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Noninvasive Fetal Electrocardiogram Extraction:
Blind Separation Versus Adaptive Noise Cancellation

Vicente Zarzoso, Associate Member, IEEEand Asoke K. Nandi*, Senior Member, IEEE

Abstract—The problem of the fetal electrocardiogram (FECG)
extraction from maternal skin electrode measurements can be
modeled from the perspective of blind source separation (BSS).
Since no comparison between BSS techniques and other signal
processing methods has been made, we compare a BSS procedure
based on higher-order statistics and Widrow’s multireference
adaptive noise cancelling approach. As a best-case scenario for
this latter method, optimal Wiener-Hopf solutions are considered.
Both procedures are applied to real multichannel ECG recordings
obtained from a pregnant woman. The experimental outcomes
demonstrate the more robust performance of the blind technique
and, in turn, verify the validity of the BSS model in this important
biomedical application.

Index Terms—Adaptive noise cancellation, blind source separa-
tion, fetal electrocardiogram extraction, higher-order statistics, in-
dependent component analysis, optimal Wiener-Hopf filtering.

I. INTRODUCTION

DURING pregnancy, monitoring the fetus’ heart condition
in order to test their well-being and diagnose possible

diseases is of paramount importance. An early diagnosis
before delivery using noninvasive techniques increases the
effectiveness of the appropriate treatment. The extraction of
theantepartumfetal electrocardiogram (FECG) can be carried
out through skin electrodes attached to the mother’s body.
Unfortunately, the desired fetal heartbeat signals appear at the
electrode output buried in an additive mixture of undesired
disturbances. The most important among these disturbances
are the maternal ECG (MECG) contributions, of considerably
higher amplitude than the fetal components. Mother’s respira-
tion and electromyographic (EMG) signals (e.g., owing to an
uncomfortable position of the patient, uterus contraction, etc.)
act as a second source of biological interference. Nonbiological
interference sources, such as mains coupling and thermal
noise due to the electronic equipment, corrupt the cutaneous
recordings as well. Appropriate signal processing techniques
are required in order to recover the wanted FECG components
from the corrupted potential recordings.

Several different approaches have been proposed to address
this problem. Techniques such as coherent averaging, matched
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filtering, auto- and cross-correlation based methods, adaptive
filtering, sequenced adaptive filters, etc., were among these clas-
sical methods. However, the apparent lack of success of these
early approaches (see, e.g., [2] and [14] for some of their major
drawbacks) called for a complete reformulation of the problem,
whereby attention would be paid to the fundamental aspects be-
hind the biological problem in hand.

Effectively, in [9] it is shown that the problem can be
reformulated in a more efficient manner by looking at the
bioelectrical phenomena ruling the heart activity and the
propagation of heartbeat signals across the body (see also [2],
[11] and [17]). The result relies on an electrical model of the
heart, the so-calledlead-vectorconcept, which was introduced
by Burger and Van Milaan as early as in the mid-forties
[12], [13]. Considerations derived from this model lead to
the statement that each of theelectrodes located on the
patient’s body, say ,
outputs an instantaneous linear combination of the bioelectric
current sources (symbol denotes a discrete-time index,
and the transpose operator). Assuming that the activity
of all internal bioelectric current sources can be modeled
by means of unobservable independentsource signals,

, the electrode
measurement vector accepts the matrix form

(1)

Matrix is calledmixing matrix, and its structure
is determined by the body geometry, the electrode and source
positions and the conductivity of the body tissues [14]. Equa-
tion (1) corresponds to the familiarblind source separation
(BSS) model of instantaneous linear mixtures [18]. As an
immediate consequence, BSS techniques may be applied to
tackle the FECG extraction problem. The reader is referred to,
e.g., [9] for a more exhaustive discussion on the theoretical
justifications for the validity of model (1) in this particular
biomedical application.

The methods described in [2] and [14] rely on the second-
order statistics (SOS) of the data, seeking the removal of second-
order dependencies in the observations. This type of procedure
is generally known asprincipal component analysis(PCA) [18].
Their major shortcoming is that the separation quality highly
depends on a careful electrode placement selection. By con-
trast, exploiting the higher-order statistics (HOS) and looking
for higher-order independence at the separator output surmount
this obstacle. This yields a general class of methods known as
independent component analysis(ICA). See [5] for the original
mathematical definition of ICA.

0018–9294/01$10.00 © 2001 IEEE



ZARZOSO AND NANDI: NONINVASIVE FETAL ECG EXTRACTION 13

Fig. 1. A cutaneous electrode recording from a pregnant woman.

Various results obtained from the application of ICA-BSS
methods to the biomedical problem in hand have already been
reported in the literature [1], [9], [11], [17], [18]. Also, they
have been compared to other PCA-BSS methods [1], [9], [17],
[18]. Nevertheless, to date no comparison with any other con-
ventional technique, like the procedures cited in the beginning,
has been made. The question that still remains unanswered is
then whether HOS-based BSS techniques are actually so advan-
tageous relative to other methods. Inspired by this question, it
is the primary objective of the present contribution to establish
a comparison [22] between a specific BSS method and one of
the most significant classical techniques proposed to solve this
challenging problem: Widrow’s multireference adaptive noise
cancelling (MRANC) method [15].

To this end, the rest of the paper is given the following struc-
ture. In Section II the experimental data used in the comparison
is presented. Section III is then devoted to recalling the ratio-
nale andmodus operandiof the methods considered herein.
Later, results from the experiments are reported in Section IV,
and discussed in Section V. Section VI makes the concluding
remarks.

II. EXPERIMENTAL DATA

The two real cutaneous electrode recordings used in the ex-
periments are displayed in Figs. 1 and 2. The signals in Fig. 11

Fig. 2. Another skin electrode recording from a pregnant woman.

were recorded from eight skin electrodes located on different
points of a pregnant woman’s body. The sampling frequency
was 500 Hz and the sampling time 10 s, so each signal is com-
posed of 5000 samples. Regarding the vertical axes, only
the relative amplitudes are important. The first five recordings
correspond to electrodes located on the mother’s abdominal re-
gion. In them a mixture of FECG, MECG and noise is visible.
The last three signals were digitized from the mother’s thoracic
region, and no FECG heartbeat component can be perceived at
all, due to the longer distance between these electrodes and the
fetal heart. A similar set-up holds for the signals of Fig. 2, which
were obtained from [10]. This is a shorter dataset, composed of

2500 samples.2

The choice of abdominal and thoracic (chest) electrode posi-
tions is justified by the fact that the strongest interference comes
from the maternal heartbeat. Then it seems reasonable to look
for clear MECG components so that they can be subtracted, after
suitable processing, from the abdominal leads, leaving only the
desired fetal heart components. Also the sought MECG signals
must be as free as possible from FECG contribution, in order
to prevent the latter from being cancelled out in the abdominal
lead when performing the subtraction; hence the chest leads.

1The authors are grateful to L. De Lathauwer, D. Callaerts and J. Vandewalle,
from K. U. Leuven, Belgium, for providing the recordings.

2The sampling frequency given in [10] results in too high heart rates for both
mother and fetus. Therefore, we will refer in the sequel to the sample numberk

and not the actual time instant to describe the time evolution of this dataset.
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III. M ETHODS

A. Blind Source Separation

Relying on the assumption that the surface potentials are gen-
erated according to model (1), the reconstruction of the FECG
contributions to the recordings is reduced to the identification
of the independent sources of fetal cardiac activity and the cor-
responding elements of the mixing matrix. This goal requires,
firstly, the estimation of the source signalsand the mixing
matrix via a BSS method. In these experiments, we consider
the BSS method developed in [19].3 Essentially, it is a two-step
procedure. An initial PCA stage (also known asprewhitening)
comprises second-order decorrelation and power normalization,
resulting in a set of prewhitened signals .
PCA is followed by a higher-order processing part—the actual
ICA—aiming at higher-order independence. The latter stage is
composed of pairwise Givens rotations, i.e., matrix transforma-

tions of the form , which are applied in

turn to each prewhitened signal pair . Angle is com-
puted at each iteration in closed form as

with (2)

where and . Symbol denotes the
mathematical expectation, or ensemble average, which in prac-
tice is replaced by averages over the signal samples. Expression
(2) is shown to generalize an approximate maximum-likeli-
hood estimator earlier suggested in the literature. This pairwise
process is repeated in sweeps over the signal pairs
until convergence, usually taking about sweeps (which
coincides with the value originally found for the method of [5]).
Since the expectations in (2) can be expressed as a function of the
data fourth-ordercumulants, themethod is indeedbasedonHOS.
Also, remark that this procedure operates inbatch processing
mode, in which a whole block of data samples is processed to
generate a separation result for that signal block. Batch pro-
cessing generally achieves better separation results than adaptive
processing, and it will suffice to the comparative purposes of this
paper. See [19] for more details about this BSS method.

B. Multireference Adaptive Noise Cancellation

One of the first successful approaches to the FECG extrac-
tion problem was developed by Widrow and colleagues in the
1970s from an adaptive filtering standpoint [15]. An abdominal
lead , mainly containing a mixture of FECG and MECG
signals, acts as a primary input to an adaptive noise canceller
(Fig. 3). The MECG interference that corrupts the abdominal
leads is considered as the ‘noise’ to be eliminated. Therefer-
ence inputs to the canceller are thoracic
leads, mostly composed of maternal heartbeat components. The
reference inputs are adaptively processed by means of finite im-
pulse response (FIR) filters of tap-length

, and subtracted from the primary input. The output at in-
stant is then given by , with

3A priori, there is no reason why this particular method should be preferred
over other BSS procedures to deal with the FECG extraction. Our choice is
merely made for illustrative purposes, and motivated by the fact that other dif-
ferent ICA-BSS methods have already been applied to this problem, so that
comparisons may be established from the new results presented in this paper.

Fig. 3. MRANC solution to the FECG extraction problem.

, symbol ‘ ’ standing for the convolution
operator. The adaptation criterion whereby the filter coefficients
are updated consists of minimizing the output-signal power, or
mean square error (MSE), .

Practical adaptive implementations of this general procedure,
such as the popular least mean square (LMS) method and its
variants, are achieved via specific recursive stochastic approxi-
mations of the above optimization criterion and its gradient (as
well as its Hessian matrix in the Newton-like algorithms) [6].
Such stochastic approximations mean that, in practice, the MSE
obtained after convergence is actually higher than the minimum
MSE (MMSE) achievable for the given system parameters, a
phenomenon known as misadjustment [16]. The MMSE is cal-
culated from the standard theory of optimalWiener-Hopf(WH)
filtering [6], [7], [15] by assuming stationary signals and fixed
filter weights. Hence, WH solutions describe the asymptotic (or
‘best possible’) performance of the associated adaptive scheme.
In addition, the extraction of these optimal filters is carried out
in a batch-processing fashion, as the BSS method outlined in
the previous section operates. This increases the fairness of the
subsequent comparison.

The mathematical description of optimal WH filtering is very
well known [6], [7], [15], and will, therefore, be omitted in this
paper. We simply recall that only second-order correlations of
the reference signals and the primary sequence at different time
lags are involved. Effectively, for a given number of reference
inputs and filter taps (which, for simplicity and owing to
the identical nature of the reference signals in our problem, as
will be seen in the next section, is chosen to be equal for all
filters), the optimal impulse responses are the solutions in

of the equation systems

(3)

Matrices are built up as

, and vectors as
, with and . Equation (3)

can easily be recast into a single matrix expression. The problem
is then characterized by an symmetric matrix
composed of Toeplitz blocks with dimension .

4For the sake of clarity in the presentation, continuous lines are abusively
employed to represent the tap weights associated to the second and the third
reference-signal filters. Remark that the filters are discrete in nature and, hence,
their impulse responses are only defined at integer values of time indexk.
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Fig. 4. Optimal filter weights of the MRANC solution for the dataset of
Fig. 1, with tap-lengthN = 50. Each plot represents the WH filter coefficients
associated to a primary input. Filter ofith reference signal: dotted line:i = 1;
solid line: i = 2; dashed line:i = 3.4

Fig. 5. Fetal contributions to the abdominal electrodes (first five signals) of
Fig. 1 obtained by the MRANC method.

IV. EXPERIMENTAL METHODOLOGY AND RESULTS

For Widrow’s MRANC solution, the three thoracic leads of
Fig. 1 are employed as reference inputs to the canceller (i.e.,
3, as depicted in Fig. 3), whereas the abdominal leads play (one
after the other) the role of primary inputs. The optimal WH filters
for 50 tapsareshown inFig.4,and thecorrespondingoutput
waveforms appear in Fig. 5. The impulse responses decay with
the tap number, so we might as well have taken fewer coefficients
by truncating the displayed tap sequences. As a matter of fact,
results with as little as 10 weights are virtually identical to
those in Fig. 5. Nevertheless, as the number of weights is reduced
the MECG cancellation is seen toworsen.Obtained along similar

Fig. 6. Fetal contributions to the abdominal recordings (first five signals) of
Fig. 2 obtained by the MRANC method.

Fig. 7. Source signals estimated by the BSS method from the recordings of
Fig. 1.

lines, the MRANC results for the second dataset are shown in
Fig. 6.

On the other hand, Fig. 7 shows the independent source sig-
nals obtained by the BSS method from the recordings of Fig. 1.
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Fig. 8. FECG contributions to the abdominal electrodes (first five signals) of
Fig. 1 obtained by the BSS method.

Fig. 9. FECG contributions to the thoracic electrodes (last three signals) of
Fig. 1 obtained by the BSS method.

A straightforward visual inspection (more involved mechanisms
for source-type automatic identification are currently under de-
velopment) confirms that waveforms 1, 2, and 4 correspond to
the MECG sources, whereas waveforms 5 and 7 belong the the
FECG. The rest are interference sources. The two fetal sources
are isolated in vector . Accordingly, the corre-
sponding columns of the estimated mixing matrix are stored in
matrix . The fetal heartbeat contributions to
the recordings are then obtained by

(4)

Observe that this procedure allows the estimation of FECG con-
tributions toall leads. Only the abdominal signals are shown in
Fig. 8 for the sake of a more meaningful comparison with the
MRANC. For the interested reader, the fetal contributions to the
thoracic leads are displayed in Fig. 9. Analogous results are ob-
tained in the second dataset, from which another two sources of
fetal cardiac activity are also identified. Figs. 10 and 11 show
the FECG components present in the abdominal and thoracic
leads, respectively, of the second recording.

Fig. 10. FECG contributions to the abdominal leads (first five signals) of Fig. 2
obtained by the BSS method.

Fig. 11. FECG contributions to the thoracic electrodes (last three signals) of
Fig. 2 obtained by the BSS method.

V. DISCUSSION

Although noise and some residual MECG components re-
main noticeable, waveforms 1, 2, 3, and 5 of Fig. 5 show fairly
clear fetal heartbeat signals by the MRANC. Waveform 4 is still
corrupted by an important baseline wandering, presumably due
to the mother’s respiration, which hinders the observation of the
fetal heart complexes in such electrode. Since there is hardly any
of this wandering component present in the chest leads, it cannot
be filtered and subtracted from the fourth abdominal electrode,
where it appears. The effect on the estimated optimal filters is
that the weights of the fourth primary input (fourth plot in Fig. 4)
do not converge to zero: the system is ‘searching’ in the refer-
ence inputs, without success, for a component correlated with
the baseline wandering that corrupts the fourth electrode. The
results of Fig. 6 can be interpreted in a totally analogous manner.
Therefore, the performance of the MRANC method seems very
dependent on the electrode placement, similarly as occurs with
SOS-based BSS. The reference electrodes must be such that
they contain signal components correlated with the interference
in the primary electrodes.
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Fig. 12. Source signals recovered by the BSS method from only three
abdominal electrodes (waveforms 3, 4, and 5) of the ECG recordings of Fig. 1.

Fig. 13. FECG contributions to electrodes 3, 4, and 5 obtained from the source
signals of Fig. 12.

As to the higher-order BSS method, the quality of all the
reconstructed FECG contributions is notably superior. For in-
stance, the baseline wandering which corrupted the fourth signal
obtained by the MRANC solution (Fig. 5) is now completely
eliminated in Fig. 8, since it is found to be generated by an
independent source of interference (sixth waveform in Fig. 7)
and, hence, it is extracted from the fourth recording as a sepa-
rate noise signal. Also, all reconstructed fetal components are
much less noisy than their MRANC counterparts, thanks to the
two additional independent noise sources extracted (waveforms
3 and 8 in Fig. 7). Very similar outcomes are obtained for the
second recording (Fig. 10).

Besides the abdominal electrodes, the BSS method is able
to reconstruct the FECG contributions to the thoracic leads as
well, as commented at the end of Section IV and featured in
Figs. 9 and 11. The apparently too high amplitude of the ob-
tained signals could be a product of the processing. Neverthe-
less, the resulting waveforms appear outstandingly clean from
maternal and other sources of disturbance.

The BSS robustness with respect to the electrode place-
ment and number was evidenced through further experiments
whereby FECG sources were clearly revealed by exploiting a
few abdominal leads exclusively. Favorable results were ob-
tained by processing the output of up to only three electrodes,
as illustrated by Figs. 12 and 13. In Fig. 12, the fetal and
maternal subspaces are successfully separated, and an FECG
source (third signal) practically free from MECG interference

is recovered. From the fetal source, the FECG contributions to
the electrodes involved are obtained as explained in Section IV,
and are displayed in Fig. 13 (cf. last three plots of Figs. 5
and 8). The dimension of the estimated fetal subspace is now
lower than in the full-recording processing, which accounts
for the dissimilar results in both cases. However, the FECG
extraction achieved from such smaller number of electrodes
can still be considered as satisfactory. This robustness arises as
an important major advantage of BSS techniques.

The computational cost is another relevant issue. Straight-
forward calculations lead to a number of flops5 of
for the WH-MRANC to extract the FECG components from a
single primary lead, for and large (or just if op-
erating on-line via LMS). On the part of the BSS method, the
sources are extracted in roughly flops, for large.
Therefore, the relative cost, under the same conditions andof
the order of , depends on the number of taps in the MRANC
filters. For the parameter values of these particular experiments,
however, the BSS method is more expensive.

Although the optimal WH solutions are obtained in batch-
processing mode, it must be remarked that the MRANC is adap-
tive by nature (see in [21] results in adaptive mode), whereas
the BSS method employed in these experiments processes the
data in sample blocks (off-line or batch processing). For the ap-
plication in a clinical environment, on-line (or adaptive) pro-
cessing is certainly more convenient. Adaptive BSS methods
do exist as well (e.g., [3], [20]), but additional experiments on
these ECG data confirm that more samples are needed for these
adaptive algorithms to reach a satisfactory stable solution. This
is connected with the fact that larger sample sizes are required
to compute HOS with a reasonable estimation accuracy. In the
MRANC, by contrast, only SOS are (implicitly) used.

Results obtained in this biomedical context by other BSS
methods are reported in [1], [4], [9], [14] and [17]. In [1] and
[17] the recordings of Fig. 1 are processed through the PCA
and the techniques of [5] (ICA-HOEVD) and [8] (HOSVD).
Basically, results from the BSS method evaluated here are much
more precise than from the PCA and the HOSVD, and very sim-
ilar to the ICA-HOEVD.

VI. CONCLUSION AND OUTLOOK

The experiments presented and discussed in this paper show
HOS-based BSS as a more robust and successful approach to
the noninvasive FECG extraction problem than the MRANC,
although the superior performance is attained at the expense
of an increased computational complexity. Yet the achieved
FECG-extraction quality offers promising prospects for the use
of ICA-BSS techniques in prenatal medical diagnosis.

For the introduction of blind separation techniques as a gen-
eralized diagnosis tool, however, further research is still neces-
sary. As the most important point to be explored, the relationship
between physiological sources of cardiac activity and the statis-
tically-independent sources that the signal separation methods
estimate needs to be clarified. The lack of knowledge on this re-
lationship does not prevent BSS techniques from being useful
in as important state-of-the-art applications as telemedicine, in

5Additions are neglected, so that we define aflop as a real multiplication.
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which the physician merely considers the fetal cardiac rate. In
addition to the heart rate, BSS presents the potential of offering
more detailed information about the fetal heart, thus allowing a
more accurate diagnosis.
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