f ‘ . CENTRE NATIONAL
Wliiversine DE LA RECHERCHE
Mice < IFiEL SCIENTIFIQUE

PHITA &%

LABORATOIRE

sophia antipolia

INFORMATIQUE, SIGNAUX ET SYSTEMES
DE SOPHIA ANTIPOLIS
UMR 6070

ICA PERMUTATION AMBIGUITY IS FIXED WITH ROUGH
GUESSES ONSOURCE KURTOSES

\Vicente Zarzoso, Pierre Comon, Ronald Phlypo
Equipe SIGNAL

Rapport de recherche
ISRN I3S/RR-20088-FR

April 2008

Laboratoire d’'Informatique de Signaux et Systemes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles — Les Algorithmes — Bat Euclide B — B.P. 121 — 06903 Sophia-Antipolis Cedex — France
Tél.: 33 (0)4 92 94 27 01 — Fax: 33 (0)4 92 94 28 98 — www.i3s.unice.fr
UMR6070



I13S LABORATORY INTERNAL REPORT, ISRN I3S/RR-2008-08-FR, APRIL 2008 1

ICA Permutation Ambiguity is Fixed with

Rough Guesses on Source Kurtoses

Vicente Zarzoso, Pierre Comon, Ronald Phlypo

ISRN 13S/RR-2008-08-FR

Résune
Ce rapport traite du probine de la gparation aveugle de sources via I'’Analyse en Composantes
Indépendantes (ICA). Nous montrons qu'une combinaisogsiie des cumulants marginaux d’ordre
quatre (kurtosis) des sorties d@parateur fournit une fonction de contraste recevable, sous la
condition que les dorées ontéte pie-blanchies spatialement, si les poids de la combinaison sont
de méme signe que les kurtosis des sources. Si les poidseganix aux kurtosis des sources, alors
le contraste peuétre vu comme un atre d'ajustement de cumulants revenant au maximum de
vraisemblance. En outre, si les poids sont distincts et les kurtosis des sources sont distincts, alors
'ambiguité de permutation, irfrente au proeime de I'ICA, dispari Les sources peuvergtre
estimees par ordre de kurtosis croissant. Cetgnd un petit &sultat @ja publié, que nous avons

ajoué en annexe.
Abstract

The present report addresses the problem of blind source separation via independent component
analysis (ICA). We prove that a linear combination of the separator output fourth-order marginal
cumulants (kurtoses) is a valid contrast function for ICA under the prewhitening assumption if the
weights have the same sign as the actual source kurtoses. If the weights equal the actual source
kurtoses, the contrast is a cumulant matching criterion based on the maximum likelihood principle.

If the source kurtoses are different and so are the linear combination weights, the contrast eliminates
the permutation ambiguity typical to ICA, as the estimated sources are sorted in increasing kurtosis
value at the separator output. This extends a previously published result, which we have included in

appendix.
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Index Terms

Independent Component Analysis, contrast criteria, kurtosis, Blind Source Separation, Maximum

Likelihood.

I. INTRODUCTION

One considers the problem of Blind Source Separation (BSS), where a aétradl or complex
independent sources,, 1 <n < N, are mixed and observed oW sensors. If data measurements
have been spatially prewhitened, it is legitimate to assume that the mixing matrix is unitary, so that

the observation model takes the form:

x = Qs 1)

where@ is aN x N unitary matrix, andk € CV. The goal is to recover source realizations from the
sole observation of realizations of random variakleFor this purpose, one may estimate the best

separating matrix¥ so that the output vector
y = Fx

is equal to the source vecterup to scale and permutation factors. That is, with the sole assumption
that s,, are statistically independent, the best we can hope is to obtain an estimatef tie form

y = APs, whereA is diagonal invertible and is a permutation. This problem is referred to as the
Independent Component Analysis (ICA); refer to [1], [2] and references therein.

In [3], it has been proved that a prior knowledge of the source kurtosis signs can fix the permutation
ambiguity between sources of different kurtosis signs. As a consequence, it was possible to extract
the source of interest in first position if it was the only one to have a positive (resp. negative) kurtosis
in the mixture. The resulting computational complexity could hence be reduced, if a special purpose
pair-sweeping algorithm is utilized [3].

The present report shows that the permutation ambiguity can be reduced even further if it is known
in advance that sources have different kurtoses.

a) Multi-linear relation: The kurtosisy; of the separator outpuy; is related to those of the
observations thanks to the multi-linearity of cumulants. More precisely, we have:

mnpq
wherep; = Cum{y;, vi, v, ;' } andymnpg = Cum{xm,xn,x;,x;;}. On the other hand, if we denote

G the global filter, i.e.G = FQ, they are also related to source cumulants as:

N
Hi = Z ’Gin‘4/{n
n=1
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b) First assumption: Denotex, the source kurtoses, and assume indices are chosen so that
kn IS NON decreasing:,1+1 > Ky, Vn. In addition, assume that the firstsources are known to have

a positive kurtosis and the remainimg— p a negative one:

KEn>0VYn:p<n<N
3)
Kn<0,Vn:1<n<p
DenoteS the set of sources satisfying (3), apidhe set of observations generated by the orthogonal
group Q acting onS. Then with these notations we have the following result:

Proposition 1: The optimization criterion,,(y) defined as:

N
V(Q) = e (4)
=1
whereg; = 1 for 1 < i < p, andeg; = —1 for p < i < N is a contrast function over the set of

observationsy = Q - S.
The proof is given in [3].
¢) Second assumption: Now we assume instead that we are given a set of real numbegrs,

related to the unknown source kurtosesvia an unknown strictly increasing functiofi passing
through the originia; = f(k;). In other words, we know not only how many positive and negative
kurtoses there are, but we also know how many are equal and which ones. For instance,df <
a3z < 0 < ay, then it means that; < k2 < k3 < 0 < k4. Note that because; is non decreasing,
SO is ;.

In practice, it often happens that we have enough information to know such an ordering, but not
enough to know the source kurtoses with a good accuracy. This lack of accuracy prevents us from
resorting to the Maximum Likelihood criterion, and one generally ignores the knowledge of ordering

and executes a standard ICA algorithm.

[I. NEw OPTIMIZATION CRITERION

The optimization criterion that we propose is a linear combination of output Kurtdses,:;
where«; € R are given and sorted in non decreasing order, and cumulgrése calculated with
the help of (2) wherey,,,,, are estimated from measuremerits< ¢ < N. Propositions 2 and 3
rigorously show that it is possible to recover the sources in a pre-assigned order, by maximizing

criterion (5) with respect td@'.

Proposition 2: The optimization criterion

N
Uo(y) = Z Qifli )
i1

is a contrast function over the set of observatighs- Q - S.
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Lemma 1:Let u andv be two vectors oR™. Then the permutatio® that maximizes the scalar
productu’ Pv is that yielding the scalar product valQ€; uy(;)vr(;y Where entriesu, ;) and v,

are both sorted in non decreasing order.

Proof: The proof is obvious, and proceeds by contradiction. Assume that for the optimal permu-
tation, u; are sorted in non decreasing order, but assume that there exist two entviesuoh that
v > Ug4p. By construction, we haveuy.y, — ux)(vy — vksp) > 0. By expanding the product we get
UkpVk + UpVktp > ULVE + UkpUk4p, Which shows that transposing the two entriesvohcreases
the scalar product. Hence the permutation was not optimal. [ |

Now let’s prove the proposition.

Proof:

Case 1. Distinct;’s. By definition (5),

Vo l(y)

IN

D lail D GG
i i
> el G5 (6)

]

IA

Now, recall thatG is unitary. HenceG;;|* < |G;;|* for any indices, hence:
Toly) < ) leul|Gijl? 5] (7)
ij

Yet, the matrix formed with entrief7;;|? is itself bistochastic since its rows and columns sum up

to one. Hence, from the Birkhoff theorem [4], there exist a set of real positive numbersch that
Gil> =D BePi(0), and Y B =1
¢ ¢
whereP(¢) are permutations matrices. This yields the inequality below
Ualy) <Y laillrs] D BePi(e)
%] ¢

The maximum of the right hand side is reached when the convex linear combination reduces to one
of its vertex, that is when al’s are null but one, say(¢,). Then from the lemmaP(¢,) precisely

relates; andi, so that botho;| and|x;| are sorted in increasing order:
To(y) < lagry| = Tals) (8)
j

If we have equality, then the same reasoning as in [3] would showGhatAP.

Case 2: Possibly non distincte;’s. When o;'s are not distinct, we can group them by packets
of equal valuesA,. Similarly, values ofx; can be grouped within the same packets, according to
our second assumption. Since permuting indices within adsetloes not change the value of the

criterion, the proof still holds true. ]
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Proposition 3: If equality holds in (5), thery = APs, where permutatio® is equal to the identity
matrix for every row: (or columns) for which ¢; is distinct from the other;’s. In addition, the
entries of the diagonal matriA must be of unit modulus.

Proof: Now we shall make use of the fact that not only moduli| are sorted, but also;’s. If

equality holds in (8), it means in particular that there exists a permut&isach that:
Taly) = Z%‘Pijlij = Zajﬁj = W,(s)
ij J

From lemma 1, we know that permutati&his uniquely defined if there is a unique way to sort the

kn in increasing order. This will be the case if all source kurtosgsare distinct. Should not this

be the case, the permutation is not unique: any permutation of indices keeping the okgenari

decreasing will still lead to the same maximum of the contrast. The permutation indetermiRation

is then formed of diagonal blockB(q), whose size corresponds to the number of elements in each

setA,. [
Proposition 2 of [3] may now be seen as a particular case of Proposition 3 above, where coefficients

«; are set tot1.
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A Contrast for Independent Component Analysis
with Priors on the Source Kurtosis Signs

Vicente ZarzosoMember, IEEERonald PhlypoStudent Member, IEERierre ComonfFellow, IEEE

Abstract—A contrast function for Independent Component computationally simpler contrasts [5], [6], but is unable to

Analysis (ICA) is presented incorporating the prior knowledge reduce the ambiguity in the ordering of the recovered sources,
on the sub-Gaussian or super-Gaussian character of the sources . permutation indeterminacy, typical in BSS.

as described by their kurtosis signs. The contrast is related . L
to the maximum likelihood principle, reduces the permutation ~ 1h€ power of the blind approach lies in its robustness to

indeterminacy typical of ICA, and proves particularly useful in ~ modelling errors, a feature achieved by making as few as-
the direct extraction of a source signal with distinct kurtosis sumptions about the problem as possible. However, additional
sign. In addition, its numerical maximization can be performed nformation is often available in practice such as the non-
cost-effectively by a Jacobi-like pairwise iteration. Extensions {0 o sqjan character of the sources: that of a digital modulation
standardized cumulants of orders other than four are also given. . - . .
_ _ _ signal depends on the relative probability of its symbols; the
. Irr:dex dTermst—?h?_d Sorrge Segar?tnog, contras: ﬂchtllon_s, atrial activity signal of an atrial fibrillation electrocardiogram
igher-oraer statstics, naepenaen omponen nalysis, _ . i : . .
kurtosis, performance analysis, standardized cumulants. is usually sub-Gaussian .or quas'l Gaussian; etc.. Sgparatlon
performance can be considerably improved by capitalizing on
EDICS: SAS-ICAB (Independent Component Analysis and this information.
Blind Source Separation). The present contribution puts forward a contrast function
that takes into account the prior knowledge about the non-
Gaussian character of the sources. The new contrast has

_ ) optimality properties in the ML sense, is efficiently maximized
I NDEPENDENT Component Analysis (ICA) aims at maxy,y, jacobi-like iterations, and alleviates (indeed may totally re-

imizing the statistical independence between the entries Ofjye) the permutation indeterminacy left by blind processing.
multivariate data. ICA is the fundamental technique for Blingthis |atter feature, illustrated in Sec. IV through simulations,
Source Separation (BSS) in linear mixtures when the SourGess heen successfully put into practice, without mathematical

are assumed mutually independent [1]. The plausibility ®foof, on real signals issued from electrocardiography [7], [8].
the assumption in a wide variety of applications has rapidly

made of ICA a reference tool in biomedical engineering,
communications and image processing, among many othell. A CONTRAST BASED ON SOURCEKURTOSISSIGNS
domains [2], [3], [4].

L Let us first recall the concept of contrast function. The
In the real-valued case, ICA assumes the following IIr]e%{andardization or whitening (second-order processing) of
model for the observed data vectorc IR™: g P 9

observation (1) yields another vectar = Qs, where Q
x = Hs (1) is a unitary matrix. The sources can then be recovered by
applying a unitary transformQ, resulting in the separator
where s € IR" contains the independent components Qfutputy = QTz = Gs, whereG = QTQ. A function ¥(y)
sources andl € IR™*" represents the mixing matrix, with of the separator-output distribution is an orthogonal contrast
m > n. The sources are recovered by maximizing a S@sr |CA if W(s) > ¥(Gs), for any orthogonal matrixG

called contrast function measuring the statistical independenggmination), with equality if and only iG is a trivial filter
between the separator output components [1]. Seminal con-

trasts such as ‘COM1’ and ‘COM2’ originated from cumulant- G =PD 2
based approximations (usually at order four) of information-
theoretical principles such as maximum likelihood (ML), muwhere P is a permutation and a non-singular diagonal
tual information and marginal entropy [1], [5]. The hypothesigatrix (discrimination). Consequently, contrast maximization
that the kurtosis (normalized fourth-order marginal cumulanigstores the independent sources at the separator output up to
of all the sources has the same sign allows the definition @fpossible permutation and scaling.
Let x; denote theith-source kurtosis ang; its sign,e; =
V. Zarzoso and P. Comon are with the Laboratoire 13S, University of Nices_'ign(m), 1 <4 < n. We assume in the sequel thources

I. INTRODUCTION

Sophia Antipolis, CNRS, 2000 route des Lucioles, BP 121, 06903 SOera itive k e —1 1<i< d
Antipolis Cedex, France. e-maifzarzoso, pcomon }@i3s.unice.fr . ave p05|t|\{e UI’IOSI$.¢ =1,1<i<p, and(n—p) sources
R. Phlypo is with the Department of Electrical and Information SystenrBave negative kurtosis; = —1, p < i < n. Symbol p;

(ELIS), Ghent University, Institute for Broadband Technology (IBBT), 'B'[epresents the kurtosis of the separat@ith; output. Proofs

iTech Block Heymans, De Pintelaan 185, B-9000 Ghent, Belgium. e-mayl: . .
ronald.phlypo@ugent.be %or the mathematical results that follow can be found in the

Manuscript submitted Sep. 25, 2007; revised Dec. 13, 2007. Appendix.
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Proposition 1: Criterion readily adapted to other pairs by a simple change of indices.
n The corresponding two-signal separator output is given by
U, (y) = Z&'M (3) yi2 = QTz1:, whereQ is a Givens rotation that can be
=1 parameterized as
is a contrast function under the above assumptions. . 1 1 —t
" under I a0 ===, 1) ©)
Remark:The maximum likelihood recovery of the source e\t 1
signals under the whitening constraint is achieved by maxjith ¢ = tan §. The associated pairwise contrastligy ) =
mizing the function: e1pi1 + eapp. By virtue of the multilinearity property of
n cumulants, this function can easily be expressed in terms of
Uy (y) = Zf@:/ti- (4) the unknownt and the 4th-order cumulants af,, denoted
i=1 asc¢;; = Cum;j;(z1,22), With (i + j) = 4 (using Kendall's

This contrast is obtained from an approximation of thBotation). The stationary points df(y:2) are then found to
Kullback-Leibler divergence based on the Edgeworth expae the solutions to the quartic equation:
sion of the separator-output probability density function (pdf) 4 9
truncated at fourth order [6]. If only the source kurtosis signsa?’t +2(az —2a0)t*+3(a1 —as)t* +2(2a0 —az)t—a1 = 0 (7)
are known, contrast (4) naturally reduces to (3). Hence, thhereay = (c1c40 + 2c04), a1 = 4(e1c31 — £2¢13), az =
latter is expected to inherit the optimality features of the(c, + c))cg0, as = 4(e1c13 — e2¢31), anday = (e1cos +
approximate ML estimate while reducing the prior information, ). The above quartic can be solved by radicals (Ferrari's
required. The reduced amount of information helps to keggrmula) at a cost that can be considered negligible compared
the desirable features of a blind formulation and is capaligthe cumulant computation. The solutions can also be simply
of partially solving the permutation ambiguity, as shown b¥xpressed in terms of the extended ML (EML) estimator of
Proposition 2 below. [10] if &1 = &, or the alternative EML (AEML) estimator
Remark: Reference [9] addresses the so-called one-Rjf [11] if &, £ =,. Typically, aboutO(y/n) sweeps over all
matching conjecture, whereby the sources can be separateslghal pairs are required for convergence, as suggested in [1].
there exists a one-to-one correspondence between the kurtpgigever, as a by-product of Proposition 2, the extraction of a
signs of the sources and those resulting from the truncaigslirce of interest with distinct (e.g., positive) kurtosis sign can
Gram-Charlier eXpanSion of their pdf’S. A function Obtaine%e carried out by Sweeping the contrast over pa'lr]somy,
in [9] bears certain resemblance to contrast (3) but the proofgfth ¢, = 1, e; = —1, for 2 < j < n. After convergence, the
the conjecture is cumbersome and valid only when the souggsired source will appear at the first entry of the separator
skewness (standardized third-order cumulant) is null. We proygtput vector.
in the Appendix that function (3) is a contrast for all orders
r > 3, of which Proposition 1 is just a particular case for
— IV. NUMERICAL EXPERIMENTS

Proposition 2: Trivial filters associated with contrast (3) are The contrast is tested on synthetic random unitary mixtures
P ' of n = 10 binary signals composed of 1000 samples. Sources
of the form (2), where

kurtosis values of eithex = 2 (super-Gaussian) of = —2
p_ ( P, 0O ) 5) (sub-Gaussian) are obtained by setting the probability of the
0 Py /)’ two states in the binary distribution accordingly [12]. The error
P, andP; being permutation matrices of sipex p and (n — n n
p)x(n—p), respectively, andD made up of unit-norm diagonal  _ 1 Z Z IGijl 1
entries. 2n (n—1) =\ m]?X|G““|

Remark:Sources with positive kurtosis are extracted sep- m (3 )
arately from sources with negative kurtosis by contrast (3), +Z Z — 1 (8)
provided that parameteris known. In particular, a source of =1\ max |Gj
interest can be recovered without permutation ambiguity if its

kurtosis sign is different from all the others’. The Appendi>'<S used as a separation performance criterion [13], [4]. The
or is always positive, and zero if and only if matr&

shows that contrast (3) enjoys this source ordering propeﬁga trivial filter of the form (2). Error values are averaged

for standardized cumulants of even ordep 4. over 250 independent realizations of the sources and the
mixing matrix. Three contrasts are considered: ‘COM2’ [1]
I1l. CONTRAST OPTIMIZATION (A marker); ‘COML+" and ‘COM1—’", which correspond to

The Jacobi-like pairwise iteration technique originally prothe contrast of [5] assuming that all sources have positive and
posed in [1] can also be used to optimize contrast funnegative kurtosis, respectively-(and x markers, resp.); and
tion (3). The function is maximized for each signal pair irfiunction (3), which we refer to akurtosis sign priors (KSP)
turn over several sweeps until convergence. Let us assucoaitrast © marker). For each tested contrast, we carry out
that we are processing paii, = [21,22]T, the result being 5(1 + |/n]) sweeps over all signal pairs.
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Fig. 1. Source separation performance of ICA contrasts as a function of fhig. 3. Source extraction performance of the KSP contrast (3) for different
number of positive-kurtosis sources The KSP method employs the correctmixture sizes.
value ofp.

0 —_— V. CONCLUSIONS

An orthogonal contrast for ICA has been proposed which
takes into account the non-Gaussian character of the source
signals as measured by the sign of their fourth-order marginal
cumulants (kurtosis). The contrast is linked to an approximate
ML principle, and is able to separate the independent sources
into two groups, depending on their kurtosis sign, thus partially
solving the permutation ambiguity usually associated with
ICA. The iterative pairwise maximization of the proposed
contrast can be carried out at low complexity by closed-form
0 solutions. As opposed to alternative fully blind techniques, the
new contrast is particularly suited to the direct extraction of
a source with known kurtosis sign distinct from the others’.

Fig. 2. Source separation performance of ICA contrasts as a function of tie principle extends to higher-order cumulants other than
estimated number of positive-kurtosis sourge§he correct value ip = 5. kurtosis, as proved in the Appendix

Fig. 1 shows the performance variation as a function of APPENDIXA

the numberp of sources with posit.ive. kurtosis, wheyeis Proof of Proposition 1: The following proof generalizes
assumed to be perfectly known a priori. As expected, COMLyq reqyt of Proposition 1 teth-order cumulants, with > 3.

and COML- fail to perform the_sep_aration except when al}kccordingly, in the sequek; and ;1; denote the standardized
sources have the same kurtosis sign. KSP outperforms fhe oder cumulant of source; and outputy;, respectively,
other contrasts. whereas; = sign(k;).

_ The rgbu_stness of cqntrgst (3) to a mismatch in the prior By the multilinearity property of cumulants, we haye =
information is analyzed in Fig. 2, whefesources are assumed 2

to have positive kurtosis while, actually = 5. KSP’s ]glerj”i'WhereGij: [Gli;. Hence:

separation performance degrades as the available knowledge

becomes less accurate. n n
Finally, we setp = 1 and aim at the single source with Uy(y) = ZeiZGij“J'

positive kurtosis through the extraction procedure described at =1 =l

the end of Sec. lll. Fig. 3 plots the average interference-t¥he triangular inequality yields

signal ratio (ISR) for the estimation of the first source, defined - Y on

- [emE Uy(y) < ZZ |Gij|"|r;] < ZZ |Gij]? k5]

ISR=1-=—7—> i=1j=1 i=1j=1
> =1 Gl . .
where the right-hand side term stems from the fact that3
as a function of the sweep number. This result illustrates tRBJ the ortQhonormallty' of matriks, which can be expressed
ability of the KSP contrast (3) to extract a source of knowfs 2_; |Gi;j|” = 1. Invoking again this property, we obtain
kurtosis sign from a mixture where all other sources have the n n
opposite sign, without ha.vmg to geparate the wholg mixture U,(y) < Z k| = Zgjﬁ;j = U,(s).
and resolve the permutation ambiguity after separation. =1 =
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This proves the domination. Now if the equalify,(y) =
¥, (s) holds, we must have

D G =Gyl ksl =0,

i=1 j=1

(6]
(7]

Yet all the terms in the sums are positive and thus they mu#tl
all vanish. In other words|G;;|* — |G;;|" = 0,Vi,j, with

r > 3, which can occur only ifiG,;| € {0,1}. BecauseG

is orthonormal, it must then have only one nonzero element
in every row and column. Hencé&z is of the form (2), with [9]
D; = [D]; = £1. This proves the discrimination property.

Function¥,(y) is thus a contrast for ICA. m [10]

Proof of Proposition 2: This proof extends the validity
of Proposition 2 to any even order > 4. As seen above, [
equality ¥,,(y) = ¥,(s) holds if and only if

n n n
T
E Ei E Gij"{j = E EjRj-
=1 j=1 j=1

BecauseD; = +1 andP is a permutation, we have that;
P,;, with P;; = [P],;, asr is even. Alsos? = 1 andejx;
|%;], so that

[12]

(23]

n n

2 (-

j=1

EiPijEj |I<Jj| =0.
=1
Yet, since all the terms in the sum are positive, they must
individually vanish, yielding the relation

ZE,‘]DUGJ' = 1, Vj
i=1

Now, by splitting the sum into two parts, we are able to replace
e; by its value, yieldingy "7, Pije; — > . Pijej = 1. Let

us distinguish between the casgs p andj > p, and take
into account the fact that, for any permutation,’_, P,; = 1.

Then: n )
1_22i:p+1pij:1 V]Sp
1-2%"% Pji=1 Vi>p.

The first equality yields, for any < p, Z?:pﬂ P;; =0. That
is, by positivity, P;; = 0. Thus, the(n — p) x p bottom left
block of P is null. Analogously, we see that for any> p,
> P;j =0, and thus the x (n — p) top right block of P
must also be null. Consequently, the permutation matrix takes
indeed the form (5). ]
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