
WEIGHTED CLOSED-FORM ESTIMATORS FOR BLIND SOURCE SEPARATION

Vicente Zarzoso, Frank Herrmann and Asoke K. Nandi

Signal Processing and Communications Group, Department of Electrical Engineering and Electronics,
The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK

Tel/Fax: +44 151 794 4525/4540,e-mail: {vicente, fherrm, aknandi }@liv.ac.uk
http://www.liv.ac.uk/˜ {vicente, fherrm, aknandi }

ABSTRACT

This paper investigates a novel closed-form estimation class, so-
called weighted estimator (WE), for blind source separation in the
basic two-signal problem. Proper combination of previously pro-
posed estimators yields consistent estimates of the separation para-
meters under general conditions. In the real-mixture case, we de-
termine analytic expressions for the WE asymptotic (large-sample)
variance and the source-dependent weight value of the most effi-
cient estimator in the class. By means of the bicomplex-number
formalism, the WE is extended to the complex-mixture scenario,
for which Craḿer-Rao bounds are also derived. Simulations com-
pare the WE with other methods, demonstrating its potential.

Keywords: blind source separation, estimation theory, higher-order stat-
istics, non-Gaussian signal processing, sensor array processing.

1. INTRODUCTION

The problem of blind source separation (BSS) arises in a great
variety of applications, in fields as diverse as wireless commu-
nications, seismic exploration and biomedical signal processing.
BSS aims to reconstruct an unknown set ofq mutually independ-
ent source signalsx ∈ Cq which appear mixed at the output of a
p-sensor arrayy ∈ Cp, p > q. In the noiseless instantaneous lin-
ear case, sources and observations are linked through an unknown
mixing transformationM ∈ Cp×q:

y = Mx. (1)

The problem consists of estimating the source vectorx and the
mixing matrixM from the exclusive knowledge of sensor vec-
tor y. Neither the ordering nor the power and phase-shift of the
sources can be identified in the model above, so we may assume,
with no loss of generality, an identity source covariance matrix.

When the time structure of the signals cannot be exploited
(e.g., due to the source spectral whiteness), one needs to resort
to higher-order statistics (HOS) [1]. The success of the separation
then relies on the non-Gaussian nature of the sources. A previ-
ous spatial whitening process (entailing second-order decorrela-
tion and power normalization) helps to reduce the number of un-
knowns, resulting in a set of normalized uncorrelated components
z ∈ Cq:

z = Qx, (2)

with Q ∈ Cq×q unitary. As the general scenariop > 2 can be
tackled through an iterative approach over the signal pairs [2], the
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two-signal case,p = q = 2, is of fundamental importance. The
unitary transformationQ is then a complex elementary Givens ro-
tation matrix:

Q =

[
cos θ −e−jα sin θ

ejα sin θ cos θ

]
. (3)

Hence, the source-signal extraction and mixing-matrix identifica-
tion reduce to the estimation of angular parametersθ, α ∈ R.

In the real-valued mixture case,α = 0 and onlyθ is unknown.
The performance of the first closed-form solution for the estim-
ation of θ, based on the output 4th-order cross-cumulant nulling
[3], was later shown to depend onθ itself [4, 5]. The maximum-
likelihood (ML) approach on the Gram-Charlier expansion of the
source probability density function (pdf) produced the solution
of [6], whose validity was broadened through the extended ML
(EML) and the alternative EML (AEML) estimators [4, 7, 8]. Such
estimators lose their consistency for zero source kurtosis sum (sks)
and source kurtosis difference (skd), respectively. This deficiency
was overcome in [8] and [9]. In the latter, adopting the framework
of [6] the two estimators were joined into a single analytic expres-
sion, the approximate ML (AML). The MaSSFOC estimator [10],
derived from the approximate maximization of a contrast function
made up of the sum of output squared kurtosis [2], exhibits a strik-
ingly resembling form. The notion of linearly combining estima-
tion expressions using arbitrary weights was originally put forward
in [9], giving rise to the so-called weighted AML (WAML) estim-
ator. It was suggested that the weight parameter could be adjusted
by taking advantage of a priori information on the source pdfs, al-
though no specific guidelines were given on how the actual choice
should be made.

The present contribution fills this gap by studying in finer de-
tail this weighted estimator (WE) for BSS and emphasizing its
potential benefits. In the real-mixture case, we capitalize on the
complex-centroid notation used in the EML and AEML estimators
in order to provide an analytic formula for the WE large-sample
variance. From this formula, the weight parameter of the asymp-
totically most efficient WE is obtained as a function of the source
statistics. In addition, the WE is neatly extended to the complex-
valued mixture case with the bicomplex number formalism de-
veloped in [4, 11]. We deduce Cramér-Rao lower bounds (CRLBs)
for the pertinent parameters, and show in simulations that the WE
is able to follow the CRLB trend of an objective separation-quality
performance index. The connections between the WE and other
analytic solutions are also highlighted throughout the paper.

First, we summarize a few mathematical notations. Symbol
µxmn = E[xm1 x

n
2 ], where E[·] denotes the mathematical expect-

ation, stands for the (m + n)th-order moment of the source sig-
nals x = (x1, x2). For convenience, the cumulants of com-
plex vectorz = (z1, . . . , zq) are defined asCumz

i1i2i3... =
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Cum[z∗i1 , zi2 , z
∗
i3 , . . . ], 1 6 ik 6 q, with the convention, in the

two-component case,κzn−r, r = Cumz
1...1︸︷︷︸
n−r

2...2︸︷︷︸
r

. We also define

γ = κx40 + κx04 (sks) andη = κx40 − κx04 (skd). Symbol∠a
represents the principal value of the argument ofa ∈ C.

2. REAL-MIXTURE CASE

2.1. Fourth-Order Weighted Estimator

The WAML estimator [9] accepts a more convenient formulation
when adopting the EML/AEML approach [4, 5, 7, 8], which is
based on the polar representation of real-valued bivariate random
vectorz = (z1, z2) asρejφ = z1 + jz2, j =

√
−1. Higher-

order expectations then generate complex-valued linear combin-
ations (centroids) of the whitened-sensor statistics which lead to
explicit estimation expressions for the parameter of interest. Ac-
cordingly, the EML is expressed as

θ̂EML = 1
4
∠(γξ4), (4)

whereξ4 is the 4th-order complex centroid:

ξ4 = E[ρ4ej4φ] = (κz40 + κz04 − 6κz22) + j4(κz31 − κz13), (5)

and the sks can be estimated from the array output throughγ =
E[ρ4]− 8 = κz40 +κz04 + 2κz22. Similarly, the AEML [4, 8] reads:

θ̂AEML = 1
2
∠ξ2, (6)

ξ2 = E[ρ4ej2φ] = (κz40 − κz04) + j2(κz31 + κz13). (7)

Under mild conditions [4, 7], centroidsξ4 andξ2 are consistent es-
timators ofγej4θ andηej2θ, respectively, so that̂θEML andθ̂AEML

consistently estimateθ as long asγ 6= 0 andη 6= 0, respectively.
It follows that

θ̂WE = 1
4
∠ξWE, with (8)

ξWE = wγξ4 + (1− w)ξ2
2 , 0 < w < 1. (9)

is a consistent estimator ofθ for any source distribution (besides
when the sources are both Gaussian). Eqn. (8) is essentially the
WAML estimator [9] written in centroid form. Nonetheless, we
adhere to the more general denomination ofweighted estimator
(WE), since its ML nature becomes unclear when extended to the
complex-signal domain (Section 3).

Some special cases of the WE are:
(i) w = 0: AEML estimator of [4, 8].

(ii) w = 1/3: AML estimator of [9].
(iii) w = 1/2: MaSSFOC estimator of [10].
(iv) w = 1: EML estimator of [4, 7].

2.2. Performance Analysis

Along the lines of [4, 5], and omitting tedious algebraic details, the
asymptotic (large-sample) variance of the WE (8) is determined as:

σ2
θ̂WE

=
E
{[
wγ(x3

1x2 − x1x
3
2) + (1− w)η(x3

1x2 + x1x
3
2)
]2}

T
[
wγ2 + (1− w)η2

]2 ,

(10)
whereT is the number of samples. Remark that:

(i) σ2
θ̂WE

reduces to the asymptotic variance of the AEML and
EML estimators [4, 5] forw = 0 andw = 1, respectively.

(ii) When γ = 0 (resp.η = 0), WE performance reduces to
that of the AEML (resp. EML) estimator, for any0 < w < 1.
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Fig. 1. ISR vs. sample size. Uniform–Rayleigh sources,θ = 15o,
ν independent Monte Carlo runs, withνT = 5× 106. Solid lines:
average empirical values. Dashed lines: asymptotic variances (10).

2.3. Optimal Large-Sample Performance

If |κx40| 6= |κx04|, the derivative of eqn. (10) with respect tow
cancels at:

wopt =
1

2
+
µx40µ

x
04

[
(κx40)2 − (κx04)2

]
+ κx40κ

x
04(µx60 − µx06)

2
[
(κx40)2µx06 − (κx04)2µx60

] .

(11)
Since∂2(σ2

θ̂WE
)/∂w2

∣∣
wopt

> 0, wopt corresponds to the min-

imum variance estimator of the WE family. Hence, given the
source statistics, one can select the WE with optimal asymptotic
performance. Ifwopt /∈ [0, 1], we choose betweenwopt = 0
(AEML) and wopt = 1 (EML) the value that gives the lowest
σ2
θ̂WE

in (10).

2.4. Simulation Results

A few simulations illustrate the benefits of the WE and show the
goodness of asymptotic approximation (10). First, observe that
any angle estimate of the form̂θ = θ + nπ/2, n ∈ Z, provides
a valid separation solution up to the indeterminacies mentioned in
Sec. 1. The interference-to-signal ratio (ISR) performance index
[1] approximates the variance of̂θ, σ2

θ̂
, around any valid separa-

tion solution [4]. The ISR is an objective measure of separation
performace, for it is method independent.

Fig. 1 shows the ISR results obtained by the EML, AEML,
AML, MaSSFOC and optimal WE, together with the expected
asymptotic variances, for varying sample size and i.i.d. sources
with uniform and Rayleigh distributions [wopt = 0.7141, from
eqn. (11)]. Centroids are computed from their polar forms. The
optimal WE substantially outperforms the other estimators, being,
e.g., five and ten times as efficient [12] as the AML and the AEML,
respectively. The fitness of asymptotic approximation (10) is very
precise in all cases.

The generalized Gaussian distribution (GGD) with shape para-
meterλ, p(x) ∝ exp(−|x|λ), is used as source pdf in the simula-
tion of Fig. 2. We fixκx04 = 0.5 and smoothly varyκx40 to generate
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Fig. 2. ISR vs. sksγ and skdη. GGD sources,κx04 = 0.5,
θ = 15o, T = 5× 103 samples,103 Monte Carlo runs.

a range of sks and skd values. The optimal WE, withwopt calcu-
lated as in Sec. 2.3 and shown in Fig. 3, is compared with other
analytic solutions and the CRLB obtained in [9] for the real case.
The optimal WE follows the CRLB more closely than any of the
other methods.

3. COMPLEX-MIXTURE CASE

3.1. Bicomplex Numbers

In [4, 11], the so-called bicomplex numbers prove useful in simpli-
fying the development of closed-form estimators in the complex-

mixture scenario. Given a unitary matrixQ =
[
a −b∗
b a∗

]
, a, b ∈ C,

where∗ denotes complex conjugation, the associated bicomplex
number is defined as̄x = a + jb. Though analogous toj, the
bimaginary unitj is actually a distinct algebraic element. Terms
a = Re(x̄) and b = Im(x̄) are thebreal and bimaginaryparts
of x̄, respectively. The product of two bicomplex numbersx̄1 =
a1 + jb1 and x̄2 = a2 + jb2 is defined in accordance with the
product of unitary transformations:

x̄1x̄2 = (a1a2 − b∗1b2) + j(b1a2 + a∗1b2). (12)

In this manner, an isomorphism is created between the set of unit-
ary matrices under usual matrix product and the set of bicomplex
numbers under the above product operation. Note that, as withj,
j2 = −1. A special class of bicomplex numbers arises when the
associated unitary transformation shows the shape of (3):

ejθα = cos θ + jejαsin θ, (13)

which we call bicomplex exponential.

3.2. Fourth-Order Weighted Estimator

By means of the bicomplex formalism, one can easily generalize
centroids (5) and (7) to the complex-mixture case. Effectively,

ξ̄4 = (κz40 + κz04 − 6κz22) + j4(κz31 − κz13) (14)
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Fig. 3. Optimal value of the WE weight parameter in the separa-
tion scenario of Fig. 2.

and
ξ̄2 = (κz40 − κz04) + j2(κz31 + κz13) (15)

are consistent estimators ofγej4θα andηej2θα , respectively, under
the same general conditions as in the real case. Centroid (14) gives
rise to the complex EML (CEML) estimator [4, 11], whereas (15)
yields the complex AEML (CAEML) estimator [4]. Bearing in
mind the bicomplex product (12), it follows immediately that the
linear combination

ξ̄CWE = wγξ̄4 + (1− w)ξ̄2
2 (16)

consistently estimates
(
wγ2 + (1 − w)η2

)
ej4θα . The sksγ may

be obtained from the available data just as in the real case. For
w ∈ [0, 1], parameters(θ, α) are estimated through{

4θ̂CWE = ∠
(
Re(ξ̄CWE) + j|Im(ξ̄CWE)|

)
α̂CWE = ∠ Im(ξ̄CWE),

(17)

which is thecomplex WE (CWE).

3.3. Cramér-Rao Lower Bounds

Assuming circularly distributed source signals composed ofT in-
dependent samples, the Fisher information matrix (FIM) for the
estimation of parameters(θ, α) in model (2)–(3) reads:

FIM(θ, α) = T

[
I 0
0 1

4
I sin22θ

]
, (18)

where

I = I1 + I2 − 4,

Ik =
1

2

∫∫
Dk

1

pk

[(
∂pk
∂u

)2
+

(
∂pk
∂v

)2]
dudv, (19)

andpk(u, v) is the pdf of thekth source signalxk = uk + jvk,
uk, vk ∈ R, k = 1, 2. Integration extends over the definition
domainDk of the corresponding random variable.
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It is interesting to note that:
(i) The CRLBs ofθ andα are decoupled, and therefore:

CRLBθ = (TI)−1 (20)

CRLBα = 4(TI sin22θ)−1 (21)

(ii) For sources with complex generalized Gaussian distribu-
tion (CGGD) of shape parameterλ, given by

p(u, v) ∝ exp{−(u2 + v2)
λ
2 }, λ > 0, (22)

we have
Ik = 1

2
λ2
kΓ(4/λk)/Γ2(2/λk). (23)

Then, the FIM is zero, and hence the model unidentifiable, iffλ1 =
λ2 = 2, i.e., both sources are Gaussian.

(iii) When θ = nπ/2, ∀n ∈ Z, estimation ofα becomes
unfeasible. However, in such cases the correct estimation ofα
does not affect the source extraction, e.g., ifθ = 0, Q in (3) is
just an identity matrix; ifθ = π/2, Q only contains off-diagonal
phase factors which are ‘absorbed’ by the source signals.

(iv) Endorsing the previous point we have that, for accurate
estimates of(θ, α), ISR≈ σ2

θ̂
+ 1

4
σ2
α̂ sin22θ, so that ISR is lower

bounded by2 × CRLBθ. Whenθ = nπ/2, n ∈ Z, and if θ̂ is
still precise enough, this bound decreases toCRLBθ. That is, the
lower bound of separation-performance objective measure ISR is
independent ofθ and is (asymptotically) determined by the source
statistics only [viaI in (19)].

3.4. Simulation Results

A simple simulation experiment compares the behaviour of the
CEML, CAEML and CWE (withw = 1/3 andw = 1/2 , which
would correspond to the complex extensions of AML and MaSS-
FOC, resp.). Two independent CGGDs are used as sources. Aver-
age ISR results as a function of sks and skd are displayed in Fig. 4.
As expected, the CEML and CAEML worsen nearγ = 0 and
η = 0, respectively. By contrast, the CWE maintains a satisfact-
ory separation in both tested cases over allγ andη range, and, as
occurred in the real case (Fig. 2), its performance follows closely
the CRLB trend.

4. CONCLUSIONS AND OUTLOOK

A new class of closed-form estimators of the separation parameters
in the fundamental two-signal instantaneous linear mixture BSS
problem has been investigated. A weighted estimator (WE) arises
from the linear combination of the EML and AEML centroids,
and produces consistent estimates under rather general conditions
(essentially, if at most one source is Gaussian). For real-valued
mixtures, prior knowledge on the source statistics can be exploited
by selecting the WE with optimal large-sample performance (min-
imum asymptotic variance). With the aid of the bicomplex num-
bers the WE has also been extended to the complex-mixture case,
where it has shown a performance variation similar to the CRLB,
that we have derived for circular sources.

Paths of further research include the asymptotic performance
analysis of the WE in the complex environment, which is of rel-
evance in areas as important as digital communications. Also, in
order to enable a fully blind operation, it is necessary to develop
the optimal weight coefficient as a function of the array-output
statistics. The estimator’s behaviour in the presence of additive
noise and impulsive interference needs to be explored as well.

0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

γ

lo
g 10

(I
S

R
)

CEML
CAEML
CWE (w=1/3)
CWE (w=1/2)
CRLB

   −1 −0.5   0   0.5   1  

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

η

Fig. 4. ISR vs. sksγ and skdη. CGGD sources,κx04 = 0.5,
θ = 15o, α = 65o, T = 5× 103 samples,103 independent Monte
Carlo iterations.
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