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RÉSUMÉ :
Nous proposons un nouveau critère de contraste pour l’Analyse en Composantes Indépendantes (ACI), basé sur la connais-

sance des signes des kurtosis des sources. Après pré-blanchiment spatial, le contraste peut être maximisé à l’aide d’un traitement
par paires dans lequel chaque rotation plane est calculée avec un très faible coût calcul. On prouve que l’indétermination associée
à ce contrsate est une matrice de permutation-échelle composée de deux blocs, chacun correspondant à un signe. Par exemple,
si on désire extraire une seule source et que le signe de son kurtosis est différent de celui des autres, alors on peut l’extraire sans
séparer les autres sources du mélange. Les résultats expérimentaux montrent que les performances d’extraction s’améliorent avec
l’écart entre les kurtosis.

MOTS CLÉS :
contraste, séparation aveugle de sources, Analyse en Composantes Indépendantes, déflation rapide

ABSTRACT:
We propose a new contrast criterion for independent component analysis (ICA) based on the prior knowledge of the source

kurtosis signs. After prewhitening, the contrast can be optimized by a pairwise processing approach in which plane rotations are
found at low computational cost at each iteration. It is proved that the indeterminacy associated with this contrast is a scaled
permutation matrix composed of two blocks, each corresponding to a source kurtosis sign. Hence, if the source of interest has
a kurtosis sign different from that of the others, it can be extracted without separating the whole mixture. Experimental results
show that the source estimation performance improves with the kurtosis gap.

KEY WORDS :
Contrast, Blind Source Separation, Independent Component Analysis, Fast Deflation
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Abstract. We propose a new contrast for ICA based on the prior knowl-
edge of the source kurtosis signs. It is shown that the contrast can be
used for source extraction when the kurtosis sign of the source of interest
is different from that of the other sources. Experimental results show that
the source estimation reliability increases with the kurtosis gap. In addi-
tion, the numerical algorithm presents a very attractive computational
complexity.

1 Introduction

Independent Component Analysis (ICA) can be seen as a solution to the blind
source separation problem in case the sources underlying the observations are
considered statistically independent. In this paper, the datamodel used is based
on an instantaneous mixture model of real valued statistical variables x taken
from a statistical set of distributions X ⊂ IRn, whereupon a mixing matrix M
acts to result in the observations y, up to some additional noise η. The model
can be represented as:

y = Mx + η , (1)

The mixture matrix M ∈ IRm×n is an arbitrary full column rank matrix defining
the transformation from X to Y, the set of statistical distributions of which the
observations y are taken. The estimation of M is generally a complex task which
can be simplified by prewhitening the observations y, yielding z ∈ Z ⊂ IRm.
Since the distributions share no second order statistics thanks to the prewhiten-
ing step. The mixing matrix to be estimated is hence restricted to the estimation
of a matrix Q in the group of orthogonal matrices Q ⊂ IRn×n. In the noiseless
case and for an equal number of observations and sources, the equivalent mixture
model after prewhitening can then be expressed as

z = Qx , (2)
? R. Phlypo would like to thank H. Rix and V. Zarzoso for their kind hospitality at

the laboratories of I3S.



where Q is to be estimated, given Z through its heuristic approximations based
on the observations in z. Generally, the model given in Eq. (2) is solved by a
search algorithm exploring the dataspace, either on a component by component
basis (e.g. fastICA [1], robustICA [2] in deflation or regression mode), either
through ensemble learning (a.o. JADE [3], most of the bayesian methods). In
this paper we propose a source extraction criterion, which can be seen as a
component by component decomposition, which will only estimate the source of
interest.
Most ICA algorithms consider the set X as a set of identical distribution, and
thus the sources x as independently identically distributed stochastic variables.
However, when the assumption of identical distributions does not hold, the so-
lution to the problem is no longer the Maximum Likelihood (ML) estimator. If
we suppose our distributions can be characterised by fourth order statistics [4]
and we assume symmetric distribution (i.e. they are indistinguishable by their
odd order statistics), for identically independently distributed data this trans-
lates into κiiii = κjjjj ,∀i, j, which is the ML estimator for ICA [5]. Nonetheless,
it has been shown that maximising the sum of the kurtosis values (or of their
quadratics), is still a contrast for ICA and is thus suitable as an objective to sep-
arate independently distributed variables from a mixture [4]. For such a contrast
function it is even possible to find an algebraic expression in the two sources,
two observations scenario through the Extended ML (EML) estimator [6]. The
estimator is not able to separate a mixture when the source kurtosis sum attains
zero, though. However, when the kurtosis sum is null, the difference between the
source kurtosis becomes significant3. Exploiting the latter yields the Approxi-
mate EML (AEML) estimator [6].
This paper will extend the 2× 2 AEML criterion to AEML based source extrac-
tion (AEMLe) from a general n × n mixture, given that the source of interest
differs in kurtosis sign from the other sources in the mixture. This result fits in a
more general framework of a contrast for ICA with known source kurtosis signs,
the proof of which is given in appendix A.

2 Methods

2.1 Givens Rotations

An orthonormal matrix in IRn×n can be represented by a series of parameters θi,
describing subsequent plane rotations in IRn×n. A givens rotation in the plane
spanned by the components zi and zj can thus be represented by an angle θ
resulting in the equivalent matrix multiplication:

x̂ij = Q (θ)T
zij , where Q (θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (3)

3 provided we have maximally one gaussian distributed or mesokurtic source in the
mixture, which is a general requirement to maintain identifiability in the ICA model



This representation has its major advantage in that one can algebraically cal-
culate an optimal value for the single parameter θ for each signal pair, once
an objective is defined for the plane rotations. This reduces the computational
burden significantly [4, 7].

2.2 Source Kurtosis Difference as a Contrast

Assuming the signs of the source kurtosis are known, we can put forward a
contrast4 for ICA by defining

Ψ (Q) =
n∑

j=1

εjκ
z
jjjj , (4)

where εj represents the kurtosis sign of the jth source and the 4th order cu-
mulants are noted as κi1,i2,i3,i4 = Cum (zi1 , zi2 , zi3 , zi4). For the 4th order stan-
dardised marginal cumulants we get:

κiiii =
E

{
z4
i

}
− 3E

{
z2
i

}2

E {z2
i }

2 , (5)

which is negative for a subgaussian and positive for a supergaussian random
variable.

2×2 Source Estimation. In the case of two sources with (ε1, ε2) = (1,−1)
and two observations, Eq. (4) simplifies to

Ψ (Q) = κ1111 − κ2222 . (6)

Maximising the aforementioned criterion by rotating in the variables’ plane
around an angle θ? using plane givens rotations will yield the source estimates.
Expressing the 4th order cumulants of the sources λ1 = κx

1111, λ2 = κx
2222 in

function of the cumulants of the observations we obtain the following objective
function:

Ψ (θ) = λ2 − λ1

=
(
cos2 θ − sin2 θ

)
α + 4β cos θ sin θ

= α cos 2θ + 2β sin 2θ , (7)

where we used the multilinearity of the cumulants and Eqs (3) and (4) and
where α and β are given by (κz

1111 − κz
2222) and (κz

1112 + κz
1222), respectively.

The optimal value θ? is then given by the stationary point of Eq. (7), which can
be calculated setting its derivative at zero, and thus:

2θ? = arctan
2β

α
. (8)

This is the result also found in [6] for the AEML estimator.
4 The proof of Eq. (4) being a contrast can be found in appendix A



Source Extraction Model. The contrast function of Eq. (4) can be rewritten
for the extraction of a single source that differs in kurtosis sign from the others
in the mixture as:

Ψ (Q) = ε2

 n∑
j=2

κz
jjjj

− ε1κ
z
1111 , (9)

where we have chosen index 1 as the position for the source of interest. Since
the estimation of an orthogonal mixing matrix in Q can be expressed as a set of
successive pairwise givens rotations, it remains to define an appropriate iteration
scheme to obtain the source estimate.

Pairwise Optimisation Iteration Scheme. Based on the existing iteration
schemes for pairwise optimising and the result in Eq. (8), we can now opti-
mise the contrast function by running several sweeps with a predefined iteration
scheme. It has been mentioned in [7, 4, and references therein] that the optimal
sweeping for pairwise processing functions can be done by using at each sweep
either a fixed sequence (natural cycle), either a sequence based on a ranking
according to the value the current source estimates take in the contrast function
(jacobian iterations) or by using a threshold based selection at each sweep. For
the purpose of source extraction, combination of both the natural cycle method
and the jacobian based procedure to update the source estimate seems the most
adequate, see 1 for details. By simple adaptation of the updating sequence we
can even limit ourselves to the extraction of a single source, avoiding the need
to estimate all sources.
Although it has not yet been proven that pairwise optimisation yields a global
solution to the contrast, its use is justified since no counterexamples have been
found showing misconvergence if the general conditions of the model are met [7,
4, 6]. Its use is further justified by the fact that if the independence criterion
holds for each pair, then it holds for the whole set, which can be deduced di-
rectly from the information criteria supporting ICA.
The update sequence for single source extraction from n observers, according
to the model in (9), then becomes: To ensure the algorithm to terminate, we

Table 1. Sweep algorithm for the proposed contrast with source extraction

Initialise ŝ = z
Start b1 +

√
mc sweeps over k

Start: For j from 2 to m

ŝ1j(k + 1) = Q (θ?)
T ŝ1j(k)

Undo possible permutation
End j-loop

End Sweep



need to include the step to undo a possible permutation5. The sweeps over the
iterations reach termination once no significant rotation has been encountered
in a full sweep.

3 Results

Performance Measure. The performance measure is given as the mean of
200 Monte Carlo runs for each simulation point, either using a mixture of binary
sources or of FM/AM sources. All observations are obtained through a randomly
generated orthogonal n × n mixture. The performance measure is expressed as
the distance between the source of interest and the estimated/extracted source
as the source means square error (SMSE):

SMSE = E
{

(x̂1 − αoptx1)
2
}

, (10)

where αopt = E {x̂1x1} /E {x1x1} which compensates for possible changes in
sign and/or amplitude. Recall (from table 1 and Eq. (9)) that the permutation
ambiguity has been circumvented by extracting the source of interest at the first
position. All simulations on the data have been fed to the JADE [3] algorithm
as well, to compare the performance of the extraction algorithm to a full de-
composition algorithm. To ensure a fair comparison for the ensemble learning
based method and the extraction based AEMLe, we have limited the number of
sweeps of the latter to max {b#flopsJADE (n)c, convergence}, with a minimum
of 1 sweep.

Results on Binary Data. Taking 103 samples of binary data series composed
of 0’s and 1’s with probability p and 1− p, respectively, we can simulate signals
with a kurtosis value ranging from -2 to ≈103 by simply altering the distribution
parameter p of the Bernouilli distribution. The so obtained data series are used
in the following experiments as the source signals x, for which x1 has a distinct
kurtosis sign with respect to xi 6=1, unless otherwise specified. In figure 1a, the
results are shown for a fixed kurtosis value (ref) of the reference source, and a
second source ranging from equal kurtosis until a kurtosis difference of 20. The
objective to estimate the less kurtotic source is obtained by setting (ε1, ε2) =
(−1, 1). In figure 1b, the results are shown for the same kurtosis values, but with
the objective to extract the most kurtotic source by sign reversion of the εi in (9).
Unfortunately, the aforementioned source scenarios where the separation angle
θ can be calculated algebraically are rather unrealistic. A more realistic scenario
is given when the reference source has to be distinguished from a mixture with
more than two sources and an equal number of observers (m = n : m,n > 2). In
figure 2a&b the SMSE are presented in function of the number of sources in the
mixture, both for a subgaussian and supergaussian source extraction scheme.

5 Due to limited sample size. This was empirically observed (results not shown).
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Fig. 1. SMSE for real sources in 2×2 mixtures based on a. gaussian or subgaussian
(κ1111 = −2) reference b. gaussian or supergaussian reference
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Fig. 2. SMSE for AEMLe in n×n mixtures based on a. subgaussian reference (binary
or FM/AM modulated sources, see text) or b. a supergaussian reference

Sources with Nonstationary Statistics. A simulation set containing two
simulation models is included, i.e. a model for the supergaussian source based
on a tangent function, and a model for the subgaussian source which has been



obtained by a sinusoid and its harmonics. By changing the function in the tan-
gent’s argument, we can easily alter the kurtosis value of the supergaussian
sources giving us a possibility to mimic distinct scenarios. Both source models
contain a frequency modulation as well as an amplitude modulation part to avoid
stationarity of their statistics. The results of the dataset with extraction of the
subgaussian source can be found in figure 2a.

Influence of Noise and Sample Size. Figures 3a and 3b show the effect of
noise and sample size on the algorithm’s average performance. The SNR was
defined as 1/σ2

η where σ2
η stands for the variance of η, temporally and spatially

white gaussian noise. The denominator was set to one because the noise has been
added to the unitary mixture of normalised (unit-variance) sources.
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Fig. 3. The SMSE performance measure under influence of a. noise and b. sample size

Violation of the a priori Assumption. The results in figures 4a& b and
5a& b show the results for simulated datasets where all sources were sharing
the same kurtosis sign, thus violating the basis assumption supporting Eq. (9).
Since the case of negative kurtosis sign does not leave a lot of space for kurtotic
variation, the kurtosis difference has been increased with steps of one twentieth,
whereas the kurtotic difference for the supergaussian case was taken in steps of
1.
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Fig. 4. The SMSE performance measure when all sources are supergaussian having the
same kurtosis sign for the scenarios of extraction of a. the lowest kurtotic source and
b. the highest kurtotic source.
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Fig. 5. The SMSE performance measure when all the sources are subgaussian having
the same kurtosis sign for the scenarios of extraction of a. the lowest kurtotic source
and b. the highest kurtotic source.



4 Discussion

It is clear from the results in figures 1 and 2 that the algorithm is more suited to
extract the source with highest kurtosis value than vice versa, probably because
more spread is allowed in the positive kurtosis values than in the negative. From
the same figures it is clear that the algorithm is most suited for a considerably
large kurtotic gap, although overall performance is quite good (-20dB is a mean
sample error of 0.01×σx1).
Comparing the algorithm’s performance to a full decomposition algorithm such
as JADE, it is obvious that the performance deterioration of the proposed algo-
rithm is negligible for a sufficiently large kurtosis difference (in the subgaussian
signal extraction scenario 2dB at a kurtosis difference of 6, whereas 1dB at a
difference of 8) and this with a substantially lower calculation effort since there
is no need to decompose the signal in its full set of sources.
From figures (4)a& b and (5)a& b it can be deducted that the source extraction
model for a 2 × 2 scenario still holds with comparable performance when the
kurtosis sign of all sources is equal (i.e.ε1 = ε2), the source of interest either
being the highest or lowest in kurtosis. These results suggest that the contrast
may serve as well as the basis of a full decomposition algorithm with subspace
deflation. The proof that Eq. (7) is a contrast no matter the values taken by εi

under the sole condition that λ1 6= λ2 can be found in Appendix B.
The low performance of the algorithms at a kurtotic difference of zero is due
to the non identifiability of the sources based on their kurtosis. Extracting the
source with lowest or highest kurtosis in the 2 sources/2 observers case will thus
with a chance of 0.5 result in extraction of the wrong source, explaining the poor
SMSE values for a source kurtosis difference of zero.

5 Conclusion

A new contrast has been proposed for ICA based on the kurtosis signs of the
sources. Advantages are that the contrast is able to extract the source of inter-
est, given that it has the lowest or highest kurtosis value in the mixture, with
optimal results when the kurtosis sign of the source of interest is different from
all other kurtosis signs of the sources in the mixture. Moreover it is presented
in the framework of simple pairwise optimisation, a cost-effective closed form
estimator in the two signal case. In the multichannel case this framework allows
for extraction of the source of interest without having to estimate the whole set
of sources.
The extraction of a single source having different kurtosis sign fits in the frame-
work of ICA with known source kurtosis sign (appendix A), a generalisation of
the AEML in [6] estimator in the 2 sources/2 observers case and already hinted
at in [7] through an extension of the MaxKurt with kurtosis sign inclusion. It’s
also a generalisation of the contrast proposed in [8] based on the kurtosis sum
of the sources. The algorithm’s flexibility allows for easy be extensions e.g. by



putting constraints in the updating step. An accompanying paper describing
the extraction of atrial activity from electrocardiogram signals shows promising
results for addition of a spectral constraint in the updating cycle [9].
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Appendix A. Proof of contrast

Consider a set of N independent sources, sn, 1 ≤ n ≤ N , and denote κn their
kurtosis. Now assume that the first p sources are known to have a positive
kurtosis and the remaining n− p a negative one:{

κi > 0,∀i : 1 ≤ i ≤ p
κi < 0,∀i : p < i ≤ N

(11)

Denote Ti the kurtosis of the separator output yi. If data measurements have
been spatially prewhitened, the output vector y is linked to the source vector s
through a real orthogonal transform, Q. Denote S the set of sources satisfying
(11), and Y the set of observations generated by the orthogonal group Q acting
on S. Then with these notations we have the following result:

Proposition 1. The optimization criterion Ψp(Q) defined as:

Ψp(Q) =
N∑

i=1

εiTi (12)

where εi = 1 for 1 ≤ i ≤ p, and εi = −1 for p < i ≤ N is a contrast function
over the set of observations Y = Q · S.

Proof. By hypothesis, there exists an orthogonal matrix Q such that y = Qs.
Thus, by the multilinearity property of cumulants, we have Ti =

∑N
j=1 Qijκj .

Hence:

Ψp(Q) =
N∑

i=1

εi

N∑
j=1

Q4
ijκj

Now, by using the triangular inequality, we have

Ψp(Q) ≤
N∑

j=1

N∑
i=1

|Qij |4 |κj | ≤
N∑

j=1

N∑
i=1

|Qij |2 |κj |

the second inequality stemming from the fact that the entries of an orthogonal
matrix are of modulus smaller than or equal to one. Now, for any orthogonal
matrix,

∑
i |Qij |2 = 1, so that eventually

Ψp(Q) ≤
N∑

j=1

|κj | =
N∑

j=1

εjκj = Ψp(I)

This proves the domination. Now if the equality Ψp(Q) = Ψp(I) holds, we must
have

N∑
j=1

N∑
i=1

[
|Qij |2 − |Qij |4

]
|κj | = 0



Yet, all the terms in the sums are positive, which means that they must all vanish.
In other words |Qij |2− |Qij |4 = 0, ∀(i, j), which can occur only if |Qij | ∈ {0, 1}.
Because Q is orthogonal, there can be only one nonzero entry in every row and
column, which means that Qij = λi Pij , where λ = ±1 and P is a permutation.
This proves the discrimination property.

Proposition 2. Trivial filters associated with the contrast (12) are of the form

Q = ΛP (13)

where P is a matrix formed of two diagonal blocks of size p×p and N−p×N−p
respectively, containing permutations.

Proof. We have seen in Proposition 1 that trivial filters are the product of a diag-
onal matrix containing unit modulus entries and a permutation. So denote them
Qij = λi Pij . It remains to prove that matrix P is of the expected block form.
Start with the equality (true for all trivial filters, by definition): Ψp(Q) = Ψp(I),
and choose the equality below in the chain of equalities proved in Proposition 1:

N∑
i=1

εi

N∑
j=1

Q4
ijκj =

N∑
j=1

εjκj

Because λj = ±1 and P is a permutation, we have Q4
ij = Pij . Hence, since

ε2
j = 1 and εjκj = |κj |, one gets:

N∑
j=1

[
1−

N∑
i=1

εiPijεj

]
|κj | = 0

Yet, every term in this sum is positive, so that they must individually vanish,
which yields the relation:

N∑
i=1

εi Pij εj = 1, ∀j (14)

By splitting the sum into two parts, we can replace εi by its value:
∑p

i=1 Pijεj −∑N
i=p+1 Pijεj = 1. Now distinguish the cases j ≤ p and j > p, and take into

account the fact that, for any permutation,
∑

i Pij = 1; we get:{
1− 2

∑p
i=1 Pij = 1, ∀j > p,

2
∑p

i=1 Pij − 1 = 1, ∀j ≤ p

The first equality yields that for any j > p,
∑p

i=1 Pij = 0, that is, by positivity,
Pij = 0. The top right block of P is thus null. Now the second equality yields∑p

i=1 Pij = 1 for any j ≤ p. As a consequence, every column in the first principal
block contains a 1. But in a permutation, there can be only a single 1 in every
column. The bottom left block must then be null. We have proved that the
permutation matrix is indeed of the form:

P =
(

P 1 0
0 P 2

)



This second proposition shows that sources with positive kurtosis may be
extracted separately from sources with negative kurtosis, provided that con-
trast (12) is utilized, and provided that p is known.



Appendix B. AEML: a contrast for κiiii + κjjjj 6= 0

From Eq. (7), we know that for an optimal angle of θ?, the cross cumulants
vanish. This can be deduced from Eq. (8), where we see that for the stationary
point it holds that (κ1222 + κ1112) = 0. We can now write our stationary point
as:

Ψ (θ?) = (κ1111 − κ2222) cos 2θ? , (15)
Ψ̇ (θ?) = −2 (κ1111 − κ2222) sin 2θ? = 0 , (16)
Ψ̈ (θ?) = −4 (κ1111 − κ2222) cos 2θ? < 0 . (17)

From Eq. (16) we get the first restriction on the solution space for θ as θ? = npi
2

or (κ1111 − κ2222) = 0. The latter condition does not set any restrictions on our
value for θ in the optimum, thus making it impossible to obtain a solution.
For values of θ satisfying Eq. (16), it remains open whether the optimum is a
minimum or a maximum. Since maxima are characterised by Eq. (17), we can
rewrite this equation to constrain θ’s solution space even further by rewriting
cos 2θ as a function of the solutions to Eq. (16). Eq. (17) then becomes:

Ψ̈ (θ?) = 4 (κ1111 − κ2222) (−1)n . (18)

The solutions are now given as a function of n, and a maximum is reached for

n =
{

odd if κ1111 > κ2222

even if κ2222 > κ1111
(19)

Since we know that the signals are prewhitened and thus orthogonal, the so-
lutions to Ψ show that their is a unique solution for independent signals at
the maximum of the function, without scaling ambiguity (since all signals are
prewhitened, their scale is fixed to 1) and even no permutation ambiguity as
can be seen from Eq. (19). This concludes the proof for AEML being a contrast
function for any pair (κ1111, κ2222) given (κ1111 − κ2222) 6= 0. Remark that there
has been made no assumption about the signs of both source kurtosis, making
it a general contrast function for any (κ1111, κ2222) in the case of 2 sources/2
observers.


