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ABSTRACT deflation is that estimation errors accumulate along succes

sive extraction stages. Also, sufficient diversity must be

Blind source extraction aims at estimating the source iable i Fio f ist i zmtih
signals which appear mixed at the output of a sensor array.aVal able In general, 1.€., fora sat|§ actory equalizatthe
number of sensors needs to be higher than the number of

A novel approach to blind source extraction is presented in

this contribution, which exploits the discrete characfer ( sources. L .
nite alphabet property) of digital modulations in the case 1€ Present contribution addresses the problem of blind
where sources with different alphabet exist. An alphabet €Xtraction of discrete signals, particularly in the undxed-
polynomial fitting (APF) criterion matched to the specific Mined case where there are less sensors than sources. The
signal constellation is employed to extract, through defla- ©riginality of this work lies in the use of a polynomial cri-
tion, the sources with the same modulation. Using the ap-{€"on namedliphabet polynomial fitting (APFwhich ex-
propriate APF criteria, the sources with different modula- PIOits the knowledge of the modulation alphabet in order to
tions can be extracted in parallel. This new concept, reerr  2cCOmPplish the source extraction [S, 6]. In contrast to tra-

to as parallel deflation, presents the potential of reducingditional source-distribution independent principlestsas

both the signal estimation errors that typically accumailat cOnstant modulus [2] or kurtosis maximization (KM) [7],

in the conventional deflationary approach and the spatio-the APF criterion targets a specific modulatlon_. This fea-
temporal diversity required for a satisfactory sourceamtr  tUre léads to the novel concept of parallel deflation: a poly-
tion. In addition, APF criteria can be optimized through nomial criterion can be used in a deflationary process to ex-

a cost-effective optimal step-size technique that canpesca tract the signals of each modulation. Parallel deflation can

local extrema. thus reduce the diversity required for the extraction of all
Keywords blind equalization, deflation, finite alphabet, SCUrces from a mixture while extracting different modula-
MIMO, parallel processing, underdetermined mixtures. tions simultaneously. As a result, this new approach can in-

crease the extraction performance while reducing the com-
putational cost compared to classical deflation.

Moreover, APF criteria can be optimized by efficient
gradient- or Newton-descent procedures based on an opti-
mal step size computed algebraically at each iteration. The
optimal step-size strategy is able to avoid local extrema at
an affordable computational cost.

1. INTRODUCTION

Channel equalization aims to reconstruct the transmitted s
nals that have distorted by the propagation medium. Blind
equalization has been the subject of intense researclke#tter
since the pioneering work of Sato [1] and Godard [2]. The
main advantage of blind techniques is arguably that trginin
sequences are not required, so that the effective transmis- 2 BLIND SOURCE EXTRACTION

sion rate, and thus the spectral efficiency, are increased. |

multiple-input multiple-output (MIMO) scenarios, the spa 5 1 problem and Signal model

tial mixing of several transmitted sources adds to theinter

symbol interference introduced by the time dispersive ehan We consider a time-dispersive MIMO linear time-invariant
nel. Blind signal extraction can be accomplished through a (LTI) system with the input-output relationship

deflation approach, where the input signals are estimated
one after another [3, 4]. The major limitation of classical
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w(n) = Z Cis(n—k)+b(n), neN
k=0
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The sequenc€y, k = 0, ..., L. corresponds to the

impulse response matrix taps of the finite impulse response _ _ _ _
(F|R) MIMO channel. An equa"zer described by the im- F|g 1. Classical deflation. Extraction of 3 S|gna|s

pulse response matrix tapk, € CVN*F k=0, ..., Ly, {sél)}f)zl, typically (but not necessarily) having the same
processes the channel output signals and aims at extractingnodulation4;. Conventional deflation estimates the input
the sources. The output signal vector is thus given by signals one by one.
Ly -
. Modulation A Q(s)
3(n) = Zka(n —k), meN. BPSK 1,41 o
= ¢-PSK G I
Thg extraction of theth output componerit, (n) can alter- QAM-16 {1, 43} + {£7, £33} | Sp_ ans™
natively be expressed as: ao = 50625/256, a; = 12529/16, ap = —221/8,
R .- as =17, a4 = 1.
8p(n) = hy'w(n) (2)
- Table 1. Alphabets and associated polynomials of some
wherew(n) = [w(n)7, w(n —1)7,..., w(n — Ly)T" € discrete modulations.

CP(En+1) (symbol™ stands for transposition) and
hy = [(HO)(p.,:)v (Hl)(p.,:)a T (HLh)(p.,:)]T € CP(Lh+1)1
notation(H ;) ,,., denoting thepth row of the equalizer ma- of the polynomial@;(s(n)) = 0, whered; corre-
trix tap H ;. sponds to the total number of possible symbols in the
constellation.

2.2. Classical deflation

) _ _ ) This hypothesis is essential to alphabet-based criteria.
Classical deflation aims at extracting one by one¥f@ource  For instance, &-PSK modulated signal is characterized
signals mixed at the output df sensors. This scheme can py the roots of polynomiaf)(s) = s? — 1. Thus, each dis-
be employed with a source-distribution independent crite- crete modulation can be associated with an APF criterion,
rion such as the CM or KM principles; for instance, the KM 55 jjjustrated by the examples in Table 1.
cost function [7] is used in the original paper [3]. Thus, a  considering hypothesiS1 on the discrete inputs of a
unique criterion is applied to extract each source from the \;imo channel, it is possible to perform source extraction

observations. In order to avoid extracting the same signalby minimizing the following polynomial criterion [5]:
twice, the contribution of the extracted source has to ke est

mated (e.qg., via correlation techniques) and subtracted fr
the sensors. This procedure is repeated until¥h&ources
are extracted. The required diversity for thesource ex-

Theorem 1 : ConsiderS; the set of processes taking their
values in alphabe#4;, andH the set of FIR filters. Crite-

rion:
traction is limited by a number of sensafs~ N. More-
over, estimation errors accumulate with the number of ex- _ . Ki 4 )
tractions, so that the extraction quality gradually desesa T (H;,80) = > Y 1Qi (35 (m)| 2

Classical deflation is illustrated in Fig. 1. n=1 m

is a contrast function under hypothe§s.
3. ALPHABET-BASED SOURCE EXTRACTION
An APF criterion can be used for classical deflation when
the emitted signals have all the same alphabetN.es K;
Inthe sequelV = Y, K; denotes the total number of emit- andk; = 0, Vi > 1. However, novel extraction approaches
ted signals, wherd; is the number of signals having the are enabled by the discriminating character of APF criteria
same alphabeti;. This corresponds to the following addi- Which is stronger than that of traditional principles sush a

3.1. Alphabet-based criteria

tional hypothesis about the input signals: CM and KM. The new approaches consist of extracting the
. 4 sources with different alphabets in parallel, thus the g&rm
S1 Sources® = [sgﬂ, ey sﬁ?i]T belong to a finite al-  of parallel extraction and parallel deflation, which are ex-

phabetA;, characterized by; complex distinct roots  plained next.
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A (1.2,3.4) - ) Fig. 3. Parallel deflation in an underdetermined case. The
Wi o |5 extraction of more sources than sensors is possible with par

allel deflation, provided that enough diversity is avaitabl

Fig. 2. Parallel Extraction. From the observed sensor out- fOr €xtracting the sources of each alphabet.
put, parallel extraction allows the simultaneous sepamnati
of source signals having different modulations.

tap vectorh, which is used to extract a single component as
in egn. (1). After a suitable initialization (e.g., via therc
3.2. Parallel extraction ventional center-tap filter), the equalizer vector is itiedy

updated in the descent directign
Parallel extraction can take place when fkieemitted sig-

nals all have different modulations, i.é¢; = 1,Vi. Each h' =h—pug

equalizer is computed from an APF criterion corresponding

to one alphabet. Thus, the equalizers for each modulationin a gradient-based algorithm, we haye= vjAPF( ),

can be determined in parallel from the observed sensor outwhereas a Newton-based algorithm would involve the Hes-
put. Fig. 2 shows an example of parallel extraction of sig- gjgn ijAPF as well.

nals{s("}%_ | with alphabet{ A;}._,, respectively. Paral-

lel extraction can be considered as a particular case of the
more general parallel deflation.

The interesting feature of APF criteria is thtéfPF R')
is a2¢gth-degree polynomial in the step sizefor constella-
tions composed aof symbols. This feature is not exclusive
of APF contrasts, but it is also shared by other equaliza-
3.3. Parallel deflation tion criteria such as CM and KM [5]. As a result, steepest
escent minimization of contrast (2) can be carried out by

In the general case, the sensor output observes mixtures o?
inding the optimal step size

M groups of sources where thith group is composed of
K, signals having the same modulation. Thus we hsve . ()
Zi]\il K;. Then, it is possible to extract the sources of the Hopt = I aig Tapr(h—1g)

same group by means of a deflation approach operating on a

criterion matched with the corresponding modulation. This among the roots of the2q — 1)th-degree polynomial

process can be carried out in parallel for other groups Ilgavin g)j@ »(h—pg)/du. In some cases, this root finding can be

a different modulation and hence their own APF criterion. accompllshed algebraically: the APF criterion matched to
Consequently, the discriminating property of APF criteria BpSK signals and the CM criterion are associated with re-
is able to decouple a separating problem\osignals into  spective 3rd-degree polynomials, solved by Cardano’s for-
M extraction problems oK’; sourcesj = 1,..., M. Con-  mula; the normalized KM criterion involves a 4th-degree

trary to classical deflation, the required diversity forglar  polynomial whose roots are obtained by Ferrari's formula.
lel deflation is reduced t&” ~ max(Kj;). This diversity  The coefficients of these polynomials are simple polynomial
improvement offers further advantages in terms of perfor- fynctions of the observed data vectors and the currentequal
mance (e.g., less error accumulation), computational com-jzer and gradient vectors [6, 8]. Consequently, the incorpo

plexity and cost. Parallel deflation reduces to parallel ex- ration of the optimal step-size technique only entails a-mod

traction when)M = N, so that deflation is no longer re-  erate increase in computational complexity. In returngesin

quired. Liopt Yields the global minimum af7 ("), along directiony,
the optimal step-size technique shows an improved robust-
4. OPTIMIZATION OF APF CRITERIA ness against local extrema relative to conventional grédie
descent minimization [9].
In order to estimate a source with alphab&t contrast After convergence of the equalizer vector, the contribu-

function (2) must be minimized with respect to the equalizer tion of the estimated source signal to the observations is
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Fig. 4. Parallel extraction of 3 different sources for various Fig. 5. APF extraction of a QPSK signal from an underde-
SNRs. termined mixture.

calculated and subtracted from the sensor output, to pre-with
vent extracting the same source twice. This contribution

is easily obtained as the cross-correlation between the est —0.66 —0.19 0.65 0.92
mated source signal and the sensor output vector. To extract Co=| 022 -096 043 -0.85
the next source, the APF criterion needs to be minimized —0.30 —-0.76 0.95 0.85
again, but using the sensor output data without the contri-

bution from the source previously extracted. This process 0.75 —0.98 —-0.75 —0.38
is repeated until all sources with the same modulation have Ci=1] —-097 027 090 0.53
been obtained In parallel deflation, the deflation processes 095 065 030 —0.52

of the different APF criteria can be executed in parallel. o ] ] .
Hence, this situation describes the underdetermined naixtu

context. The extraction of one of the QPSK signals is il-

5. PRELIMINARY EXPERIMENTAL RESULTS lustrated in Fig. 5. Note that, despite the hardness of the
_ underdetermined scenario, the APF extraction performance
5.1. Parallel extraction lies very close to the MMSE bound.
In this experiment/N = 3 sources with different modu-
lations (QPSK, QAM-16, PSK-6) are mixed by a length-3 6. CONCLUSIONS

channel L. = 2). P = 3 noisy observations are processed

by a parallel extraction algorithm made up of the APF cri- The use of contrast functions matched to the signal mod-
teria associated with each modulation. The channel coeffi-ulation enables the definition of a novel approach to blind
cients are randomly drawn from a Gaussian distribution, andsource extraction whereby sources with different corestell
so is the noise added to the observations. Fig. 4 summarizesions can be extracted in parallel, provided that no alphabe
the parallel extraction performance for different sigt@l-  be a subset of another. Parallel deflation may prove use-

noise ratios (SNRs). ful when different modulations coexist in the same trans-
mission environment. Such a scenario is likely in future-
5.2 Parallel deflation generation wireless communication networks, where sig-

nal constellations will be dynamically allocated accogdin
The second experiment tests a channel spanning two baudo the service required and the channel conditions, analo-
periods . = 1) and mixingN = 4 source signals (2  gously to the bit-loading schemes used in multicarrier com-
QPSK and 2 QAM16, i.e.M = 2) at the output of only ~ munications [10]. The preliminary experiments reported in
P = 3 sensors: this paper are encouraging. More detailed experimental re-
sults illustrating the performance of the parallel deflatio
C(z)=Co+Crz7t approach will be presented at the conference.



7. REFERENCES

[1] Y. SATO, “A method of self recovering equalization
for multilevel amplitude-modulation systemslEEE
Trans. on Com.vol. 23, pp. 679-682, June 1975.

[2] D. GODARD, “Self recovering equalization and car-
rier tracking in two dimensional data communication
systems,”|IEEE Trans. on Signal Processingol. 28,
no. 11, pp. 1867-1875, Nov. 1980.

[3] N. DELFOSSE and P. LOUBATON, “Adaptive blind
separation of independent sources: A deflation ap-
proach,”Signal Processingvol. 45, pp. 59-83, 1995.

[4] J.R. TREICHLER and M.G. LARIMORE, “New pro-
cessing techniques based on the constant modulus al-
gorithm,” IEEE Trans. on Acoust. Speech Sig. Proc.
vol. 33, no. 2, pp. 420431, April 1985.

[5] P. COMON, “Contrasts, independent component anal-
ysis, and blind deconvolution International Journal
of Adaptive Control and Signal Processing (Special Is-
sue on Blind Signal Separatigmyol. 18, no. 3, pp.
225-243, Apr. 2004.

[6] L. ROTA and P. COMON, “Blind Equalizers Based
on Polynomial Criteria,” inProc. ICASSPMontreal,
Quebec, 17-21 May 2004.

[7] O. SHALVI and E. WEINSTEIN, “New criteria for
blind deconvolution of nonminimum phase systems
(channels),”IEEE Trans. on Information Theoyyol.

36, no. 2, pp. 312-321, Mar. 1990.

[8] V. ZARZOSO and P. COMON, “Blind channel
equalization with algebraic optimal step size,” in
EUSIPCO-2005, XIII European Signal Processing
ConferenceAntalya, Turkey, Sept. 48, 2005.

[9] V. ZARZOSO and P. COMON, “Optimal step-
size constant modulus algorithm,” IEEE Trans-
actions on CommunicationgOct. 2004, submit-
ted(http://ww. i 3s. uni ce. fr/ % Enh/ RR/ 2004/ RR-
04. 23- V. ZARZCOSO, pdf ) .

[10] Z. WANG and G. B. GIANNAKIS, “Wireless mul-
ticarrier communications,”|IEEE Signal Processing
Magazinevol. 17, no. 3, pp. 29-48, May 2000.



