CL×Lq−1
, defined as

(Fk)i1,i2+L(i3−1)+...Lq−2(iq−1) = (f⊗q
k )i1i2i3...iq

. This matrix can be expressed as the rank-one product

Fk = fk f̄T
k , with (f̄k)i2+L(i3−1)+...Lq−2(iq−1) = (fk)i2(fk)i3 . . . (fk)iq

. Now, vectors{f�q
k } are linearly

independent iff
∑P

k=1 αkf
�q
k implies αk = 0, k = 1, . . . , P . That linear combination vanishes iff∑P

k=1 αkf
⊗q
k is the null tensor or, equivalently,

∑P
k=1 αkFk the zero matrix. Due to the structure of

matrices{Fk}, this latter condition necessarily implies that{αk} be zero iff rank([f1, . . . fP ]) = P ,

i.e., {fk} form a linearly independent set. �

• Problem (8) equivalent to problem (9) with scale constraint (10)–(11).

We only need to show thatrHw =
√

N and (10)–(11) are equivalent. VectorrH is given by the

product of the first row ofQ, sayqH, and matrixXqH. SinceQd = [
√

N, 0T
N−1]

T, it follows that the

rest of the rows ofQ are orthogonal to vectord. Also, Q is unitary, so thatq must be parallel tod;

specifically,q =
√

Nd/‖d‖2. Then,qHXqH =
√

N
‖d‖2

∑N−1
n=0 d∗nx

�q
n

H
. The scale constraint becomes

wH

‖d‖2
∑N−1

n=0 dnx
�q
n = 1, which reduces to 1

‖d‖2
∑N−1

n=0 dn(fHxn)q = 1 whenw = f�q. �

• If dim ker(XqH) = (P − 1) andN > (Lq − P ) ⇒ dim ker(R) = P .

Since dim ker(R) = (Lq − rank(R)) and rank(R) 6 (N − 1), it follows that dim ker(R) >

(Lq − N + 1). Hence, a necessary condition fordim ker(R) = P is that N > (Lq − P ) or, in

terms of the observed sample size,Nd > (Lq + L0 − 1). On the other hand, the number of linearly

independent constraints thatXqH can introduce is equal to rank(XqH) = (Lq − P + 1). Due to the

unitarity of Q, such constraints are equivalent to those introduced byQXqH. SincerHw imposes

one such constraints,Rw must impose the remaining(Lq −P ). This is precisely the rank ofR, and

proves thatdim ker(R) = P . �

Section V-B:

• Optimal step-size polynomial.

Jq(f−µg) = E{|εn|2}, with εn = ξ(µ)−dn, whereξ(µ) =
(
(f−µg)Hxn

)q
. This latter polynomial

in µ can be expanded asξ(µ) =
∑q

p=0 apµ
p, whereap = (−1)p

(
q
p

)
(gHxn)p(fHxn)q−p. Since∂Jq(f−

µg)/∂µ = 2E{IRe
(
ξ′∗εn

)
} 4

= 2p(µ), the first-order necessary condition∂Jq/∂µ = 0 reduces to

finding the zeros ofp(µ). It remains to prove that such polynomial accepts the expansion of eqn. (20).

Now, p(µ) = E{IRe
(
ξ′∗(ξ − dn)

)
} = IRe

(
E{ξ1 − ξ2}

)
, with ξ1(µ) = ξ′∗ξ and ξ2(µ) = ξ′∗dn. As

ξ′(µ) =
∑q

p=1 papµ
p−1, the coefficients of(2q − 1)th-degree polynomialξ1(µ) are given by the
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convolution[qa∗q , (q − 1)a∗q−1, . . . , a∗1] ∗ [aq, aq−1, . . . , a0], which produces

b(1)
m =


∑m

p=0(m + 1− p)a∗m+1−pap, 0 6 m 6 q − 1∑q
p=m+1−q(m + 1− p)a∗m+1−pap, q 6 m 6 2q − 1.

(28)

Similarly, the coefficients ofqth-degree polynomialξ2(µ) are simplyb
(2)
m = (m + 1)a∗m+1dn, 0 6

m 6 (q− 1). The combination of these two sets of coefficients and the expectation operator leads to

expansion (20). �
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Fig. 1. Closed-form blind equalization based on the CP criterion for several structuring methods. ChannelH1(z), QPSK

input (q = 4), Nd = 100 symbol periods, 1000 MC runs.
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Fig. 2. Closed-form blind equalization based on the CP criterion for several structuring methods. ChannelH2(z), QPSK

input (q = 4), Nd = 100 symbol periods, 1000 MC runs.
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Fig. 4. Blind CP cost function contour lines (dashed) and CPA equalizer tap trajectories (solid lines): (a) constant step

size, (b) optimal step size. ChannelH1(z), BPSK input (q = 2), Nd = 200 symbol periods, SNR = 10 dB. ‘•’: initial

point; ‘×’: final point; ‘◦’: optimal-delay MMSE solution; ‘�’: suboptimal-delay MMSE solution.
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Fig. 5. Semi-blind CP cost function contour lines (dashed) and OS-CPA equalizer tap trajectories (solid line): (a) constant

step size, (b) optimal step size. ChannelH1(z), BPSK input (q = 2), Nd = 200 symbol periods,Nt = 10 pilot symbols,

SNR = 10 dB,λ = 0.5. ‘•’: initial point; ‘×’: final point; ‘◦’: optimum-delay MMSE solution.
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Fig. 6. Blind CP equalization. The OS-CPA is initialized with the corresponding ACPA solution. ChannelH3(z), QPSK

input (q = 4), Nd = 100 symbol periods, 200 MC runs.
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initialized with the corresponding ACPA solution.
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input (q = 4), Nd = 100 symbol periods, SNR = 10 dB ,λ = 0.5, 500 MC runs.
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Fig. 11. Impact of confidence parameterλ on the performance of the semi-blind CP methods. ChannelH3(z), QPSK

input (q = 4), Nd = 100 symbol periods,Nt = 10 pilot symbols, SNR = 10 dB, 500 MC runs.
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Fig. 12. Average number of iterations for the two initializations of the OS-CPA in the experiment of Fig. 11.
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Fig. 13. Semi-blind equalization with the CP and CM criteria. The analytic solutions are obtained using the top structuring

method. ChannelH3(z), QPSK input (q = 4), QPSK co-channel interferer,Nd = 200 symbol periods,Nt = 20 pilot

symbols, 100 MC runs.
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