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RÉSUMÉ :
Le présent rapport porte sur l’outil statistique appelé Analyse en Composantes Indépendantes (ICA). On s’intéresse plus

particulièrement à l’approche par déflation, dans laquelle les composantes indépendantes sont extraites l’une après l’autre. Après
avoir rappelé l’algorithme connu sous le nom de FastICA, une autre méthodologie baptisée RobustICA est proposée. La nouvelle
approche est basée sur une règle de mise à jour de type ascente de gradient, qui calcule algébriquement à chaque itération le pas
optimal menant au maximum absolu d’une fonction de contraste dans la direction de recherche. La technique à pas optimal peut
être utilisée avec une grande variété de fonctions de contraste (telles que le kurtosis, le module constant et la puissance constante),
fournit certaine robustesse aux extrema locaux, et accélère notoirement la convergence. Des résultats expérimentaux démontrent
la supériorité des performances de RobustICA par rapport à FastICA, à la fois en termes de précision et de charge de calcul. Bien
qu’ayant été proposé il y a presque une dizaine d’années, c’est la première fois que l’algorithme FastICA est évalué de manière
sérieuse.

MOTS CLÉS :
algorithme du module constant, analyse en composantes indépendantes, FastICA, fonctions de contraste, maximisation du

kurtosis, non gaussien, pas optimal, RobustICA, séparation aveugle de sources, statistiques d’ordre supérieur

ABSTRACT:
The present report deals with the statistical tool of Independent Component Analysis (ICA). The focus is on the deflation

approach, whereby the independent components are extracted one after another. After reviewing the so-called FastICA algorithm,
another methodology named RobustICA is put forward. The new approach is based on a special gradient-ascent update rule where
the optimal step size finding the global maximum of the contrast function along the search direction is algebraically computed
at each iteration. The optimal step-size technique can be used with a variety of contrast functions (such as kurtosis, constant
modulus and constant power), provides some robustness to local extrema, and notably accelerates convergence. Experimental
results demonstrate the superior performance of RobustICA compared to FastICA both in terms of accuracy and computational
load. Although it was proposed nearly a decade ago, it is the first time that the FastICA algorithm is seriously evaluated.
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blind source separation, independent component analysis, constant modulus algorithm, constrast functions, FastICA, higher-

order statistics, kurtosis maximization, non-Gaussian, optimal step size, RobustICA
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Abstract

The present report deals with the statistical tool of Independent Component Analysis (ICA).

The focus is on the deflation approach, whereby the independent components are extracted one after

another. After reviewing the so-called FastICA algorithm, another methodology named RobustICA

is put forward. The new approach is based on a special gradient-ascent update rule where the

optimal step size finding the global maximum of the contrast function along the search direction is

algebraically computed at each iteration. The optimal step-size technique can be used with a variety of

contrast functions (such as kurtosis, constant modulus and constant power), provides some robustness

to local extrema, and notably accelerates convergence. Experimental results demonstrate the superior

performance of RobustICA compared to FastICA both in terms of accuracy and computational load.

Although it was proposed nearly a decade ago, it is the first time that the FastICA algorithm is

seriously evaluated.

Résuḿe

Le pŕesent rapport porte sur l’outil statistique appelé Analyse en Composantes Indépendantes

(ICA). On s’intéresse plus particulièrement̀a l’approche par d́eflation, dans laquelle les composantes

indépendantes sont extraites l’une après l’autre. Apr̀es avoir rappelé l’algorithme connu sous le nom

de FastICA, une autre ḿethodologie baptiśee RobustICA est proposée. La nouvelle approche est

baśee sur une r̀egle de misèa jour de type ascente de gradient, qui calcule algébriquement̀a chaque

itération le pas optimal menant au maximum absolu d’une fonction de contraste dans la direction

de recherche. La techniquèa pas optimal peut̂etre utiliśee avec une grande variét́e de fonctions

de contraste (telles que le kurtosis, le module constant et la puissance constante), fournit certaine

robustesse aux extrema locaux, et accélère notoirement la convergence. Des résultats exṕerimentaux

démontrent la suṕeriorité des performances de RobustICA par rapportà FastICA,à la fois en termes

de pŕecision et de charge de calcul. Bien qu’ayantét́e propośe il y a presque une dizaine d’années,

c’est la premìere fois que l’algorithme FastICA estévalúe de manìere śerieuse.

† A shortened version of this report has been submitted to the31st IEEE International Conference on Accoustics, Speech

and Signal Processing (ICASSP), Toulouse, France, May 14–19, 2006.
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I. I NTRODUCTION

Independent Component Analysis (ICA) aims at transforming an observed random vector so that

its components become mutually independent. A strong research interest in this statistical technique

has been raised by its numerous applications; for instance, ICA is the basic tool for Blind Source

Separation (BSS) [1], [2], [3]. The “symmetric” approach to ICA, originally proposed in [1], [4]

among other early works, extracts all sources jointly or simultaneously. ICA can also be performed

by estimating the sources one by one. This alternative procedure, referred to asdeflation, was originally

proposed in [5], and used successfully in the separation of convolutive mixtures [6]. Deflation has

later been widely promoted in the machine learning community [3].

Joint algorithms are usually thought to outperform deflationary algorithms due to errors accumulated

in successive subtractions (regressions) of the estimated source contribution to the observation. This

shortcoming is generally claimed to be compensated by a significant gain in computations, but this

claim has not been thoroughly examined. Despite the arousing interest in the deflation approach

and its apparent computational appeal, no comparison has yet been published in the open literature

confirming the benefits of deflationary relative to joint ICA.

A good example of this gap is the well-known FastICA algorithm [7], [8], arguably the most

popular ICA method and originally put forward in deflation mode. Surprisingly, the deflationary

FastICA algorithm has never been compared by the authors of [3] with earlier joint algorithms such

as JADE [4], COM1 [9], or the deflation methods by Tugnait [6] or Delfosse-Loubaton [5]. In fact,

to our knowledge, FastICA (both in its deflation and symmetric implementations) has only been

compared with neural-based adaptive algorithms and principal component analysis (PCA), that most

ICA algorithms are known to outperform.

The goal of the present work is to shed some light on whether deflation algorithms are indeed

attractive, and to understand their specific advantages and drawbacks. As a first step towards this

objective, three deflationary algorithms are compared in this report. The first method is the popular

kurtosis-based FastICA algorithm [8]. The two other methods rely on the widespread constant modulus

(CM) [10] and kurtosis maximization (KM) [11] criteria. The CM and KM contrast functions are

optimized through an optimal step-size (OS) gradient-ascent algorithm, giving rise to the so-called OS-

CMA and OS-KMA, respectively. Since OS-based optimization provides certain robustness against

local extrema of any contrast function, this approach may be calledRobustICAwhen used in the

present context.

It is now generally acknowledged that adaptive (also known as on-line, recursive or sample-by-

sample) algorithms are not always computationally cheaper than block (off-line, windowed) algo-
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rithms, and that they are rarely better in terms of precision. On this account, block implementations

are the focus of this report.

After summarizing the basic signal model and mathematical notation in Section II, optimal criteria

for ICA are reviewed in Section III. The FastICA algorithm is critically revisited in Section IV,

whereas the novel RobustICA approach is presented in Section V. The regression-based procedure

employed by deflationary methods is recalled in Section VI. Experimental results are reported in

Section VII, and some conclusions drawn in Section VIII.

II. M ODEL AND NOTATION

Let anL-dimensional random vectorx denote the observation, which is assumed to stem from the

linear statistical model:

x = Hs + v. (1)

The source vectors = [s1, s2, . . . , sK ]T is made ofK statistically mutually independent components.

The noise termv will be ignored throughout, except in the numerical experiments. In fact, its

distribution is assumed to be unknown, so that it can at most be considered as a nuisance; otherwise,

a maximum likelihood approach could be employed, which is beyond the scope of the present

comparison. In light of model (1), the goal of ICA can be expressed as follows: given a sensor-

output signal block composed ofT samples, estimate the correspondingT -sample realization of the

source vector.

Vectors and matrices will be typeset in boldface lowercase and boldface uppercase symbols,

respectively; superscripts(·)T, (·)H, and(·)∗ denote respectively transposition, conjugate transposition,

and complex conjugation. Unless otherwise specified, the components of random vectorsx, s andv

take their values in the complex fieldC.

III. O PTIMALITY CRITERIA

The deflation approach to ICA consists of searching for an extracting vectorw so that its scalar

output

z
def= wHx (2)

maximizes some optimality criterion or contrast function. A widely used contrast is the normalized

kurtosis of the separator output [6], [11]:

K(w) =
E{|z|4} − 2E2{|z|2} − |E{z2}|2

E2{|z|2}
. (3)
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This criterion is easily seen to be insensitive to scale, i.e.,K(λw) = K(w), ∀λ 6= 0. This scale

indeterminacy is inherent in BSS, and we can thus impose‖w‖ = 1 for numerical convenience.

Other criteria are the widespread constant modulus (CM) [10]:

C(w) = E{
(
|z|2 − 1

)2} (4)

and the constant power (CP) [14], [17]:

Pr(w) = E{|zr − 1|2}. (5)

Another type of objective functions need the data to beprewhitened, so that the sensor outputs are

assumed to have an identity covariance matrix,Rx
def= E{xxH} = I. Among these, one instance that

we shall be particularly interested in is the separator-output fourth-order moment:

M(w) = E{|z|4}. (6)

This criterion must be optimized under a constraint to avoid arbitrarily large values ofz. Assuming

‖w‖ = 1, it is simple to realize that (6) is equivalent to (3) after prewhitening in two cases: if all

sources and mixtures are real-valued, and if the sources are complex-valued but second-order circular,

i.e., the non circular second-moment matrixCx
def= E{xxT} is null. For instance, in the case where

the mixture and noise are complex but the sources are real, criteria (6) and (3) are not equivalent.

The maximization of|K(w)|, resulting in the kurtosis maximization (KM) criterion, is applicable

to any type of non-Gaussian sources. The minimization of the CM contrastC(w) is valid for sub-

Gaussian (short-tailed, platykurtic) sources, which typically arise in digital communications. The

minimization ofPr(w) specifically targets sources withr-ary PSK modulation.

IV. K URTOSIS-BASED FASTICA

The stationary values of the kurtosis contrastK(w) are given by the cancellation of its gradient,

which is proportional to:

E{x|z|2z∗} − (wTC∗
xw)Cxw∗ − (wHRxw)−1

[
E{|z|4} − |wHCxw∗|2

]
Rxw. (7)

Under constraint||w|| = 1, the stationary points ofM(w) are obtained for the collinearity condition

on E{x|z|2z∗}:

E{(wHxxHw)xxH}w = λw (8)

where λ is some Lagrangian multiplier. It is easy to verify that the same result is obtained by

performing the unconstrained optimization ofM(w)/‖w‖4.

Equation (8) is a fixed-point equation as claimed in [7] only whenλ is known, which is not the

case here;λ must be determined so as to satisfy the constraint, and thus unfortunately it depends
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again onx andw. In [3], [7], λ is arbitrarily set to a deterministic fixed value, which allows to spare

computations. For this reason, as eventually pointed out in [8], the FastICA algorithm is actually

an approximate standard Newton algorithm rather than a fixed-point algorithm. As a result of the

Hessian matrix approximation carried out under the prewhitening assumption, the kurtosis-based

FastICA reduces to a conventional gradient-ascent algorithm with a fixed step size, and is hence

a particular case of the 4th-order technique presented in [6]. In the real-valued scenario, FastICA’s

update rule reads:

w+ = w − 1
3

E{x(wTx)3} (9)

w+ ← w+/‖w+‖. (10)

The Hessian matrix approximation is somewhat fortunate in that, under the source statistical inde-

pendence assumption, it theoretically endows the resulting algorithm with global cubic convergence.

It is likely that the algorithms described in the next section inherit analogous convergence properties.

Nevertheless, FastICA sometimes gets stuck at saddle points, particularly for short sample sizes [12].

V. OPTIMAL STEP SIZE: ROBUSTICA

Line maximization of a generic contrast functionJ (w) consists of finding its global maximum

along a given search direction:

µopt = arg max
µ
J (w + µg). (11)

The direction is typically (but not necessarily) the gradient:g = ∇wJ (w). Exact line search is

in general computationally intensive. However, for contrast functions such as the KM, CM and CP

contrasts,J (w + µg) is a low-degree rational function inµ. As a result, the optimal step sizeµopt

can be found algebraically (in closed form) among the roots of a simple polynomial of degree at

most 4.

At each iteration, optimal step size (OS) optimization performs the following steps:

Compute the OS polynomial coefficients

Extract the OS polynomial roots{µk}

µopt = arg max
k
J (w + µkg)

w+ = w + µoptg. (12)

The coefficients of the OS polynomial depend on the specific contrast function, and can be alge-

braically calculated at each iteration from the observed signal block and the current values ofw and

g. To improve numerical conditioning in the determination ofµopt, the normalized version of the
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gradient vector should be used in the above steps. The OS technique is readily extended to contrast-

function minimization. The application of the OS methodology on the KM, CM and CP criteria result

in the OS KM algorithm (OS-KMA), the OS CM algorithm (OS-CMA), and the OS CP algorithm

(OS-CPA), respectively. The polynomials associated with the OS-CMA and the OS-KMA are of

respective degree 3 and 4. The roots of such polynomials can be found with standard algebraic

procedures such as Cardano’s and Ferrari’s formulas. As observed above, the kurtosis criterion is

scale invariant, so that the new extracting vectorw+ should be normalized as in (10) after each

OS-KMA iteration.

The OS technique in the blind and semi-blind equalization context is fully developed in [14], [15],

[16]; details are omitted here for the sake of conciseness. A algorithm of this type was first proposed

in a deflationary BSS context in [17]. By design, and as confirmed by simulations, OS optimization

provides some robustness to local extrema and reduced overall complexity relative to conventional

fixed step-size optimization. In the ICA context, the OS methodology naturally gives rise to what

could be referred to asRobustICAalgorithms.

The computational cost per iteration of FastICA and the two RobustICA techniques presented above

is shown in Table I, where only the most significant terms have been retained. These dominant terms

are of orderO(T ), and provide accurate approximations of the exact cost for sufficient sample sizeT .

VI. D EFLATION

After convergence, output signalz contains an estimatêsk of source componentsk. In most deflation

algorithms (except, e.g., [5] or FastICA; see below), the extracted-source contribution to the sensor

output is estimated by linear regression asx̂k = ĥkŝk, with

ĥk = E{xŝ∗k}/E{|ŝk|2}. (13)

This contribution is then subtracted from the observations, producing a new observed vector

x← x− x̂k. (14)

From the ‘deflated’ observations, the next source is estimated by running again the same extraction

algorithm. The deflation procedure is repeated until no sources are left. In practice, the expectations

in (13) are substituted by sample averages over the signal block, which accept efficient matrix-vector

product formulations.

Deflation-based RobustICA can easily be extended to time-dispersive channels, which give rise

to convolutive mixtures. In such scenarios, the deflationary OS-KMA would correspond to the OS

version of the 4th-order technique of [6], where cost-function maximization is carried out through a

somewhat heuristic adaptive step-size procedure (see [6, Table I]).
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The deflation procedure described above is based on the linear regression of the estimated source

signal vector on the observation matrix row space. By contrast, the deflation technique of [5] exploits

a special parameterization of the extracting vectors as a function of certain rotation angles. Likewise,

the FastICA algorithm [3], [7], [8] does not employ regression. Instead, after each iteration the

algorithm projects the updated extracting vector onto the orthogonal subspace of the previously

estimated vectors. Both the special parameterization of [5] and the Gram-Schmidt orthogonalization of

[3], [7], [8] rely heavily on prewhitening. The regression-based deflation procedure is more general

in that prewhitening is not required, but is still applicable if prewhitening is used. Regression is

expected to provide improved quality indices based on the extracted signal estimates, whereas the

other deflation techniques would yield more favourable performance in terms of the estimated mixing

matrix.

VII. N UMERICAL EXPERIMENTS

A mixture of K = 4 independent unit-power BPSK sources is observed at the output of a

L = 4 element array in signal blocks ofT = 150 samples. Since FastICA heavily relies on the

whitening assumption, only real orthogonal mixtures are considered, as if prewhitening had been

previously carried out. By contrast, a feature of deflation algorithms in general, and RobustICA in

particular, is that they can directly operate on the observed sensor output without prewhitening. Hence,

the orthogonal mixture scenario benefits the FastICA implementation. Isotropic additive white real

Gaussian noise is present at the sensor output, with signal-to-noise ratio:

SNR =
trace(HHT)

σ2
vL

=
1
σ2

v

. (15)

Equivalent thresholds on the separating vector variation and a higher limit of100L = 400 iterations

are employed as convergence tests. Once all sources have been estimated, they are optimally scaled

and permuted to allow a meaningful comparison with the original sources. The signal mean square

error (SMSE), defined as

SMSEk = E{|sk − ŝk|2} (16)

and the extractor output bit error rate (BER) are used as separation quality indices. The minimum

mean square error (MMSE) receiver, which jointly estimates the separating vectors assuming that all

transmitted symbols are used for training, provides a bound of performance. Computational complexity

is measured in terms of the number of floating point operations (flops) required to reach a solution.

Performance parameters are averaged over 1000 independent random realizations of the sources,

the noise and the mixing matrix. The three methods operate on identical sets of source, noise,

mixing matrix, and initial separating vector realizations. Such sets are generated once before starting
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each computer experiment and re-used at each value of the independent parameter (e.g., the SNR).

The following experiments evaluate the methods’ performance under different initializations of the

separating vector.

Experiment 1: Single-tap initialization. A single-tap initialization,w0 = [0, 1, 0, 0]T, is used for

all sources to be extracted. Fig. 1(a) shows the SMSE performance variation as a function of SNR.

The first source extracted by OS-CMA and OS-KMA attains the MMSE bound, whereas the first

source by FastICA only slightly improves the second source by the other two methods. As expected,

performance degrades for subsequent extractions. On average, the RobustICA algorithms clearly

outperform FastICA, which shows a worse finite sample-size flooring effect due to the increased

misadjustment introduced by its constant step size. Consequently, FastICA cannot get below the

10−2 average BER performance, as shown in Fig. 1(b).

The algorithms’ computational burden, in terms of iterations and flops required for convergence,

is displayed in Figs. 1(c)–(d), respectively. The three methods’ flop count per iteration appears in

Table I. OS-CMA’s cost decreases as the SNR increases and as more sources are extracted. The

OS-KMA shows a similar trend except for the last source, but its average complexity lies just below

OS-CMA’s. FastICA is only efficient when extracting the first source in sufficient SNR, and often

exceeds the iteration-count limit for the remaining sources. On average, FastICA turns out to be well

over an order of magnitude more expensive than RobustICA in this experiment, even though its cost

per iteration (Table I) is less than twice and thrice lower than OS-CMA and OS-KMA, respectively.

The three methods’ performance as a function of complexity at a fixed SNR level is summarized by

the plots of Fig. 1(e)–(f), which clearly illustrate RobustICA’s higher efficiency. Note that the MMSE

is not an iterative method, and so its cost is irrelevant here; its SMSE value is shown in Figs. 1(e)–(f)

for reference only.

Experiment 2: Canonical basis initialization. The separating vector aiming to extract thekth source

is initialized with thekth canonical basis vector ofRL, ek = [0, . . . , 0︸ ︷︷ ︸
(k−1)

, 1, 0, . . . , 0︸ ︷︷ ︸
(L−k)

]T, k = 1, . . . ,K.

The simulation set-up is otherwise as in the previous experiment. Fig. 2 shows that FastICA’s

extraction quality improves relative to the previous scenario, approaching RobustICA’s performance

and reaching a10−3 average BER. However, the two RobustICA methods offer virtually the same

results as in the previous scenario, and still provide a much more efficient performance than FastICA.

Experiment 3: Random initialization. The initial values of the separating vector taps are inde-

pendently drawn from a normalized Gaussian variable,w0(i) ≡ N (0, 1), i = 1, . . . , L, yielding

the results of Fig. 3 under the above general conditions. RobustICA’s performance hardly changes

compared to Experiments 1–2, whereas FastICA’s lies between that of the previous experiments.
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TABLE I

COMPUTATIONAL COMPLEXITY PER ITERATION OF THEICA ALGORITHMS COMPARED IN THIS REPORT, FOR SIGNAL

BLOCKS OFT SAMPLES OBSERVED AT THE OUTPUT OFL SENSORS, ASSUMING REAL-VALUED SOURCES AND

MIXTURES. COMPLEXITY IS MEASURED IN FLOATING POINT OPERATIONS(FLOPS). A FLOP IS CONSIDERED AS A REAL

PRODUCT. THE FIGURES IN THE SECOND ROW ARE FOR THE SIMULATION SCENARIO OFSECTION VII AND FIGS. 1–4.

FastICA OS-CMA OS-KMA

(L, T ) 2(L + 1)T (3L + 10)T (5L + 12)T

(4, 150) 1500 3300 4800

The three methods’ performance averaged over the extracted sources for Experiments 1–3 is summa-

rized in Fig. 4. RobustICA’s consistent behaviour contrasts with FastICA’s sensitivity to initialization.

VIII. C ONCLUSIONS

This report has focused on the deflation approach to ICA. A novel class of ICA algorithms, gathered

under the name of RobustICA, has been put forward. In this new approach, the optimal step-size (OS)

of the gradient-ascent iteration is algebraically computed at each iteration in order to globally optimize

the contrast function along the search direction. The OS methodology is not limited to the kurtosis

criterion, but can also be used in conjunction with alternative contrasts. Numerical experiments have

illustrated the superior performance and lower computational cost of RobustICA relative to FastICA,

as well as its notably higher robustness to the initial value of the separating vector. Further work

will consider the use of the OS strategy for simultaneous ICA, and its comparison with deflation

techniques.
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Fig. 1. Experiment 1: block deflationary ICA algorithms with single-tap initialization,w0 = [0, 1, 0, 0]T. (a) Source

extraction quality, (b) separator-output bit error rate, (c) number of iterations for convergence, (d) computational complexity,

(e) extraction quality against iteration count at 20-dB SNR, (f) extraction quality against computational cost at 20-dB SNR.

Unmarked thick lines represent performance indices averaged over the 4 sources.
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Fig. 2. Experiment 2: block deflationary ICA algorithms with canonical basis initialization,w0 = ek, k = 1, . . . , K. (a)

Source extraction quality, (b) separator-output bit error rate, (c) number of iterations for convergence, (d) computational

complexity, (e) extraction quality against iteration count at 20-dB SNR, (f) extraction quality against computational cost at

20-dB SNR. Unmarked thick lines represent performance indices averaged over the 4 sources.
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Fig. 3. Experiment 3: block deflationary ICA algorithms with random Gaussian initialization,w0(i) ≡ N (0, 1),

i = 1, . . . , L. (a) Source extraction quality, (b) separator-output bit error rate, (c) number of iterations for convergence,

(d) computational complexity, (e) extraction quality against iteration count at 20-dB SNR, (f) extraction quality against

computational cost at 20-dB SNR. Unmarked thick lines represent performance indices averaged over the 4 sources.
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Fig. 4. Average performance of block deflationary ICA algorithms for the different separating vector initializations of

Experiments 1–3. (a) Source extraction quality, (b) separator-output bit error rate, (c) number of iterations for convergence,

(d) computational complexity, (e) extraction quality against iteration count at 20-dB SNR, (f) extraction quality against

computational cost at 20-dB SNR.


	Introduction
	Model and Notation
	Optimality Criteria
	Kurtosis-based FastICA
	Optimal Step Size: RobustICA
	Deflation
	Numerical Experiments
	Conclusions
	References

