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Atrial Activity Extraction for Atrial Fibrillation
Analysis Using Blind Source Separation
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Abstract—This contribution addresses the extraction of atrial
activity (AA) from real electrocardiogram (ECG) recordings of
atrial fibrillation (AF). We show the appropriateness of indepen-
dent component analysis (ICA) to tackle this biomedical challenge
when regarded as a blind source separation (BSS) problem. ICA is
a statistical tool able to reconstruct the unobservable independent
sources of bioelectric activity which generate, through instanta-
neous linear mixing, a measurable set of signals. The three key
hypothesis that make ICA applicable in the present scenario are
discussed and validated: 1) AA and ventricular activity (VA) are
generated by sources of independent bioelectric activity; 2) AA
and VA present non-Gaussian distributions; and 3) the generation
of the surface ECG potentials from the cardioelectric sources can
be regarded as a narrow-band linear propagation process. To
empirically endorse these claims, an ICA algorithm is applied to
recordings from seven patients with persistent AF. We demon-
strate that the AA source can be identified using a kurtosis-based
reordering of the separated signals followed by spectral analysis
of the sub-Gaussian sources. In contrast to traditional methods,
the proposed BSS-based approach is able to obtain a unified AA
signal by exploiting the atrial information present in every ECG
lead, which results in an increased robustness with respect to
electrode selection and placement.

Index Terms—Atrial fibrillation, blind source separation, ECG,
forward electrocardiography problem, independent component
analysis, QRS cancellation.

I. INTRODUCTION

ATRIAL fibrillation (AF) is the most common sustained ar-
rhythmia encountered by clinicians and occurs in approx-

imately 0.4%–1.0% of the general population. Its prevalence in-
creases with age, and up to 10% of the population older than 80
years has been diagnosed with AF. With the projected growth
of the elderly population, the prevalence of AF will certainly
increase [1]. There is also increasing awareness that AF is a
major cause of embolic events which in 75% of cases are com-
plicated by cerebrovascular accidents [2], [3]. AF is often asso-
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ciated with heart disease but a significant proportion of patients
(about 30%) have no detectable heart disease. Symptoms such
as occasionally disabling haemo-dynamic impairment and a de-
crease in life expectancy are among the untoward effects of atrial
fibrillation, resulting in an important morbidity, mortality, and
an increased cost for the health care provider [1], [2]. In this re-
spect, AF has been the subject of arousing interest and intensive
clinical research in recent years.

The proper analysis and characterization of AF from elec-
trocardiogram (ECG) recordings—regardless of the leads con-
sidered—requires the extraction or cancellation of the signal
components associated with ventricular activity (VA), that is,
the QRS complex and the T-wave (QRS-T). Unfortunately, a
number of facts hinder this operation. First, atrial activity (AA)
presents in the ECG much lower amplitude—in some cases well
under the noise level—than its ventricular counterpart. Addi-
tionally, both phenomena possess spectral distributions that no-
tably overlap, rendering linear filtering solutions unsuccessful.

Methods reported in the literature to cancel out VA in the ECG
involve direct suppression of the QRS complex and T-wave
through the subtraction of a fixed template [4]–[6]. Also, the use
of an adaptive template in conjunction with the correct spatio-
temporal alignment of every QRS complex has proven to be very
effective [7]. All of these methods—though different in their
performance—share similar limitations such as high sensitivity
to QRS morphological changes in [4]–[6] and their inability to
eliminate artifacts from electrode movement or ectopic beats in
[4]–[7]. More recent methods have focused on extracting the VA
using artificial neural networks and subtracting it from the ECG
[8] or on the decomposition of the original ECG in a set of coef-
ficients that obtain the AA using discrete packet wavelet trans-
form [9]. A common limitation of all of the previously men-
tioned methods is their inability to exploit the spatial diversity
of an ECG recording.

However, the key observation that AA and VA are decoupled
[1], [6] introduces a new interesting perspective which does not
rely on direct QRS-T elimination. Under certain assumptions,
the AA extraction problem accepts a formulation based on blind
source separation (BSS) of instantaneous linear mixtures [10],
in which atrial and ventricular source contributions to be appear
mixed at the electrode outputs in the ECG. Hence, the separation
of AA sources through a suitable BSS method would allow the
reconstruction of atrial contribution to each electrode free from
VA and other disturbances. The multichannel signal processing
standpoint adopted in the BSS approach aims at an effective uti-
lization of the atrial information present in all ECG leads. Two
main families of BSS techniques for AA extraction have been
proposed, based on principal component analysis (PCA) [11],
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[12] and independent component analysis (ICA) [13], [14], re-
spectively. PCA methods search for a solution, using second-
order statistics (SOSs), that decorrelates the input signals. By
contrast, the assumptions that AA and VA are independent at
orders higher than two and do not present random Gaussian dis-
tributions [6], [7] may be exploited to separate AA from VA
by imposing the necessary higher order statistical conditions.
If such assumptions are fulfilled, the application of ICA-based
methods makes it possible to reconstruct the atrial contribution
to each electrode free from VA and other large-amplitude nui-
sance signals, like respiration artifacts, ectopic beats, or mus-
cular noise.

One of the most important research areas where ICA tech-
niques have proven their success is precisely in biomedical
engineering. Today the use of BSS is well known in elec-
troencephalogram and magnetoencephalogram applications
[15], [16] or in the extraction of the fetal ECG from maternal
cutaneous recordings [17]. Regarding the ECG, examples of
the application of BSS-based methods are the separation of
breathing artifacts, muscular noise, and other disturbances
[18], [19], analysis of ST segments for ischemia detection [20],
identification of humans using the ECG [21], and ventricular
arrhythmia detection and classification [22].

In the present contribution, a new application of BSS to the
multilead ECG is presented. We show the suitability of ICA
techniques to extract the AA present in the ECG of patients
with persistent AF episodes. It is argued that AA and VA are
generated by independent sources of bioelectric activity, that
this activity exhibits non-Gaussian character, and that the ECG
recordings fulfil the instantaneous linear model. To empirically
validate these claims, an ICA method is applied to real record-
ings obtained from patients suffering from AF. A simple yet ef-
fective method for the identification of AA from the estimated
sources is put forward, based on higher order statistics (HOS)
(more specifically, the fourth-order marginal cumulant or kur-
tosis) and spectral analysis [14], [23].

The paper is structured as follows. Section II justifies the
assumptions that lead to the suitability of the ICA-based BSS
approach to the AA extraction problem. Section III develops
a method for the identification and reconstruction of AA from
the separated sources of cardioelectric activity. Section IV sum-
marizes the results obtained from the application of the ICA-
based AA extraction technique on real multilead ECG signals
recorded from AF patients, and the results are discussed in Sec-
tion V. Section VI presents the concluding remarks.

II. AF BSS MODEL

If BSS methods based on ICA are to be applied to the AA
extraction from the 12-lead ECG, the fulfillment of three basic
considerations regarding AA, VA and the fashion in which
both activities arise on the body surface must first be justified:
independence of the sources, non-Gaussianity, and observations
generated by instantaneous linear mixing of the bioelectric
sources [24]. This section begins with an outline of the basic
mathematical principles behind the BSS of instantaneous linear
mixtures. Then, physical mechanisms of AF generation give
strong support to the independence and non-Gaussianity of AA

and VA. Next, the validity of the instantaneous linear mixing
model for the ECG is endorsed through the matrix solution for
the forward problem of electrocardiography. The corroboration
of these conditions make it possible to assume that the ECG of
a patient in AF satisfies the BSS instantaneous linear mixture
model, thus justifying the application of ICA.

A. BSS Principles

The BSS consists of recovering a set of source signals from
the observation of linear mixtures of the sources [10], [25]. The
term “blind” emphasizes that nothing is known about the source
signals or the mixing structure, the only hypothesis being the
source mutual independence [24]. Mathematically, let us de-
note by ( stands for
the transpose operator) the vector that represents the source
signals and the
sensor output vector, i.e., the observation vector. It is assumed
that , so that there are at least as many sensors as
sources. In the noiseless case, the BSS model for instantaneous
linear mixtures reads

(1)

where is the unknown mixing matrix. The objec-
tive of BSS is to estimate and from the exclusive knowl-
edge of . To achieve the source separation, a linear transfor-
mation is sought such that the components of the
output signal vector become statistically independent, thus
representing an estimate of the sources

(2)

except for (perhaps) scaling and permutation, which are consid-
ered admissible indeterminacies.

Some authors have proposed the use of PCA to solve the
model of (1) [11]. However, it is important to remark that
the success of PCA relies heavily on the orthogonality of the
columns of the mixing matrix. However, in general, there is no
reason why bioelectrical sources of the heart should be spatially
orthogonal to one another in the ECG. This orthogonality
condition can only be forced through appropriate electrode
placement, as was previously emphasized in the context of the
fetal ECG extraction problem [26], [27] and the cancellation of
artifacts in the electroencephalogram [16]. As a consequence,
PCA is not expected to separate each source from the ECG
with a quality similar to that of ICA. Moreover, PCA methods
assume sources with a Gaussian distribution, which is not the
case for AA and VA in the AF problem (as will be justified in
Section II-C). In general, the measurement of independence for
non-Gaussian signals can be carried out more accurately using
HOS, rather than SOS, like PCA methods do.

By contrast, ICA does not introduce any restriction on the ge-
ometrical structure of the mixing matrix (apart from the linear
independence of its columns) and, in addition, takes into ac-
count the non-Gaussian nature of the source signals. Conse-
quently, ICA arises as a more sensible approach to this problem.

Several ICA techniques have been proposed mainly based on
HOS and information theory [28], due to their ability to mea-
sure statistical independence. In practice, additive measurement
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noise and other disturbances (e.g., mains interference) are un-
avoidably present in the sensor outputs of (1). It is usually a very
plausible assumption to consider the noise signals independent
of the bioelectric sources of interest. When the number of elec-
trodes is larger than the number of bioelectric sources, certain
degrees of freedom are available for part of the additive noise to
be extracted as separate source signals (as will be observed in
the experimental results of Section IV). However, in the general
case, the effective treatment of noisy observations in BSS [28],
as well as in other signal processing problems, remains an open
issue, which is beyond the scope of this paper.

B. Mechanisms of AF

One normal cardiac cycle is started at the sinus node with the
depolarization of the right atrium and spreads toward the entire
atria in a well-ordered manner. Atrial depolarization defines the
P-wave in the ECG. Next, the depolarization impulse reaches
the ventricles and their fast contraction produces the QRS com-
plex of the ECG. Finally, ventricular repolarization produces the
T-wave and concludes the cardiac cycle [29]. The manifestation
of AF, a supraventricular arrhythmia, is characterized by unco-
ordinated atrial activation with consequent deterioration of atrial
mechanical function. AF occurs when the electrical impulses in
the atria degenerate from their usual organized pattern into a
rapid chaotic pattern. This disruption results in an irregular and
often rapid heartbeat that is classically described as “irregularly
irregular” and is due to the unpredictable conduction of these
disordered impulses across the atrioventricular node [1].

On the ECG, AF is described by the replacement of consistent
P-waves by rapid oscillations or fibrillatory waves that vary in
size, shape, and timing, associated with an irregular, frequently
rapid ventricular response. Theories of the AF mechanism in-
volve two processes [1]: enhanced automaticity in one or sev-
eral foci [see Fig. 1(a)] and reentry involving one or more cir-
cuits [Fig. 1(b)].

The focal origin of AF is supported by experimental models
and appears to be more important in patients with paroxysmal
AF than in those with persistent AF. Nevertheless, the most
widely accepted theory of persistent AF mechanisms was
proposed by Moe in [30]. He postulated that AF perpetuation is
based on the continuous propagation of multiple wavelets wan-
dering throughout the atria. The fractionation of the wavefronts
as they propagate results in self-perpetuating independent
wavelets [2]. The number of simultaneous wavelets depends on
the refractory period, mass, and conduction velocity along the
atria, because these parameters present severe inhomogeneities
in AF [1]. Therefore, during AF, several independent atrial
propagation circuits are involved and the length of the path
through which the depolarization wavefronts can travel is
influenced by conduction velocity, anisotropies related to the
orientation of atrial fibers and refractoriness, producing wave
collision and reentry [1], [3]. Moreover, the self-perpetuating
propensity of AF is justified by the electrophysiological remod-
eling, a phenomenon consisting in the progressive shortening
of effective refractory periods, thus increasing the number
of simultaneous wavelets and, as a consequence, the episode
duration [1]. Through the mapping of experimentally induced
AF in canine hearts, the multiple wavelet hypothesis has been

Fig. 1. Main electrophysiological mechanisms of AF. (a) Focal activation:
there is an initiating focus and the resulting wavelets represent fibrillatory
conduction. (b) Multiple-wavelet reentry: wavelets, indicated by arrows,
randomly reenter tissue previously activated by them or by another wavelet.

proved. Similar observations have been reported in humans
[1]–[3].

C. Independence and Non-Gaussianity of AA and VA

During an AF episode several independent wavefronts propa-
gate simultaneously throughout the atria but only a reduced part
of them will reach the AV node. Moreover, several properties
of the AV node tend to limit strongly the ventricular activation.
First, the excitability of cells within the AV node is significantly
less than the atrial myocardium, thus meaning that the refrac-
tory period is considerably larger than in the atria [1]. Second,
the AV node demonstrates decremental conduction properties;
that is, the amplitude and rate of rise of cardiac action potentials
decrease progressively from cell to cell. Because of this prop-
erty, impulses may traverse only a portion of the AV node before
blocking [2]. One clinical manifestation of this property is the
phenomenon of concealed conduction, in which a atrial impulse
that itself does not conduct to the ventricles may impair conduc-
tion of subsequent impulses, blocking the propagation of other
impulses that otherwise would have conducted [2]. As a conse-
quence of the aforementioned AV node properties, most of the
atrial wavefronts do not reach conduction and are not able to
produce ventricular depolarization.

On the other hand, the physical origin of the atrial wavefront
that has been able to produce ventricular depolarization could
be very variable. This uncoordinated operation of AA and VA
during an AF episode makes it reasonable to regard both activi-
ties as physically independent and, in turn, as generated by sta-
tistically independent sources of cardioelectric activity. The va-
lidity of the atrio-ventricular statistical-independence assump-
tion is in line with the findings reported by other authors in the
field [1], [2], [7].

With respect to non-Gaussianity, VA presents high values
within the heart beat (QRS complex) and low values in the rest
of the cardiac cycle. Hence, the histogram analysis of VA re-
veals an impulsive, i.e., super-Gaussian, behavior [6] with typ-
ical kurtosis values above 15. On the other hand, AA of an AF
episode has been accurately modeled as a sawtooth signal con-
sisting of a sinusoid with several harmonics [7], which behaves,
statistically speaking, as a sub-Gaussian random process. More-
over, when a QRS complex and T-wave cancellation algorithm,
like those described in [4]–[7], is employed to cancel out VA
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over one ECG lead, it can be observed that the remaining ECG,
mainly the AA, presents a sub-Gaussian behavior with negative
kurtosis values. The non-Gaussian assumption of AA and VA is
hence justified and will be shown in the results in Section IV.

D. ECG Instantaneous Linear Mixture Model

Electrocardiography involves interpretation of the potentials
recorded at the body surface due to electrical activity of the
heart. To this end, we use the concept of an electrical representa-
tion of the heart’s activity: an equivalent source, in conjunction
with a specified volume conductor to model the torso [29].

There are several physical models to represent both the
cardiac current sources and the enclosing torso shape and
conductivity. Source models range from simple current dipoles
to complex current surfaces. Torso shape and conductivity
models range from infinite homogeneous conductors to finite
element models. The combination of torso and source models
to calculate the body surface potentials is known as the forward
problem [31]. One of the most accepted solutions for the for-
ward problem relys on the calculation, using surface methods,
of the outer body surface potentials from the epicardial (ex-
ternal surface of the heart) surface potentials [32]. Surface
methods are based on integral equations for the potential
derived by applying Green’s second identity in a torso model
comprising the body surface and the heart surface [33]. The
general approach for finding solutions to this kind of integral
equations is to discretize the problem and write one equation
for each of a number of points on both surfaces and solve these
equations simultaneously [31]. For points defined on the
body surface, representing the field points (leads), and on
the epicardium representing the source positions, it is possible
to write the following set of discretized expressions as the
observation point sweeps all the body and the heart surface:

(3)

(4)

where is the normal component of the potential gradient
for point on the heart surface. In general, the term links
the potential at observation point on surface to the value of
the potential gradient at point on surface , while
is the geometrical coefficient which weights the contribution in
the observation point on surface of the potential at node
on surface . Therefore, the equations can be separated into the
product of a potential ( or ) or the gradient of a potential

at a specific point on either one of the surfaces and a
second factor (the terms with general form and ) based
entirely on the geometry of the torso and the heart. and

are the potential at node on the body and heart surfaces,
respectively. Now expressing the summations in matrix form,
we have

(5)

(6)

where and are and potential column vectors,
is a column vector of epicardial potential gradients,

and the various and coefficient matrices are determined
solely by integrations involving the geometry of the epicardial
and body surfaces. Here again, the first subscript of (or )
represents the surface containing the observation points, having
as much rows as points ( or ), and the second one repre-
sents the surface (heart or body) of integration with the number
of columns equal to the number of points where the integration
is computed ( or ). Solving (6) for the matrix of epi-
cardial potential gradients and substituting the result into
(5) yields

(7)

with defined as

(8)

Equations (7) and (8) define the solution to the forward problem.
The elements of matrix are the transfer coefficients re-
lating the potential at a particular point on the epicardial surface
to that at a particular point on the body surface, and they depend
solely on the geometry of the epicardial and body surfaces and
the conductivity of the torso.

Equation (7) shows that the electric potential in one point of
the body surface can be obtained by adding the partial contribu-
tions of the heart potentials, weighted by a transfer coefficient.
Obviously, (7) corresponds to a linear mixing model where a
set of observations are obtained by linearly combining a set of
sources. In our case, the sources are the set of bioelectric poten-
tials in the epicardium and the observations the set of body-sur-
face potentials.

The transfer (or mixing) matrix of (8) models the conductivity
of the human torso and, in a first approximation, may be con-
sidered as an isotropic homogeneous volume conductor. A more
realistic modeling of the torso can consider inhomogeneities of
the volume conductor and the presence of different tissues. One
can take such inhomogeneities into account by approximating
the volume conductor by a collection of regions, each one of
which is homogeneous, resistive, and isotropic but, at the same
time retaining the results of (7) [32]. Hence, inhomogeneities
and anisotropies in the human torso only modify the transfer
coefficients, i.e., the elements of , but do not affect the ful-
fillment of the model [34].

Finally, in the description of the volume conductor consti-
tuted by the human body, the capacitive component of tissue
impedance is negligible in the frequency band of internal bio-
electric events (0–100 Hz). Hence, the volume conductor cur-
rents generated by the heart’s bioelectrical activity are essen-
tially conduction currents and require only specification of the
tissue resistivity. The electromagnetic propagation effect can
also be neglected [29]. As a reinforcement of this assumption,
the finite-difference method for solving the forward problem
represents the torso geometry by a three-dimensional (3-D) grid
of discrete points interconnected using resistive elements [35].
These considerations imply that time-varying bioelectric cur-
rents and voltages in the human body can be examined with the
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Fig. 2. Input and result of the ICA separation process. (a) A 12-lead ECG segment from a patient in AF. (b) Estimated sources obtained via ICA and reordered
from lower to higher kurtosis value. The AA is contained in source #1.

conventional quasi-static approximation [36]. That is, all cur-
rents and fields behave, at any instant, as if they were stationary
and we can assume the fulfillment of the BSS instantaneous
linear mixture model for (7).

The joint activity of the cardiac cells can be observed via the
multilead ECG but it is evident that the mathematical operations
that define the voltages for the 12-lead ECG are only linear com-
binations of the body surface potentials and, hence, do not af-
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fect at all the aforementioned instantaneous linear mixture BSS
model. Then, the application of BSS-based methods on the stan-
dard ECG is completely justified and remarked with the du-
ality between (7) and (1). As a consequence of the results from
Sections II-C and II-D, the three most important requirements
to apply the ICA-based BSS technique, namely, instantaneous
linear mixtures, source independence, and non-Gaussianity, do
indeed hold for the 12-lead ECG recordings of a patient with AF.

III. METHODS

By virtue of the previous discussion, the skin-electrode signal
vector of the ECG can be identified with and complies with
the generative BSS model in (1), where vector is composed
of the independent sources of atrial and ventricular cardiac ac-
tivity and other nuisance signals. The mixing matrix entries de-
pend on the body geometry, tissue conductivity, and electrode
position similarly as occurs in the BSS formulation of the fetal
ECG extraction problem [17]. Consequently, the atrial contribu-
tion to the recordings can be recovered by extracting, via ICA,
the sources of AA and the corresponding columns of the mixing
matrix.

Before applying ICA, all signals were sampled (or upsampled
from 500 Hz) at 1 kHz in order to improve frequency resolution
when performing the spectral analysis and, at the same time,
make use of the most standard sampling rate for ECG studies.
The upsampling process consisted of low-pass FIR filtering the
ECG segment and inserting new samples obtained via a nearest
neighbor interpolation. After amplitude normalization the sig-
nals were preprocessed using a 50-Hz notch filter to cancel out
mains interference, followed by a band-pass filter with cut-off
frequencies of 0.5 and 60 Hz to remove baseline wandering and
reduce thermal noise [4].

The authors’ own signal database comprised recordings from
seven patients suffering from AF. All of the ECGs were com-
posed of 12 leads and were 8 s in length. No dimensionality
reduction was performed in the whitening process before ICA
computation. The FastICA algorithm [37] was preferred to per-
form the BSS process, due to its fast convergence and robust
performance, previously demonstrated in a variety of different
applications [38]. In addition, FastICA can operate in a defla-
tion mode, in which the independent components are estimated
one by one. Hence, the algorithm can be stopped as soon as the
AA sources have been extracted, with the consequent benefit in
computational complexity.

After the application of ICA, the sub-Gaussian statistical
character of AA as opposed to the super-Gaussian behavior
of VA allows the identification of the estimated AA source
using a kurtosis-based source reordering. This reordering
process arranges first the sub-Gaussian sources, associated with
AA, then the Gaussian ones, associated with noise and other
artifacts, and finally the super-Gaussian sources, corresponding
to VA. Therefore, according to the predicted statistical behavior
of AA, the separated signals with lower kurtosis are considered
to be the AA sources.

After the kurtosis-based reordering, in order to validate the
AA identification, the power spectral density (PSD) was com-
puted for all of the separated sources with sub-Gaussian kur-

Fig. 3. Histogram of separated sources of Fig. 2, with superimposed Gaussian
distribution. (a) Source #1, associated with the AA signal estimate. (b) Source
#12, associated with VA.

tosis . The procedure consisted of obtaining the mod-
ified periodogram using the Welch-WOSA method [39] with a
Hamming window of 4096 points length, a 50% overlapping
between adjacent windowed sections, and an 8192-point fast
Fourier transform (FFT). Later, the spectral content above 20
Hz was discarded due to its low contribution. In this manner, it
was possible to observe and compare the spectral content of the
separated sources with the clinically accepted spectral content
of AF [4], [11], [23], [40], [41].

IV. RESULTS

After the ICA separation process, it was always possible to
identify the AA source among the whole set of 12 separated
sources. The identification was carried out following the afore-
mentioned steps based on reordering the sources from lower to
higher kurtosis, obtaining and analyzing the PSD of the sources
with sub-Gaussian kurtosis, and, finally, visually inspecting the
fibrillatory waves in the original ECG against the estimated AA
source obtained by the ICA separation. Fig. 2(a) plots a 12-lead
ECG with an AF episode. Observe the fibrillatory waves that
can be clearly identified in several leads. It is generally accepted
by the scientific community [1] that leads II, III, aVF, and es-
pecially V1 have the largest AA content, as can be seen in the
figure.

The result of applying ICA to this AF episode and reordering
the estimated sources as a function of its kurtosis generates
the sources plot of Fig. 2(b), where source #1 has the lowest
kurtosis ( 0.76) and source #12 has the largest one ( 31.93).
Due to the kurtosis reordering, the first separated sources
(#1–3) have a more sub-Gaussian PDF and hence are the
candidates to contain the AA, the central sources are associated
with Gaussian noise and signal artifacts (#4–7), and the last
sources (#8–12) mainly contain VA. Fig. 3 plots the histogram
of sources #1 and #12 with a superimposed normal distribution
with the same mean and variance. As can be observed, AA
presents a sub-Gaussian character whereas VA exhibits a strong
super-Gaussian behavior, as has been previously indicated in
the AF BSS model of Section II-C.

Additionally, a spectral analysis is applied over the sources
with sub-Gaussian kurtosis to determine the AA source.
Fig. 4 plots the results of the PSD estimation for all the nega-
tive-kurtosis sources. As can be observed, source #1 presents a
typical spectral morphology of the AA from a patient with AF.
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Fig. 4. Power spectral densities from several ICA-estimated sources of Fig. 2. After kurtosis-based reordering only five sources have sub-Gaussian kurtosis, and
the one with lowest kurtosis (source #1) presents a PSD typically associated with the AA in AF episodes.

TABLE I
COEFFICIENTS OF THE SIXTH COLUMN OF THE MIXING MATRIX SHOWING

THE PROJECTION OF SOURCE #6 (CONSIDEREDTO BE THE AA)
ONTO EACH ECG LEAD

The pattern of this type of episode is characterized by a very
pronounced peak in frequencies from 5 to 8 Hz, without har-
monics and with insignificant amplitudes above 15 Hz. In the
case of source #1, the main peak frequency is 6.34 Hz. It
can also be appreciated in Fig. 4 that the only separated source
with similar spectral content is source #5. However, the main
peak frequency of this signal is 2.93 Hz and, thus, it cannot
be considered as AA. This decision is further reinforced by its
kurtosis value , which indicates a closer prox-
imity to Gaussianity.

The application of the proposed BSS-based AA extraction
procedure on the rest of the AF patient database consistently
provided satisfactory results, as summarized in Fig. 5. These
results correspond to patients #2–#7 (the results from patient
#1 are presented in Figs. 3, 4, and 6), where each row is as-
sociated with one patient. In the first column, lead V1 (in the
bottom) can be observed from the 12-lead ECG in AF, along
with the ICA-estimated AA for that episode (at the top) for
visual comparison. The estimated AA has been scaled by the
factor associated with its projection onto lead V1 (as will be
shown later in Table II). The visual similarity between the esti-
mated AA and the AA contained inside V1 is remarkable. The
second column shows the estimated AA PSD along with the
computed main peak frequency (atrial frequency). As can be ap-
preciated, the spectral content associated with the estimated AA
source is in agreement with the expected one associated with
AF [4], [11], [23], [40], [41]. Finally, the third column shows
the histogram of the AA estimated source for each patient with
superimposed Gaussian distribution. In general, now we can say
that the sub-Gaussian behavior of the estimated AA is not so far
from Gaussianity. Hence, the kurtosis values (also indicated in
the figure) are close to zero but are still negative.

V. DISCUSSION

After the use of the FastICA [37] approach over the ECG
segments, additional ICA algorithms were applied to the signal
database in order to compare results in the AA extraction
process. The algorithms employed were AMUSE and JADE
from ICALAB Toolbox [42] and HOEVD [10]. All cases
yielded similar results. Note that the objective of this paper is
to justify and show the use of ICA in solving the AA extraction
problem in AF episodes rather than find out what ICA approach
performs better in this concrete problem; this could be studied
in future papers.

The direct visual identification of the AA source, after ap-
plying ICA to the ECG, is not always possible. The kurtosis-
based source reordering, which takes advantage of the dissim-
ilar statistical properties of AA and VA, has proven its ability
to identify the AA component from the set of estimated source
signals with the lower kurtosis values. The sub-Gaussian be-
havior of the estimated AA source in all patients analyzed has
not been as pronounced as expected. All of the kurtosis values
of the estimated AA sources have been negative, but not so far
from zero (Gaussianity). Nevertheless, this result is not consid-
ered to be a problem for the separation of AA from Gaussian
noise. Though ICA can separate at most one Gaussian source
and, hence, Gaussian noise could not be separated from near-
Gaussian AAs, the noise power in the ECG is much smaller
than AA, as demonstrated in the results. Moreover, it could be
possible to separate the AA from Gaussian noise via their very
dissimilar spectral contents. In a second step, the AA identifi-
cation process has been completed with the spectral analysis of
the sub-Gaussian sources. The combination of these two steps
constitutes a robust AA identification method from the BSS re-
sults.

The AA estimates obtained by BSS from these ECGs in AF
were considered by cardiologists as very approximate to the real
atrial waveforms contained in the episode. This outcome is illus-
trated in Fig. 6, which shows (in the top) the atrial source #1 of
Fig. 2 estimated via BSS scaled by the factor 0.0684, which cor-
responds to the projection of the estimated AA onto lead V1. V1
is usually accepted as the lead with the largest AA content and is
shown in the bottom of Fig. 6 for visual comparison. Shown in
the middle of Fig. 6 is the AA estimation result obtained when
PCA is applied over the same ECG. As has been pointed out in
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Fig. 5. AA extraction results from patients #2–#7 (one patient per row). The first column shows the estimated AA source (top) and lead V1 (bottom). The
second column shows the PSD computed for the estimated AA along with the atrial frequency. The third column shows the histogram of the estimated AA with
superimposed Gaussian distribution (of the same mean and variance) and its kurtosis value.

previous sections, the VA cancellation in this case is not as good
as that in ICA. This can be especially observed in the R-peaks.
Similar results have been reported in [41].

Before applying the kurtosis-based reordering to the esti-
mated sources (as shown in Fig. 2), the AA obtained by the

ICA separation process was present in source #6. Hence, the
sixth column of the estimated mixing matrix indicates how
the associated source is projected onto the observations. Table I
shows the projection of the AA estimated source (#1 in Figs. 2
and 4) to each observation. Clearly, lead V1 has the largest



1184 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 7, JULY 2004

TABLE II
PROJECTION COEFFICIENTS OF THE ESTIMATED AA SOURCES ONTO THE ECG LEADS OF PATIENTS #2–#7

Fig. 6. Visual comparison of the reconstructed AA contribution to lead V1. At
the top, separated source #1 of Fig. 2, associated with the AA signal estimate
using ICA, is scaled by coefficient 0.0684 which corresponds to the projection
of this source on the observation lead V1. In the middle is shown the result of
the same process using PCA. The bottom shows lead V1 of the 12-lead ECG in
Fig. 2.

contribution from the estimated AA source. This result, which
is in close agreement with clinical experience, is an additional
indication of the AA extraction quality. In the cases where the
absolute amplitude of the extracted AA using BSS could be
of clinical interest, it is possible to reconstruct it back to each
ECG lead using the aforementioned column coefficients.

Note that we are dealing with an inverse problem, where
the true sources are not accessible (noninvasively, at least), and
hence the difficulty in evaluating the success of the AA source
separation. One is left with estimating the AA contribution to
the ECG leads typically containing the largest AA and making a
visual comparison of the corresponding fibrillatory waves. De-
spite the large visual similarity between the fibrillatory waves
of the estimated AA source and the AA contained in lead V1
(see Fig. 6), it must be said that this kind of direct visual com-
parison, strictly speaking, only has to be considered in an illus-
trative way, because the obtained AA source via BSS combines
AA information from all of the ECG leads and not only from
V1. Nevertheless, the only way to corroborate if the AA source
separation has been satisfactory is to compare it with those ECG
leads containing the largest atrial activity. This is a typical con-
sequence of the BSS-based methods where the real sources are
latent variables that cannot be directly observed.

Finally, Table II shows the projection coefficients of the es-
timated AA source corresponding to patients #2–#7. As can be
seen (similarly as in Table I), lead V1 contains the largest AA
contribution. Nevertheless, it can also be observed that the esti-
mated AA is spread over all of the ECG leads (for a given pa-
tient, all of the projection coefficients are nonzero). This obser-
vation demonstrates the presence of AA in all of the leads, and,
at the same time, the power of this ICA-based AA extraction
technique, capable of taking into account the atrial contribution

in every lead to generate a unified signal estimate condensing
the AA information. The authors also have verified that simi-
larly good results can be obtained in other supraventricular ar-
rhythmias, like atrial flutter [23], and hope that this new method-
ology will also work in cardiac pathologies where atrial and ven-
tricular activities are unsynchronized or decoupled, like in the
AV-block.

Nevertheless, note that BSS techniques are based on statis-
tical analysis of the data, and hence its results will not be sat-
isfactory if the data given to the algorithm are incorrect. There-
fore, it will only be possible to derive the spatial filters associ-
ated with the mixing matrix entries and the independent sources
from the ECG, when the physical sources associated with the
heart’s bioelectrical activity are spatially stationary in time and
the total number of these sources is less than the number of ob-
servations (ECG leads), as indicated in [43]. Strictly speaking,
movements of the heart, such as contraction of the atria and ven-
tricles, could violate the ICA assumption of spatial stationarity
of the physical sources but, in general, the authors consider that
these possible variations do not significantly affect the BSS in-
stantaneous linear mixing model for AF episodes. This consid-
eration is reinforced by the fact that results providing the esti-
mation of the main atrial frequency of AA using this ICA-based
BSS technique are the same as those obtained through the ap-
plication of other accepted AA extraction techniques, as proved
in [41].

VI. CONCLUSION

This paper has shown that the noninvasive extraction of AA
in AF episodes recorded from the surface ECG can be effec-
tively carried out by HOS-based BSS techniques for instanta-
neous linear mixtures. The applicability of this type of tech-
nique in this biomedical problem has been discussed in connec-
tion with its three main assumptions. First, in atrial arrhythmia
episodes, the cardioelectric sources generating AA and VA can
be regarded as statistically independent. Second, both activities
present a non-Gaussian character. Finally, AA and VA are man-
ifested on the body surface as an instantaneous linear mixture
of the cardiac sources, in which the unknown mixture coeffi-
cients depend on the ECG electrode position and the conduc-
tivity of the body tissues. The justification of these key assump-
tions makes feasible the application of HOS-based BSS, and this
contribution has indeed demonstrated its usefulness to solve the
AA extraction problem. Traditional techniques obtain as many
AA signals as leads processed by the cancellation algorithm; in
contrast, the BSS-based method estimates a single signal which
is able to reconstruct the complete AA present in every ECG
lead. On the other hand, the BSS approach can be considered
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as an alternative procedure for (indirect) QRST cancellation in
atrial arrhythmia analysis.

The positive results reported in this paper mean the advent
of novel noninvasive techniques for AF analysis and are the
first step in the development and future improvement of new
diagnostic strategies, pathology prediction methodologies, and
aid tools based on AA-wave analysis in the management of pa-
tients with AF. In fact, most of the actual diagnosis and man-
agement of patients with AF are judged on the basis of clinical
symptoms and ECG recordings. Therefore, the development and
availability of suitable techniques allowing the knowledge of AF
patterns (paroxysmal, persistent, or permanent) and aiding in
the decision making about restoration and maintenance of sinus
rhythm or control of the ventricular rate may be a tool of fun-
damental importance for the treatment of AF, a commonly en-
countered arrhythmia in permanent expansion.
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