
LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR 6070

ICA PERMUTATION AMBIGUITY IS FIXED WITH ROUGH

GUESSES ONSOURCE KURTOSES

Vicente Zarzoso, Pierre Comon, Ronald Phlypo

Equipe SIGNAL

Rapport de recherche
ISRN I3S/RR–2008-08–FR

April 2008

Laboratoire d’Informatique de Signaux et Systèmes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles – Les Algorithmes – Bât Euclide B – B.P. 121 – 06903 Sophia-Antipolis Cedex – France

Tél.: 33 (0)4 92 94 27 01 – Fax: 33 (0)4 92 94 28 98 – www.i3s.unice.fr
UMR6070



I3S LABORATORY INTERNAL REPORT, ISRN I3S/RR-2008-08-FR, APRIL 2008 1

ICA Permutation Ambiguity is Fixed with

Rough Guesses on Source Kurtoses
Vicente Zarzoso, Pierre Comon, Ronald Phlypo

ISRN I3S/RR-2008-08-FR

Résuḿe

Ce rapport traite du problème de la śeparation aveugle de sources via l’Analyse en Composantes

Indépendantes (ICA). Nous montrons qu’une combinaison linéaire des cumulants marginaux d’ordre

quatre (kurtosis) des sorties du séparateur fournit une fonction de contraste recevable, sous la

condition que les donńees ontét́e pŕe-blanchies spatialement, si les poids de la combinaison sont

de m̂eme signe que les kurtosis des sources. Si les poids sontégaux aux kurtosis des sources, alors

le contraste peut̂etre vu comme un crière d’ajustement de cumulants revenant au maximum de

vraisemblance. En outre, si les poids sont distincts et les kurtosis des sources sont distincts, alors

l’ambigüıté de permutation, inh́erente au problème de l’ICA, disparâıt. Les sources peuventêtre

estiḿees par ordre de kurtosis croissant. Ceciétend un petit ŕesultat d́ejà publíe, que nous avons

ajout́e en annexe.

Abstract

The present report addresses the problem of blind source separation via independent component

analysis (ICA). We prove that a linear combination of the separator output fourth-order marginal

cumulants (kurtoses) is a valid contrast function for ICA under the prewhitening assumption if the

weights have the same sign as the actual source kurtoses. If the weights equal the actual source

kurtoses, the contrast is a cumulant matching criterion based on the maximum likelihood principle.

If the source kurtoses are different and so are the linear combination weights, the contrast eliminates

the permutation ambiguity typical to ICA, as the estimated sources are sorted in increasing kurtosis

value at the separator output. This extends a previously published result, which we have included in

appendix.
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Index Terms

Independent Component Analysis, contrast criteria, kurtosis, Blind Source Separation, Maximum

Likelihood.

I. I NTRODUCTION

One considers the problem of Blind Source Separation (BSS), where a set ofN real or complex

independent sources,sn, 1 ≤ n ≤ N , are mixed and observed onN sensors. If data measurements

have been spatially prewhitened, it is legitimate to assume that the mixing matrix is unitary, so that

the observation model takes the form:

x = Qs (1)

whereQ is aN ×N unitary matrix, andx ∈ CN . The goal is to recover source realizations from the

sole observation of realizations of random variablex. For this purpose, one may estimate the best

separating matrixF so that the output vector

y = Fx

is equal to the source vectors up to scale and permutation factors. That is, with the sole assumption

that sn are statistically independent, the best we can hope is to obtain an estimate ofs of the form

y = ΛPs, whereΛ is diagonal invertible andP is a permutation. This problem is referred to as the

Independent Component Analysis (ICA); refer to [1], [2] and references therein.

In [3], it has been proved that a prior knowledge of the source kurtosis signs can fix the permutation

ambiguity between sources of different kurtosis signs. As a consequence, it was possible to extract

the source of interest in first position if it was the only one to have a positive (resp. negative) kurtosis

in the mixture. The resulting computational complexity could hence be reduced, if a special purpose

pair-sweeping algorithm is utilized [3].

The present report shows that the permutation ambiguity can be reduced even further if it is known

in advance that sources have different kurtoses.

a) Multi-linear relation: The kurtosisµi of the separator outputyi is related to those of the

observations thanks to the multi-linearity of cumulants. More precisely, we have:

µi =
∑
mnpq

FimFinF ∗
ipF

∗
iqγmnpq (2)

whereµi = Cum{yi, yi, y
∗
i , y

∗
i } andγmnpq = Cum{xm, xn, x∗

p, x
∗
q}. On the other hand, if we denote

G the global filter, i.e.G = FQ, they are also related to source cumulants as:

µi =
N∑

n=1

|Gin|4κn
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b) First assumption: Denoteκn the source kurtoses, and assume indices are chosen so that

κn is non decreasing:κn+1 ≥ κn, ∀n. In addition, assume that the firstp sources are known to have

a positive kurtosis and the remainingn− p a negative one: κn > 0,∀n : p ≤ n ≤ N

κn < 0,∀n : 1 ≤ n < p
(3)

DenoteS the set of sources satisfying (3), andY the set of observations generated by the orthogonal

groupQ acting onS. Then with these notations we have the following result:

Proposition 1: The optimization criterionΨp(y) defined as:

Ψε(Q) =
N∑

i=1

εiµi (4)

whereεi = 1 for 1 ≤ i ≤ p, and εi = −1 for p < i ≤ N is a contrast function over the set of

observationsY = Q · S.

The proof is given in [3].

c) Second assumption: Now we assume instead that we are given a set of real numbers,αi,

related to the unknown source kurtosesκi via an unknown strictly increasing functionf passing

through the origin:αi = f(κi). In other words, we know not only how many positive and negative

kurtoses there are, but we also know how many are equal and which ones. For instance, ifα1 < α2 ≤

α3 < 0 ≤ α4, then it means thatκ1 < κ2 ≤ κ3 < 0 ≤ κ4. Note that becauseκi is non decreasing,

so isαi.

In practice, it often happens that we have enough information to know such an ordering, but not

enough to know the source kurtoses with a good accuracy. This lack of accuracy prevents us from

resorting to the Maximum Likelihood criterion, and one generally ignores the knowledge of ordering

and executes a standard ICA algorithm.

II. N EW OPTIMIZATION CRITERION

The optimization criterion that we propose is a linear combination of output kurtoses,
∑

i αiµi

whereαi ∈ R are given and sorted in non decreasing order, and cumulantsµi are calculated with

the help of (2) whereγmnpq are estimated from measurements,1 ≤ i ≤ N . Propositions 2 and 3

rigorously show that it is possible to recover the sources in a pre-assigned order, by maximizing

criterion (5) with respect toF.

Proposition 2: The optimization criterion

Ψα(y) =
N∑

i=1

αiµi (5)

is a contrast function over the set of observationsY = Q · S.
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Lemma 1:Let u andv be two vectors ofRN . Then the permutationP that maximizes the scalar

productuTPv is that yielding the scalar product value
∑

i uσ(i)vπ(i) where entriesuσ(i) and vπ(i)

are both sorted in non decreasing order.

Proof: The proof is obvious, and proceeds by contradiction. Assume that for the optimal permu-

tation, ui are sorted in non decreasing order, but assume that there exist two entries ofv such that

vk > vk+p. By construction, we have(uk+p−uk)(vk − vk+p) > 0. By expanding the product we get

uk+pvk + ukvk+p > ukvk + uk+pvk+p, which shows that transposing the two entries ofv increases

the scalar product. Hence the permutation was not optimal.

Now let’s prove the proposition.

Proof:

Case 1: Distinctαi’s. By definition (5),

Ψα(y) ≤
∑

i

|αi|

∣∣∣∣∣∣
∑

j

G2
ijG

2∗
ij κj

∣∣∣∣∣∣
≤

∑
ij

|αi||Gij |4|κj | (6)

Now, recall thatG is unitary. Hence|Gij |4 ≤ |Gij |2 for any indices, hence:

Ψα(y) ≤
∑
ij

|αi||Gij |2|κj | (7)

Yet, the matrix formed with entries|Gij |2 is itself bistochastic since its rows and columns sum up

to one. Hence, from the Birkhoff theorem [4], there exist a set of real positive numbersβ` such that

|Gij |2 =
∑

`

β`Pij(`), and
∑

`

β` = 1

whereP(`) are permutations matrices. This yields the inequality below

Ψα(y) ≤
∑
i,j

|αi||κj |
∑

`

β`Pij(`)

The maximum of the right hand side is reached when the convex linear combination reduces to one

of its vertex, that is when allβ’s are null but one, sayβ(`o). Then from the lemma,P(`o) precisely

relatesj and i, so that both|αj | and |κj | are sorted in increasing order:

Ψα(y) ≤
∑

j

|αjκj | = Ψα(s) (8)

If we have equality, then the same reasoning as in [3] would show thatG = ΛP.

Case 2: Possibly non distinctαi’s. When αi’s are not distinct, we can group them by packets

of equal values,Aq. Similarly, values ofκi can be grouped within the same packets, according to

our second assumption. Since permuting indices within a setAq does not change the value of the

criterion, the proof still holds true.
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Proposition 3: If equality holds in (5), theny = ΛPs, where permutationP is equal to the identity

matrix for every rowi (or column i) for which αi is distinct from the otherαj ’s. In addition, the

entries of the diagonal matrixΛ must be of unit modulus.

Proof: Now we shall make use of the fact that not only moduli|αi| are sorted, but alsoαi’s. If

equality holds in (8), it means in particular that there exists a permutationP such that:

Ψα(y) =
∑
ij

αiPijκj =
∑

j

αjκj = Ψα(s)

From lemma 1, we know that permutationP is uniquely defined if there is a unique way to sort the

κn in increasing order. This will be the case if all source kurtosesκn are distinct. Should not this

be the case, the permutation is not unique: any permutation of indices keeping the order ofκn non

decreasing will still lead to the same maximum of the contrast. The permutation indeterminationP

is then formed of diagonal blocksD(q), whose size corresponds to the number of elements in each

setAq.

Proposition 2 of [3] may now be seen as a particular case of Proposition 3 above, where coefficients

αi are set to±1.
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A Contrast for Independent Component Analysis
with Priors on the Source Kurtosis Signs

Vicente Zarzoso,Member, IEEE,Ronald Phlypo,Student Member, IEEE,Pierre Comon,Fellow, IEEE

Abstract—A contrast function for Independent Component
Analysis (ICA) is presented incorporating the prior knowledge
on the sub-Gaussian or super-Gaussian character of the sources
as described by their kurtosis signs. The contrast is related
to the maximum likelihood principle, reduces the permutation
indeterminacy typical of ICA, and proves particularly useful in
the direct extraction of a source signal with distinct kurtosis
sign. In addition, its numerical maximization can be performed
cost-effectively by a Jacobi-like pairwise iteration. Extensions to
standardized cumulants of orders other than four are also given.

Index Terms—Blind Source Separation, contrast functions,
higher-order statistics, Independent Component Analysis,
kurtosis, performance analysis, standardized cumulants.

EDICS: SAS-ICAB (Independent Component Analysis and
Blind Source Separation).

I. I NTRODUCTION

I NDEPENDENT Component Analysis (ICA) aims at max-
imizing the statistical independence between the entries of

multivariate data. ICA is the fundamental technique for Blind
Source Separation (BSS) in linear mixtures when the sources
are assumed mutually independent [1]. The plausibility of
the assumption in a wide variety of applications has rapidly
made of ICA a reference tool in biomedical engineering,
communications and image processing, among many other
domains [2], [3], [4].

In the real-valued case, ICA assumes the following linear
model for the observed data vectorx ∈ IRm:

x = Hs (1)

where s ∈ IRn contains the independent components or
sources andH ∈ IRm×n represents the mixing matrix, with
m ≥ n. The sources are recovered by maximizing a so-
called contrast function measuring the statistical independence
between the separator output components [1]. Seminal con-
trasts such as ‘COM1’ and ‘COM2’ originated from cumulant-
based approximations (usually at order four) of information-
theoretical principles such as maximum likelihood (ML), mu-
tual information and marginal entropy [1], [5]. The hypothesis
that the kurtosis (normalized fourth-order marginal cumulant)
of all the sources has the same sign allows the definition of

V. Zarzoso and P. Comon are with the Laboratoire I3S, University of Nice -
Sophia Antipolis, CNRS, 2000 route des Lucioles, BP 121, 06903 Sophia
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iTech Block Heymans, De Pintelaan 185, B-9000 Ghent, Belgium. e-mail:
ronald.phlypo@ugent.be .
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computationally simpler contrasts [5], [6], but is unable to
reduce the ambiguity in the ordering of the recovered sources,
or permutation indeterminacy, typical in BSS.

The power of the blind approach lies in its robustness to
modelling errors, a feature achieved by making as few as-
sumptions about the problem as possible. However, additional
information is often available in practice such as the non-
Gaussian character of the sources: that of a digital modulation
signal depends on the relative probability of its symbols; the
atrial activity signal of an atrial fibrillation electrocardiogram
is usually sub-Gaussian or quasi-Gaussian; etc. Separation
performance can be considerably improved by capitalizing on
this information.

The present contribution puts forward a contrast function
that takes into account the prior knowledge about the non-
Gaussian character of the sources. The new contrast has
optimality properties in the ML sense, is efficiently maximized
by Jacobi-like iterations, and alleviates (indeed may totally re-
solve) the permutation indeterminacy left by blind processing.
This latter feature, illustrated in Sec. IV through simulations,
has been successfully put into practice, without mathematical
proof, on real signals issued from electrocardiography [7], [8].

II. A C ONTRAST BASED ON SOURCEKURTOSISSIGNS

Let us first recall the concept of contrast function. The
standardization or whitening (second-order processing) of
observation (1) yields another vectorz = Qs, where Q
is a unitary matrix. The sources can then be recovered by
applying a unitary transform̂Q, resulting in the separator
outputy = Q̂Tz = Gs, whereG = Q̂TQ. A function Ψ(y)
of the separator-output distribution is an orthogonal contrast
for ICA if Ψ(s) ≥ Ψ(Gs), for any orthogonal matrixG
(domination), with equality if and only ifG is a trivial filter

G = PD (2)

where P is a permutation andD a non-singular diagonal
matrix (discrimination). Consequently, contrast maximization
restores the independent sources at the separator output up to
a possible permutation and scaling.

Let κi denote theith-source kurtosis andεi its sign,εi =
sign(κi), 1 ≤ i ≤ n. We assume in the sequel thatp sources
have positive kurtosis,εi = 1, 1 ≤ i ≤ p, and(n− p) sources
have negative kurtosis,εi = −1, p < i ≤ n. Symbol µi

represents the kurtosis of the separator’sith output. Proofs
for the mathematical results that follow can be found in the
Appendix.
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Proposition 1: Criterion

Ψp(y) =
n∑

i=1

εiµi (3)

is a contrast function under the above assumptions.

Remark:The maximum likelihood recovery of the source
signals under the whitening constraint is achieved by maxi-
mizing the function:

ΨML(y) =
n∑

i=1

κiµi. (4)

This contrast is obtained from an approximation of the
Kullback-Leibler divergence based on the Edgeworth expan-
sion of the separator-output probability density function (pdf)
truncated at fourth order [6]. If only the source kurtosis signs
are known, contrast (4) naturally reduces to (3). Hence, the
latter is expected to inherit the optimality features of the
approximate ML estimate while reducing the prior information
required. The reduced amount of information helps to keep
the desirable features of a blind formulation and is capable
of partially solving the permutation ambiguity, as shown by
Proposition 2 below.

Remark: Reference [9] addresses the so-called one-bit
matching conjecture, whereby the sources can be separated if
there exists a one-to-one correspondence between the kurtosis
signs of the sources and those resulting from the truncated
Gram-Charlier expansion of their pdf’s. A function obtained
in [9] bears certain resemblance to contrast (3) but the proof of
the conjecture is cumbersome and valid only when the source
skewness (standardized third-order cumulant) is null. We prove
in the Appendix that function (3) is a contrast for all orders
r ≥ 3, of which Proposition 1 is just a particular case for
r = 4.

Proposition 2: Trivial filters associated with contrast (3) are
of the form (2), where

P =
(

P1 0
0 P2

)
. (5)

P1 andP2 being permutation matrices of sizep×p and(n−
p)×(n−p), respectively, andD made up of unit-norm diagonal
entries.

Remark:Sources with positive kurtosis are extracted sep-
arately from sources with negative kurtosis by contrast (3),
provided that parameterp is known. In particular, a source of
interest can be recovered without permutation ambiguity if its
kurtosis sign is different from all the others’. The Appendix
shows that contrast (3) enjoys this source ordering property
for standardized cumulants of even orderr ≥ 4.

III. C ONTRAST OPTIMIZATION

The Jacobi-like pairwise iteration technique originally pro-
posed in [1] can also be used to optimize contrast func-
tion (3). The function is maximized for each signal pair in
turn over several sweeps until convergence. Let us assume
that we are processing pairz12 = [z1, z2]T, the result being

readily adapted to other pairs by a simple change of indices.
The corresponding two-signal separator output is given by
y12 = Q̂Tz12, where Q̂ is a Givens rotation that can be
parameterized as

Q̂(θ) =
1√

1 + t2

(
1 −t
t 1

)
(6)

with t = tan θ. The associated pairwise contrast isΨ(y12) =
ε1µ1 + ε2µ2. By virtue of the multilinearity property of
cumulants, this function can easily be expressed in terms of
the unknownt and the 4th-order cumulants ofz12, denoted
as cij = Cumij(z1, z2), with (i + j) = 4 (using Kendall’s
notation). The stationary points ofΨ(y12) are then found to
be the solutions to the quartic equation:

a3t
4+2(a2−2a4)t3+3(a1−a3)t2+2(2a0−a2)t−a1 = 0 (7)

where a0 = (ε1c40 + ε2c04), a1 = 4(ε1c31 − ε2c13), a2 =
6(ε1 + ε2)c22, a3 = 4(ε1c13 − ε2c31), and a4 = (ε1c04 +
ε2c40). The above quartic can be solved by radicals (Ferrari’s
formula) at a cost that can be considered negligible compared
to the cumulant computation. The solutions can also be simply
expressed in terms of the extended ML (EML) estimator of
[10] if ε1 = ε2 or the alternative EML (AEML) estimator
of [11] if ε1 6= ε2. Typically, aboutO(

√
n) sweeps over all

signal pairs are required for convergence, as suggested in [1].
However, as a by-product of Proposition 2, the extraction of a
source of interest with distinct (e.g., positive) kurtosis sign can
be carried out by sweeping the contrast over pairsz1j only,
with ε1 = 1, εj = −1, for 2 ≤ j ≤ n. After convergence, the
desired source will appear at the first entry of the separator
output vector.

IV. N UMERICAL EXPERIMENTS

The contrast is tested on synthetic random unitary mixtures
of n = 10 binary signals composed of 1000 samples. Sources
kurtosis values of eitherκ = 2 (super-Gaussian) orκ = −2
(sub-Gaussian) are obtained by setting the probability of the
two states in the binary distribution accordingly [12]. The error

E =
1

2n (n− 1)

 n∑
i=1

 n∑
j=1

|Gij |
max

k
|Gik|

− 1


+

n∑
j=1

 n∑
i=1

|Gij |
max

k
|Gkj |

− 1

 (8)

is used as a separation performance criterion [13], [4]. The
error is always positive, and zero if and only if matrixG
is a trivial filter of the form (2). Error values are averaged
over 250 independent realizations of the sources and the
mixing matrix. Three contrasts are considered: ‘COM2’ [1]
(4 marker); ‘COM1+’ and ‘COM1−’, which correspond to
the contrast of [5] assuming that all sources have positive and
negative kurtosis, respectively (+ and× markers, resp.); and
function (3), which we refer to as ‘kurtosis sign priors (KSP)’
contrast (◦ marker). For each tested contrast, we carry out
5(1 + b

√
nc) sweeps over all signal pairs.
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Fig. 1. Source separation performance of ICA contrasts as a function of the
number of positive-kurtosis sourcesp. The KSP method employs the correct
value ofp.
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Fig. 2. Source separation performance of ICA contrasts as a function of the
estimated number of positive-kurtosis sourcesp̂. The correct value isp = 5.

Fig. 1 shows the performance variation as a function of
the numberp of sources with positive kurtosis, wherep is
assumed to be perfectly known a priori. As expected, COM1+
and COM1− fail to perform the separation except when all
sources have the same kurtosis sign. KSP outperforms the
other contrasts.

The robustness of contrast (3) to a mismatch in the prior
information is analyzed in Fig. 2, wherêp sources are assumed
to have positive kurtosis while, actually,p = 5. KSP’s
separation performance degrades as the available knowledge
becomes less accurate.

Finally, we setp = 1 and aim at the single source with
positive kurtosis through the extraction procedure described at
the end of Sec. III. Fig. 3 plots the average interference-to-
signal ratio (ISR) for the estimation of the first source, defined
as

ISR = 1− |G11|2∑n
j=1 |G1j |2

as a function of the sweep number. This result illustrates the
ability of the KSP contrast (3) to extract a source of known
kurtosis sign from a mixture where all other sources have the
opposite sign, without having to separate the whole mixture
and resolve the permutation ambiguity after separation.
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Fig. 3. Source extraction performance of the KSP contrast (3) for different
mixture sizes.

V. CONCLUSIONS

An orthogonal contrast for ICA has been proposed which
takes into account the non-Gaussian character of the source
signals as measured by the sign of their fourth-order marginal
cumulants (kurtosis). The contrast is linked to an approximate
ML principle, and is able to separate the independent sources
into two groups, depending on their kurtosis sign, thus partially
solving the permutation ambiguity usually associated with
ICA. The iterative pairwise maximization of the proposed
contrast can be carried out at low complexity by closed-form
solutions. As opposed to alternative fully blind techniques, the
new contrast is particularly suited to the direct extraction of
a source with known kurtosis sign distinct from the others’.
The principle extends to higher-order cumulants other than
kurtosis, as proved in the Appendix.

APPENDIX A

Proof of Proposition 1: The following proof generalizes
the result of Proposition 1 torth-order cumulants, withr ≥ 3.
Accordingly, in the sequelκi andµi denote the standardized
rth-order cumulant of sourcesi and outputyi, respectively,
whereasεi = sign(κi).

By the multilinearity property of cumulants, we haveµi =
n∑

j=1

Gr
ijκj , whereGij = [G]ij . Hence:

Ψp(y) =
n∑

i=1

εi

n∑
j=1

Gr
ijκj .

The triangular inequality yields

Ψp(y) ≤
n∑

i=1

n∑
j=1

|Gij |r|κj | ≤
n∑

i=1

n∑
j=1

|Gij |2|κj |

where the right-hand side term stems from the fact thatr ≥ 3
and the orthonormality of matrixG, which can be expressed
as

∑
i |Gij |2 = 1. Invoking again this property, we obtain

Ψp(y) ≤
n∑

j=1

|κj | =
n∑

j=1

εjκj = Ψp(s).
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This proves the domination. Now if the equalityΨp(y) =
Ψp(s) holds, we must have

n∑
i=1

n∑
j=1

[
|Gij |2 − |Gij |r

]
|κj | = 0.

Yet all the terms in the sums are positive and thus they must
all vanish. In other words,|Gij |2 − |Gij |r = 0,∀i, j, with
r ≥ 3, which can occur only if|Gij | ∈ {0, 1}. BecauseG
is orthonormal, it must then have only one nonzero element
in every row and column. Hence,G is of the form (2), with
Di = [D]ii = ±1. This proves the discrimination property.
FunctionΨp(y) is thus a contrast for ICA.

Proof of Proposition 2: This proof extends the validity
of Proposition 2 to any even orderr ≥ 4. As seen above,
equalityΨp(y) = Ψp(s) holds if and only if

n∑
i=1

εi

n∑
j=1

Gr
ijκj =

n∑
j=1

εjκj .

BecauseDj = ±1 andP is a permutation, we have thatGr
ij =

Pij , with Pij = [P]ij , asr is even. Also,ε2
i = 1 andεjκj =

|κj |, so that

n∑
j=1

[
1−

n∑
i=1

εiPijεj

]
|κj | = 0 .

Yet, since all the terms in the sum are positive, they must
individually vanish, yielding the relation

n∑
i=1

εiPijεj = 1, ∀j.

Now, by splitting the sum into two parts, we are able to replace
εi by its value, yielding

∑p
i=1 Pijεj−

∑n
i=p+1 Pijεj = 1. Let

us distinguish between the casesj ≤ p and j > p, and take
into account the fact that, for any permutation,

∑n
i=1 Pij = 1.

Then: {
1− 2

∑n
i=p+1 Pij = 1 ∀j ≤ p

1− 2
∑p

i=1 Pij = 1 ∀j > p .

The first equality yields, for anyj ≤ p,
∑n

i=p+1 Pij = 0. That
is, by positivity, Pij = 0. Thus, the(n − p) × p bottom left
block of P is null. Analogously, we see that for anyj > p,∑p

i=1 Pij = 0, and thus thep× (n− p) top right block ofP
must also be null. Consequently, the permutation matrix takes
indeed the form (5).

REFERENCES

[1] P. Comon, “Independent component analysis, a new concept?”Signal
Processing, vol. 36, no. 3, pp. 287–314, Apr. 1994, special Issue on
Higher-Order Statistics.

[2] S. Haykin, Ed.,Unsupervised Adaptive Filtering. John Wiley & Sons,
Inc., 2000, Series in Adaptive and Learning Systems for Communica-
tions, Signal Processing, and Control.

[3] A. Hyvärinen, J. Karhunen, and E. Oja,Independent Component Anal-
ysis. New York: John Wiley & Sons, 2001.

[4] A. Cichocki and S.-I. Amari,Adaptive Blind Signal and Image Process-
ing: Learning Algorithms and Applications. John Wiley & Sons, Inc.,
2002.

[5] P. Comon and E. Moreau, “Improved contrast dedicated to blind separa-
tion in communications,” inProc. ICASSP-97, 22nd IEEE International
Conference on Acoustics, Speech and Signal Processing, Munich, Ger-
many, Apr. 20–24, 1997, pp. 3453–3456.

[6] J.-F. Cardoso, “Higher-order contrasts for independent component anal-
ysis,” Neural Computation, vol. 11, pp. 157–192, 1999.

[7] R. Phlypo, Y. DAsseler, I. Lemahieu, and V. Zarzoso, “Extraction of the
atrial activity from the ECG based on independent component analysis
with prior knowledge of the source kurtosis signs,” inEMBC-2007, 29th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Lyon, France, Aug. 23–26 2007.

[8] R. Phlypo, V. Zarzoso, P. Comon, Y. DAsseler, and I. Lemahieu,
“Extraction of atrial activity from the ECG by spectrally constrained
kurtosis sign based ICA,” inICA-2007, 7th International Conference on
Independent Component Analysis and Signal Separation, London, UK,
Sept. 9–12 2007.

[9] Z.-Y. Liu, K.-C. Chiu, and L. Xu, “One-bit-matching conjecture for
independent component analysis,”Neural Computation, vol. 16, no. 2,
pp. 383–399, Feb. 2004.

[10] V. Zarzoso and A. K. Nandi, “Blind separation of independent sources
for virtually any source probability density function,”IEEE Transactions
on Signal Processing, vol. 47, no. 9, pp. 2419–2432, Sep. 1999.

[11] V. Zarzoso, A. K. Nandi, F. Herrmann, and J. Millet-Roig, “Combined
estimation scheme for blind source separation with arbitrary source
PDFs,” Electronics Letters, vol. 37, no. 2, pp. 132–133, Jan. 2001.

[12] V. Zarzoso and A. K. Nandi, “Modelling signals of arbitrary kurtosis
for testing BSS methods,”Electronics Letters, vol. 34, no. 1, pp. 29–30,
Jan. 1998, (Errata: vol. 34, no. 7, Apr. 1998, p. 703).

[13] E. Moreau and O. Macchi, “A one stage self-adaptive algorithm for
source separation,” inProc. ICASSP-94, 19th IEEE International Con-
ference on Acoustics, Speech and Signal Processing, vol. 3, Apr. 1994,
pp. 49–52.




