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A Contrast for Independent Component Analysis
With Priors on the Source Kurtosis Signs
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Abstract—A contrast function for independent component anal-
ysis (ICA) is presented incorporating the prior knowledge on the
sub-Gaussian or super-Gaussian character of the sources as de-
scribed by their kurtosis signs. The contrast is related to the max-
imum likelihood principle, reduces the permutation indeterminacy
typical of ICA, and proves particularly useful in the direct extrac-
tion of a source signal with distinct kurtosis sign. In addition, its
numerical maximization can be performed cost-effectively by a Ja-
cobi-like pairwise iteration. Extensions to standardized cumulants
of orders other than four are also given.

Index Terms—Blind source separation, contrast functions,
higher-order statistics, independent component analysis, kurtosis,
performance analysis, standardized cumulants.

I. INTRODUCTION

I NDEPENDENT component analysis (ICA) aims at maxi-
mizing the statistical independence between the entries of

multivariate data. ICA is the fundamental technique for blind
source separation (BSS) in linear mixtures when the sources
are assumed mutually independent [1]. The plausibility of the
assumption in a wide variety of applications has rapidly made
of ICA a reference tool in biomedical engineering, commu-
nications, and image processing, among many other domains
[2]–[4].

In the real-valued noiseless case, ICA assumes the following
linear model for the observed data vector :

(1)

where contains the independent components or sources
and represents the mixing matrix, with . The
sources are recovered by maximizing a so-called contrast func-
tion measuring the statistical independence between the sepa-
rator output components [1]. Seminal contrasts such as “COM1”
and “COM2” originated from cumulant-based approximations
(usually at order four) of information-theoretical principles such
as maximum likelihood (ML), mutual information, and mar-
ginal entropy [1], [5]. The hypothesis that the kurtosis (normal-
ized fourth-order marginal cumulant) of all the sources has the
same sign allows the definition of computationally simpler con-
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trasts [5], [6] but is unable to reduce the ambiguity in the or-
dering of the recovered sources, or permutation indeterminacy,
typical in BSS.

The power of the blind approach lies in its robustness to mod-
eling errors, a feature achieved by making as few assumptions
about the problem as possible. However, additional information
is often available in practice such as the non-Gaussian character
of the sources: that of a digital modulation signal depends on the
relative probability of its symbols; the atrial activity signal of an
atrial fibrillation electrocardiogram is usually sub-Gaussian or
quasi-Gaussian; etc. Separation performance can be consider-
ably improved by capitalizing on this information.

The present contribution puts forward a contrast function that
takes into account the prior knowledge about the non-Gaussian
character of the sources. The new contrast has optimality prop-
erties in the ML sense, is efficiently maximized by Jacobi-like
iterations, and alleviates (indeed, may totally resolve) the per-
mutation indeterminacy left by blind processing. This latter fea-
ture, illustrated in Section IV through simulations, has been suc-
cessfully put into practice, without mathematical proof, on real
signals issued from electrocardiography [7], [8].

II. CONTRAST BASED ON SOURCE KURTOSIS SIGNS

Let us first recall the concept of contrast function. The stan-
dardization or whitening (second-order processing) of observa-
tion (1) yields another vector , where is a unitary ma-
trix. The sources can then be recovered by applying a unitary
transform , resulting in the separator output ,
where . A function of the separator-output dis-
tribution is an orthogonal contrast for ICA if ,
for any orthogonal matrix (domination), with equality if and
only if is a trivial filter

(2)

where is a permutation and a non-singular diagonal matrix
(discrimination). Consequently, contrast maximization restores
the independent sources at the separator output up to a possible
permutation and scaling.

Let denote the th-source kurtosis and its sign,
, . We assume in the sequel that sources

have positive kurtosis, , , and sources
have negative kurtosis, , . Symbol rep-
resents the kurtosis of the separator’s th output. Proofs for the
mathematical results that follow can be found in the Appendix .

Proposition 1: Criterion

(3)
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is a contrast function under the above assumptions.
Remark: The maximum likelihood recovery of the source

signals under the whitening constraint is achieved by maxi-
mizing the following function:

(4)

This contrast is obtained from an approximation of the Kull-
back–Leibler divergence based on the Edgeworth expansion of
the separator-output probability density function (pdf) truncated
at fourth order [6]. If only the source kurtosis signs are known,
contrast (4) naturally reduces to (3). Hence, the latter is expected
to inherit the optimality features of the approximate ML esti-
mate while reducing the prior information required. The reduced
amount of information helps to keep the desirable features of a
blind formulation and is capable of partially solving the permu-
tation ambiguity, as shown by Proposition 2 below.

Remark: Reference [9] addresses the so-called one-bit
matching conjecture, whereby the sources can be separated if
there exists a one-to-one correspondence between the kurtosis
signs of the sources and those resulting from the truncated
Gram–Charlier expansion of their pdf’s. A function obtained
in [9] bears certain resemblance to contrast (3), but the proof of
the conjecture is cumbersome and valid only when the source
skewness (standardized third-order cumulant) is null. We prove
in the Appendix that function (3) is a contrast for all orders

, of which Proposition 1 is just a particular case for .
Proposition 2: Trivial filters associated with contrast (3) are

of the form (2), where

(5)

with and being permutation matrices of size and
, respectively, and made up of unit-norm

diagonal entries.
Remark: Sources with positive kurtosis are extracted sepa-

rately from sources with negative kurtosis by contrast (3), pro-
vided that parameter is known. In particular, a source of in-
terest can be recovered without permutation ambiguity if its kur-
tosis sign is different from all the others’. The Appendix shows
that contrast (3) enjoys this source ordering property for stan-
dardized cumulants of even order .

III. CONTRAST OPTIMIZATION

The Jacobi-like pairwise iteration technique originally pro-
posed in [1] can also be used to optimize contrast function (3).
The function is maximized for each signal pair in turn over sev-
eral sweeps until convergence. Let us assume that we are pro-
cessing pair , the result being readily adapted
to other pairs by a simple change of indices. The corresponding
two-signal separator output is given by , where
is a Givens rotation that can be parameterized as

(6)

with . The associated pairwise contrast is
. By virtue of the multilinearity property of cu-

mulants, this function can easily be expressed in terms of the
unknown and the fourth-order cumulants of , denoted as

, with (using Kendall’s nota-
tion). The stationary points of are then found to be the
solutions to the quartic equation as follows:

(7)

where , ,
, , and

. The above quartic can be solved by radicals (Ferrari’s
formula) at a cost that can be considered negligible compared
to the cumulant computation. The solutions can also be simply
expressed in terms of the extended ML (EML) estimator of [10]
if or the alternative EML (AEML) estimator of [11] if

. Typically, about sweeps over all signal pairs
are required for convergence, as suggested in [1]. However, as a
by-product of Proposition 2, the extraction of a source of interest
with distinct (e.g., positive) kurtosis sign can be carried out by
sweeping the contrast over pairs only, with , ,
for . After convergence, the desired source will
appear at the first entry of the separator output vector.

IV. NUMERICAL EXPERIMENTS

The contrast is tested on synthetic random unitary mixtures
of binary signals composed of 1000 samples. Sources
kurtosis values of either (super-Gaussian) or
(sub-Gaussian) are obtained by setting the probability of the two
states in the binary distribution accordingly [12]. The error

(8)

is used as a separation performance criterion [4], [13]. The error
is always positive, and zero if and only if matrix is a trivial
filter of the form (2). Error values are averaged over 250 inde-
pendent realizations of the sources and the mixing matrix. Three
contrasts are considered: “COM2” [1] ( marker); “COM1 ”;
and “COM1 ”; which correspond to the contrast of [5], as-
suming that all sources have positive and negative kurtosis, re-
spectively ( and markers, resp.); and function (3), which we
refer to as “kurtosis sign priors (KSP)” contrast ( marker). For
each tested contrast, we carry out sweeps over all
signal pairs.

Fig. 1 shows the performance variation as a function of
the number of sources with positive kurtosis, where is
assumed to be perfectly known a priori. As expected, COM1
and COM1 fail to perform the separation, except when all
sources have the same kurtosis sign. KSP outperforms the other
contrasts.

The robustness of contrast (3) to a mismatch in the prior in-
formation is analyzed in Fig. 2, where sources are assumed to
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Fig. 1. Source separation performance of ICA contrasts as a function of the
number of positive-kurtosis sources �. The KSP method employs the correct
value of �.

Fig. 2. Source separation performance of ICA contrasts as a function of the
estimated number of positive-kurtosis sources ��. The correct value is � � �.

have positive kurtosis while, actually, . KSP’s separation
performance degrades as the available knowledge becomes less
accurate.

Finally, we set and aim at the single source with pos-
itive kurtosis through the extraction procedure described at the
end of Section III. Fig. 3 plots the average interference-to-signal
ratio (ISR) for the estimation of the first source, defined as

as a function of the sweep number. This result illustrates the
ability of the KSP contrast (3) to extract a source of known kur-
tosis sign from a mixture where all other sources have the op-
posite sign, without having to separate the whole mixture and
resolve the permutation ambiguity after separation.

V. CONCLUSIONS

An orthogonal contrast for ICA has been proposed which
takes into account the non-Gaussian character of the source sig-
nals as measured by the sign of their fourth-order marginal cu-

Fig. 3. Source extraction performance of the KSP contrast (3) for different mix-
ture sizes.

mulants (kurtosis). The contrast is linked to an approximate
ML principle and is able to separate the independent sources
into two groups, depending on their kurtosis sign, thus partially
solving the permutation ambiguity usually associated with ICA.
The iterative pairwise maximization of the proposed contrast
can be carried out at low complexity by closed-form solutions.
As opposed to alternative fully blind techniques, the new con-
trast is particularly suited to the direct extraction of a source with
known kurtosis sign distinct from the others’. The principle ex-
tends to higher-order cumulants other than kurtosis, as proved
in the Appendix.

APPENDIX

Proof of Proposition 1: The following proof generalizes
the result of Proposition 1 to th-order cumulants, with .
Accordingly, in the sequel, and denote the standardized
th-order cumulant of source and output , respectively,

whereas .
By the multilinearity property of cumulants, we have

, where . Hence

The triangular inequality yields

where the right-hand side term stems from the fact that
and the orthonormality of matrix , which can be expressed as

. Invoking again this property, we obtain

This proves the domination. Now if the equality
holds, we must have
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Yet all the terms in the sums are positive, and thus, they must
all vanish. In other words, , with

, which can occur only if . Because
is orthonormal, it must then have only one nonzero element in
every row and column. Hence, is of the form (2), with

. This proves the discrimination property. Function
is thus a contrast for ICA.

Proof of Proposition 2: This proof extends the validity of
Proposition 2 to any even order . As seen above, equality

holds if and only if

Because and is a permutation, we have that
, with , as is even. Also, and
, so that

Yet, since all the terms in the sum are positive, they must indi-
vidually vanish, yielding the relation

Now, by splitting the sum into two parts, we are able to replace
by its value, yielding . Let

us distinguish between the cases and , and take into
account the fact that, for any permutation, . Then

The first equality yields, for any , . That
is, by positivity, . Thus, the bottom left

block of is null. Analogously, we see that for any ,
, and thus, the top right block of

must also be null. Consequently, the permutation matrix takes
indeed the form (5).
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