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Spatiotemporal Blind Source Separation Approach to
Atrial Activity Estimation in Atrial Tachyarrhythmias

F. Castells*, J. J. Rieta, J. Millet, and V. Zarzoso, Associate Member, IEEE

Abstract—The analysis and characterization of atrial tach-
yarrhythmias requires, in a previous step, the extraction of the
atrial activity (AA) free from ventricular activity and other
artefacts. This contribution adopts the blind source separation
(BSS) approach to AA estimation from multilead electrocardio-
grams (ECGs). Previously proposed BSS methods for AA extrac-
tion—e.g., independent component analysis (ICA)—exploit only
the spatial diversity introduced by the multiple spatially-sepa-
rated electrodes. However, AA typically shows certain degree
of temporal correlation, with a narrowband spectrum featuring
a main frequency peak around 3.5-9 Hz. Taking advantage of
this observation, we put forward a novel two-step BSS-based
technique which exploits both spatial and temporal information
contained in the recorded ECG signals. The spatiotemporal BSS
algorithm is validated on simulated and real ECGs from a signif-
icant number of atrial fibrillation (AF) and atrial flutter (AFL)
episodes, and proves consistently superior to a spatial-only ICA
method. In simulated ECGs, a new methodology for the synthetic
generation of realistic AF episodes is proposed, which includes
a judicious comparison between the known AA content and the
estimated AA sources. Using this methodology, the ICA tech-
nique obtains correlation indexes of 0.751, whereas the proposed
approach obtains a correlation of 0.830 and an error in the esti-
mated signal reduced by a factor of 40%. In real ECG recordings,
we propose to measure performance by the spectral concentra-
tion (SC) around the main frequency peak. The spatiotemporal
algorithm outperforms the ICA method, obtaining a SC of 58.8%
and 44.7%, respectively.

Index Terms—Atrial fibrillation, biomedical signal processing,
blind source separation, independent component analysis, QRST
cancellation, spatiotemporal signal processing.
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1. INTRODUCTION

TRIAL FIBRILLATION (AF) is the most frequent car-

diac arrhythmia, and has a prevalence of 10% in popula-
tion over 70 years old [11]. The interest in the study and un-
derstanding of AF has considerably increased during the last
years. Many studies have been carried out to analyze the un-
derlying mechanism on isolated hearts of animals [28] but, un-
fortunately, these results are not directly applicable to humans.
The analysis and characterization of AF and other atrial tach-
yarrhythmias such as atrial flutter (AFL) from noninvasive tech-
niques requires the previous estimation of the actrial activity
(AA) signal from the surface electrocardiogram (ECG). Sev-
eral approaches have been proposed for this purpose. The ex-
plicit QRST cancellation from a matching template has demon-
strated its effectiveness, as in Average Beat Subtraction [5], [14]
or in the spatiotemporal QRST cancellation [32]. A model based
on blind source separation (BSS) [37] introduces an interesting
point of view, and two solutions based on principal component
analysis (PCA) [21] and independent component analysis (ICA)
[29] have been proposed. Recently, a study has been carried out
to compare and validate all these techniques [22]. Finally, other
approaches based on neural networks allow the introduction of
nonlinearities in the estimation model [35]. BSS proves a pow-
erful formulation which has also been successfully applied to
other biomedical problems [38].

By exploiting the spatial diversity introduced by the mul-
tiple spatially-separated electrodes, previously proposed BSS
solutions are able to estimate the independent bioelectric
sources—comprising ventricular activity (VA), AA and other
bioelectric artefacts—from a statistical analysis of the ECG.
However, any temporal information which may be present in
the sources is disregarded. Motivated by the observation that
AA signal typically exhibits a narrowband spectrum with a
main frequency of between 3.5-9 Hz [6], [14], [21], [26], [31],
[33], the main goal of this contribution is the design of a new
BSS-based algorithm which aims to utilize more fully the spa-
tiotemporal information of the ECG recordings. Experimental
results demonstrate that the proposed spatiotemporal algorithm
enhances AA estimation relative to a BSS technique exploiting
only spatial information (ICA).

Measuring performance is a difficult issue in inverse prob-
lems. Objective assessments can be accomplished by means of
synthetic recordings in which AF contributions are artificially
added to normal sinus rhythm (NSR) signals [30], [32]. Some
authors have created simulated signals by adding known activity
which is generated from an equivalent current dipole (ECD)
with a moment of a determined frequency [18]. The forward
problem of this ECD using a volume conductor model of the
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torso/head provides the observations. However, in this model the
observations of the ECD are mathematically a linear combina-
tion of each other. Hence, the generated observations perfectly
match the BSS model of instantaneous linear mixtures and, as
a result, the performance obtained by ICA would be too satis-
factory so as to be considered realistic. Another contribution of
the present paper is a novel methodology for the synthetic gen-
eration of ECGs with realistic AF episodes. This methodology
includes a simple but judicious comparison between the added
and the estimated AA.

The paper is structured as follows. Section II briefly reviews
the state of the art on atrial tachyarrhythmias and BSS tech-
niques. The methods are put forward in Section III, whereas
Section IV describes the signal databases used for validation and
comparison. To evaluate the performance of the proposed tech-
nique, synthesized ECGs with known AA have been created,
but the algorithm has been validated on real signals as well. The
results obtained with both databases are reported in Section VI,
whose conclusions bring the paper to and end in Section VIIL.

II. STATE OF THE ART
A. Atrial Tachyarrhythmias

Atrial tachyarrhithmias are cardiac arrhythmias in which
normal atrial electrical activation is substituted by continuous
activation, with multiple wavelets depolarising the atria simul-
taneously [1], [13]. On the ECG, normal atrial activity (P wave)
is no longer visible, being substituted by rapid oscillations or
fibrillatory waves that vary in size, shape and timing. The most
frequent atrial tachyarrhythmias are AF and AFL, where AF
is characterized by apparently chaotic atrial activation with a
cycle length typically of around 160 ms, and an irregular and
frequently rapid ventricular response (QRS complex) [1], [6],
[14], [26], [34]. The ventricular response to AF depends on
electrophysiological properties of the atrioventricular node, and
the R-R interval becomes more irregular. On the other hand,
AFL is characterized by a more regular atrial activation with a
cycle length of around 250 ms [1], [25], [34], [36]. Fig. 1 shows
an example of NSR, AF, and AFL ECGs.

B. Blind Source Separation

The body-surface potentials as a result of cardiac electrical
activity can be modeled as a BSS problem [29]

x(t) = As(t) (H

where x(t) is a length-m vector which represents the electrode
outputs at time instant ¢, i.e., the standard multilead ECG, s(¢) is
alength-n (n < m) random vector that represents the bioelectric
sources (AA, VA, respiration, muscular movement, etc.), and A
is the mxn channel-parameter matrix. For the standard ECG,
we have m = 12. Neither the original sources nor the transfer
coefficients from the epicardial surface toward the body surface
are known.

The main advantage of the BSS model lies in its flexibility.
Indeed, only two conditions must be fulfilled to recover the orig-
inal sources from the exclusive knowledge of the observations
[12], [37]. Firstly, the sources must be mutually statistically in-
dependent. Secondly, the transfer channel must be linear and
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Fig. 1. Typical examples of NSR, AF, and AFL signals.

instantaneous, and must generate linearly independent observa-
tions (in the sense that matrix A be full column rank). Since the
AA, the VA, and other sources arise from physically indepen-
dent bioelectric phenomena, it can also be assumed that they are
statistically independent. Furthermore, for the frequency range
of the ECG (below 100 Hz), bioelectric theory has modeled the
torso as an inhomogeneous volume conductor [23], [27]. Con-
sequently, any signal recorded at the body surface can be as-
sumed to arise as a linear instantaneous transformation of the
independent bioelectric sources and, therefore, BSS techniques
are appropriate for the estimation of the AA [29].

Depending on the separation problem, several BSS tech-
niques have been developed. For orthogonal mixtures (i.e.,
when the columns of A are orthogonal), PCA provides the
optimal solution and it only requires the sources to be uncorre-
lated (second-order independence) [19]. However, the mixing
matrix may well have an arbitrary structure, which discards
PCA as an appropriate solution. For a more general situation
of nonorthogonal mixtures, techniques based on ICA must be
employed [17], [20], which typically resort to the higher order
statistics (HOS) of the signals. Since the higher-order cumu-
lants of Gaussian signals are zero, ICA is unable to separate
Gaussian sources. For nonorthogonal mixtures of Gaussian
sources, some additional structure must be exploited. If the
sources have different spectra, temporal information may be
useful, and an algorithm based on the joint diagonalization of
several (second-order) autocorrelation matrices at different lags
[4] offers a reliable solution.

III. METHODS
A. Statistical Source Analysis

Depending on their nature, the sources contained in an ECG
recording can be divided into three types. VA sources are the
ECG components with the highest energy. These components
have a high amplitude during ventricular depolarization and re-
polarization (QRS complex and T wave, respectively), but the
rest of the time they present values close to zero due to the period
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Fig. 2. Diagram block of the proposed spatiotemporal algorithm for AA estimation.

of inactivity of the myocardium cells. Therefore, VA sources
possess supergaussian random distributions [8], even with kur-
tosis values above those of Laplacian distributions, which will
be confirmed in Section VI by computing the kurtosis of the es-
timated VA sources. In AF and AFL episodes, AA consists of
small and continuous wavelets with a cycle typically around 160
and 250 ms, respectively. A statistical analysis of the sources
shows that AA has quasi-Gaussian distributions [8], with kur-
tosis values very close to zero (as will be discussed later on).
However, AA waves have a characteristic spectrum, with a main
peak due to the refractory period, which can be located between
3.5 and 9 Hz depending on the patient. Finally, noise and other
artefacts are the contributions with the lowest energy, although
in more than a few leads they could show an amplitude of the
same order of magnitude as the atrial sources, or even higher.
The statistical behavior of the noise may be different for each
recording; even several noise sources with different statistical
behavior may be found in a single ECG. Hence, no assumption
about the noise pdf or correlation is made. The only noise as-
sumption included in the separation model we propose is that
the noise has a different spectrum from the AA source, which is
verified in practically all cases.

B. Two-Step Strategy

The fact that VA presents supergaussian distributions can be
exploited to remove ventricular components in the first stage,
which is implemented with ICA. Since ventricular components
appear at the ECG recording with higher energy than any other
components, this stage eliminates the major source of interfer-
ence. The nonventricular components (AA, artefacts and noise)
are the inputs of the second stage. In this stage, the characteristic
spectrum of the AA source is exploited in order to enhance AA
estimation. Fig. 2 illustrates a block diagram of the proposed
two-step methodology. Using this method, the AA can be esti-
mated in both AF and AFL arrhythmias.

1) First Stage: ICA: As it has been stated above, ICA tech-
niques are most suitable to separate independent non-Gaussian
sources. They are able to estimate the independent sources from
the analysis of the higher order statistics (HOS) of the multi-
lead signal [17]. Most ICA methods are based on the optimiza-
tion of a contrast function that maximizes non-Gaussianity. In-
deed, from the Central Limit Theorem it follows that maximiza-
tion of non-Gaussianity is equivalent to the maximization of in-
dependence. Several algorithms have been developed for this
purpose: some of them are based on information-theoretic con-
cepts, such as entropy and mutual information [3], [12]; a solu-

tion based on the joint diagonalization of fourth-order cumulant
matrices has also been proposed [7]; etc. All these algorithms
employ (explicitly or otherwise) HOS to maximize statistical
independence, and provide equivalent solutions under mild as-
sumptions. Considering the model in (1), ICA methods estimate
the separation matrix B such that the estimated sources

() = Bx(1) @)
fulfil certain statistical independence criterion. Among all ex-
isting ICA algorithms, in this study we have chosen an algorithm

that estimates non-Gaussianity as a function of the following ap-
proximation of negentropy .J(-) [17]

J(y) < [E[G(y)] - E[G()]]

G(y) = logcoshy 3)

where y is the output signal and v is a unit variance Gaussian
variable. The approximation of the negentropy combines the
simplicity of kurtosis with the robustness of negentropy, pro-
viding a solution which is both reliable and computationally ef-
ficient [17]. Furthermore, the maximization of the contrast func-
tion can be carried out by means of a fixed point algorithm that
provides very fast convergence [16]. Nevertheless, the aim of
this paper is not to emphasize the convenience of a determined
ICA algorithm, but to demonstrate the suitability of ICA as a
more general concept for this first processing stage.

ICA algorithms are especially equipped to extract all non-
Gaussian sources, but are unable to separate Gaussian sources
since their HOS are null. Hence, all Gaussian sources will ap-
pear mixed at the ICA output. The practical consequence over
AF recordings is that VA sources will be correctly extracted, but
the AA source can appear combined with other Gaussian-like
sources such as thermal noise and other artefacts. Due to the
very low energy of the AA signal, the separation of AA from all
these additional sources of interference becomes an important
necessary task. This task will be carried out in the second stage,
which is described in the next section.

The inputs to the second processing stage are the nonventric-
ular source components estimated by the first stage. The decision
as to which components belong to the ventricular subspace and
which components belong to the nonventricular subspace can be
done automatically. Due to the existence of the QRS complex,
the ventricular sources show high kurtosis values. On the other
hand, AA is quasi-Gaussian and, thus, it usually displays kur-
tosis values marginally different from zero. Consequently, a kur-
tosis-based threshold can be employed to distinguish between
ventricular and nonventricular sources. Preliminary experiments
show that a conservative kurtosis threshold of around 1.5 allows
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us to retain the AA information in the nonventricular subspace
(the signal subspace which lies orthogonal to that spanned by the
mixing-matrix columns associated to the ventricular sources)
and reject all other sources that contain QRS complexes.

2) Second Stage: Second-Order Blind Identification
(SOBI): The so-called SOBI technique aims at separating
a mixture of uncorrelated sources with different spectral con-
tent through a second-order statistical analysis which also takes
into consideration the source temporal information [4]. For this
purpose, SOBI seeks a transformation that simultaneously di-
agonalizes several correlation matrices at different lags. Since,
in general, no transformation may exist that accomplish such
a stringent condition, a function that objectively measures the
degree of joint (approximate) diagonalization (JD) at different
lags is employed instead.

Let us assume that the observations have been previously
whitened (which is the case in our problem, since the ICA step
involves prewhitening), and let us focus on the elementary case
of two sources and two observations. The correlation matrix C
of the whitened observations at a lag 7; is

C(r) = [Z H “
with
C(ri) = Elz(t)z" (t — 7:)] )

where E[ -] represents the expectation operator.
The real sources s and the whitened observations z are related
through a Givens rotation

z=Qs, Q:[

where 6 is an unknown rotation angle. The correlation matrix of
the sources, C’, at a lag 7; is

=% ] ™

cosf
sin 0

(6)

—sinf
cos 0

where
C'(r;) = E[s(t)sT(t — 7)) ®)

The goal of separating the AA from other sources of interfer-
ence is equivalent to finding an orthogonal transformation Q
from the whitened observations z. The source signals being un-
correlated, their covariance matrix at any lag shows a diagonal
structure. Hence, for sources with different spectra (i.e., with
different autocorrelation function) the goal is shown to be equiv-
alent to finding an orthogonal transformation that diagonalizes
C’ for each 7;, i.e., at all lags simultaneously. Since no solution
may exist that satisfies that strict condition, a JD criterion must
be defined.

Assuming that N different lags will be employed for JD, N
correlation matrices C’(7;) are evaluated, s = 1... N . The JD
criterion proposed in [4] (which is also employed in the ICA
method of [7]) is given by:

N
Q = argmax J(V), J(V) =) ||diag[V"C(r) V]|
i=1

©))

and V is a unitary matrix. Let us define a Nz2 matrix G and a
column vector of N elements u

G=[a—-d b+

u= Glcos20 sin26]T (10)

where a, b, ¢ and d are column vectors containing the respec-
tives matrix entries of the ith correlation matrix C(7;). Then,
JD can be measured through the following cost function [4]

F(#) =u'u (11)

which is exclusively a function of the rotation angle #. Hence,
the independence criterion has been transformed into the maxi-
mization problem of (11). The rotation angle that maximizes the
JD criterion allows the recovery of the original sources. Remark
that the maximization of this quadratic form can be efficiently
computed in closed-form as the eigenvector corresponding to
the largest eigenvalue of the 2 x 2 matrix GTG:; also, the cal-
culation of # does not even require trigonometric functions. For
more than two sources and two observations, the problem can
be solved by Jacobi-like pairwise iterations until convergence
[4].

Since the AA has a narrowband spectrum, the SOBI algo-
rithm is appropriate for estimating the AA. The number of ma-
trices for joint diagonalization and their time lags must be prop-
erly selected. Since the autocorrelation of the AA source in AF
episodes is quasiperiodic with a period around 160 ms—i.e., 160
samples at a sampling rate of 1 KHz —, correlation matrices
with time lags involving two cycles (that is, 320 ms) are chosen.
This choice guarantees that even for AF signals with larger AA
cycle the lag range spans at least one complete cycle length.
This condition is fulfilled even in the case of AFL arrhythmias,
with a cycle length between 200 and 300 ms. Choosing corre-
lation matrices at evenly spaced lags of 20 ms (i.e., a total of
17 correlation matrices) guarantees a high proportion of sig-
nificant (nonzero) autocorrelation values among the selected
lags with an affordable computational complexity. Indeed, this
choice achieved a good AA extraction performance in prelim-
inary experiments, as confirmed in the more thorough results
reported in the following sections.

IV. DATABASES

The fact that the AA is unknown in real recordings hinders
an in-depth experimental comparative study of AA extraction
methods. Hence, suitable simulated AF ECGs must be designed
in order to evaluate the performance of the proposed approach.
With the formulation described in Section IV-B, pseudoreal
ECGs are generated with known AA, which allows us to easily
compare the estimated and the real AA. Ultimately the method
is to be applied over actual AF episodes and, thus, a database of
such recordings (Section IV-B) is also employed to demonstrate
the suitability of the algorithm in real scenarios.

A. Pseudoreal AF Recordings

Several models for simulated AF signals have been already
proposed in previous works [30], [32]. However, the simulated
AF recordings created with those models differ considerably
from real AF recordings, since the AA which is added to each
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Fig. 3. Generation of synthesized AF ECG. The boxed areas are the regions
where the AF contribution dominates. These regions are singled out and then
extrapolated to generate the synthetized AA signal.

lead is generated from a single AA waveform. One of the ob-
jectives of this work is to develop a new model for synthesized
AF recordings that simulate as realistically as possible genuine
AF recordings. This new model is described as follows.

Since the AF signals are the superposition of VA and AA,
both activities can be obtained separately from real record-
ings and then added together. VA can be obtained from NSR
episodes, after correctly removing P-waves. The acquisition of
AA signals is more involved. A first idea would be to record
ECGs during ventricular asystole periods of AF patients, but
this option is unfortunately nonviable in most practical situa-
tions. Another alternative might consist of estimating the AA
from the ECG by employing a QRST cancellation technique,
like template matching and subtraction [5], [14] or the spa-
tiotemporal cancellation method [32]. However, this alternative
has been discarded, since the estimated AA could contain some
QRS residual, which could be particularly important in those
leads where the AA is hardly appreciable. In addition, the
resulting simulation model would not be applicable to evaluate
such QRST cancellation techniques since the simulation model
would match the AA estimation methodology. Taking into
consideration those limitations, we aim to define a simulation
model valid for different methodologies, which would allow
their fair comparison in a further study. We propose to simulate
the atrial wave by isolating the AA from T-Q intervals during
AF episodes and carefully extrapolate it between those seg-
ments. An example of AA generation is shown in Fig. 3. The
AA within T-Q intervals matches the ECG signal, and the AA
within Q-T intervals is reconstructed from the extrapolation
of two adjacents T-Q segments [8]. A simple extrapolation
method is used, where the fibrillatory cycles prior to the QRST
complex are replicated within the QRST interval, but linearly
weighted such that the weights are one at the beginning of the
interval and decrease down to zero at the end of the interval.
Analogously, the fibrillatory cycles following the QRST com-
plex are replicated within the QRST interval, and are weighted
from zero at the beginning of the interval rising up to one at the
end of the interval. The segments to be replicated are selected
so as to preserve the phase of the fibrillatory wave observed
within the T-Q intervals. Both contributions are combined to
build up the extrapolated AA wave within the QRST interval
[32]. This process is repeated for each lead, thus obtaining a
12-lead synthesized AA. Although the reconstructed AA sam-
ples do not exactly correspond to the true AA signal masked by
the QRST complex, this model preserves the general features

+

Synthesized AF
VAW MAWAAAMANTVNAA

Fig. 4. Generation of AF-episode ECG lead from synthesized VA and AA
signals.

of the AA signal observed in the different leads according
to a real AF recording. The resulting composite AA signal
is more realistic than that obtained by the ECD model [18],
which follows ICA’s generative pattern and, as a result, would
produce too optimistic results.

Following the proposed simulation model, the statistical prop-
erties of both VA and AA on which is based the separation algo-
rithm as well as the autocorrelation cycle of AA are preserved. In
this sense, the kurtosis of VA and AAis 12.2 + 5.8 and —0.17 +
0.68, respectively, for our simulated database. As will be con-
firmed in Section VI-B, the kurtosis values of the real VA in AF
episodes also follow a super-Gaussian distribution. On the other
hand, it is known that the heart rate variability in AF episodes is
higher thanin NSR. However, this observation does not influence
our approach, since the degree of Gaussianity is not affected by
this temporal oscillation. Also, time information (correlation at
different time lags) is only considered in a second processing
step where VA is mostly cancelled.

Furthermore, a rigorous model for synthesized AF signals re-
quires an additional constraint: the AF episode for the AA gen-
eration and the NSR episode must be acquired from the same pa-
tient. If both episodes came from different patients, the mixing
matrix for the AA would generally be different from that of the
NSR and, hence, the simulation model would not be realistic.
However, if both episodes are obtained from the same patient,
the synthesized AF signal approximates very accurately the con-
ditions and characteristics of an ECG recording with genuine
AF. In addition, it is desirable that both signals be acquired
during the same session, in order for the electrode position to
remain unaltered. This is only possible during a cardioversion
process at an electrophysiology lab. The AF episode is taken at
the beginning of the recording, before the cardioversion. The
cardioversion restores and stabilizes the NSR, which can then
be neatly recorded. The AA is synthetized from the AF episode
as described in the previous paragraph, whereas the VA is ob-
tained from the NSR episode after cardioversion. Finally, the
synthesized signals are created through the superposition of VA
and AA for each lead (Fig. 4). Following this simulation model,
10 pseudoreal ECGs were generated for our analysis, including
6 AF ECGs and 4 AFL ECGs.

B. Real AF Recordings

Twenty-five ECGs digitized during 30 s at 1-KHz sampling
rate with 16-bit amplitude resolution were employed for our
study. In order to demonstrate that the method is valid for AF
as well as AFL arrhythmias, the database included 14 AF ECGs
and 11 AFL ECGs. All recordings were obtained at an electro-
physiological laboratory from patients suffering from persistent
AF or AFL. All patients were under amiodarone treatment in
order to increase the refractory period.
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V. PERFORMANCE MEASUREMENT
A. Simulated AF ECGs

As explained in the previous section, the fact that the AA is
known in simulated AF ECGs enables a more accurate perfor-
mance analysis. The observations x are the combination of VA
(xva ) and simulated AA waves x5 : X = Xya +Xaa. Hence,
the estimated sources can be decomposed as

§(t) = Bx(t) = Bxya(t) + Bxaa(t) (12)

that is, the 7th source is recovered from a linear combination
of the leads given by the ith-row coefficients of the B matrix.
Accordingly, the AA source is recovered from a row, say baa,
defining a linear combination which aims to cancel the contri-
bution of the QRS complexes while trying to maximize the con-
tribution of the AA

-§AA(t) = bAAX(t) = bAAXVA(t) + bAAXAA(t). (13)

As observed in (13), the estimated AA source §5 4 presents two
components

e(t) = bAAXVA (t)

SAA(t) :bAAXAA(t). (14)

Since sa A is reconstructed from the actual AA and is not con-
taminated by VA, it can be considered as the pure AA source.
The term e mainly consists of residual VA, and hence can be
considered as an error or nondesired component. Note that this
error term is not only due to ventricular contributions, but also
to the noise present in xya. The noise that may be present in
XA A 1S inherent to this problem formulation of the problem and
it can neither be measured nor cancelled. However, due to the
higher amplitude of VA, the residual VA in the estimated AA
will usually be more important than any residual noise or in-
terference caused in the reference AA (saa) by an erroneous
estimation of the separating matrix B. Therefore, in general the
noise present in xa o will have a negligible effect on the pro-
posed performance measure.

In the light of this model, performance can be objectively
measured using a number of indexes. In the first place, the nor-
malized mean square error (NMSE) is defined as
E[(8aa — saa)?]
Since E[(8aa — saa)?] = E[e?], low values of NMSE indicate
an effective rejection of VA and associated interference in xvya
and, thus, an improved AA estimation performance. Another
objective performance parameter is the Pearson cross-correla-
tion coefficient (CC) between s o and 54 4. In addition, we pro-
pose the spectral concentration (SC) around the main frequency
peak f, as another indicator. This indicator will later be shown
to be useful in measuring performance in real AF recordings.
The SC in the band of the peak is based on the parameters em-
ployed for measuring the SC in ventricular fibrillation arrhyth-
mias [2], [24], and is computed as

Sosay, Paa(fi)
SC=SF7e
o' Paa(fi)

where Pa 4 is the power spectrum of the AA signal, which is
computed using the Welch’s method, with a 8192 points FFT,

NMSE = (15)

(16)

4096 sample size Hamming window and 50% overlapping; f
is the frequencies vector, and f5 is the ECG sample frequency.
The bandwidth considered for the SC computation is of 2 Hz
for a typical f;, of 6 Hz, which is sufficient even for those AF
episodes that show a wide-band spectrum with several peaks. In
the cases where the bandwidth of the AF signal was wider, this
parameter would be no longer valid and should be redefined.
For the simulated signals under test, it was verified that the SC
of the AA increased according to the error reduction (NMSE),
which in turn is associated with an improved AA estimation per-
formance. Hence, the correlation between SC and NMSE points
to the validity of the former as performance index of AA esti-
mation quality in real AF recordings, where the NMSE cannot
be measured. This outcome was consistent with the results ob-
tained on real signals, as confirmed in Section VI-B.

B. Real AF ECGs

AA extraction performance in real AF ECGs is very difficult
to measure objectively, because the signal to be estimated is not
known a priori. A sensible performance parameter is the degree
of SC around the main frequency peak [9]. The rationale for this
parameter lies in the fact that the AA spectrum is typically con-
densed around a single frequency, whereas the spectral content
of other components such as VA or noise is more spread out over
the frequency range. If the estimated AA signal is contaminated
with other nondesired components, the spectral content outside
the main frequency peak will become more significant and, thus,
the estimated AA will suffer a decrease in the SC around the
main peak. Hence, the method that provides an AA signal with
higher SC can be considered as the technique with higher per-
formance. The justification of SC as a valid performance index
(at least for the proposed method) is further endorsed by the cor-
relation between SC and NMSE found in simulated AF ECGs,
as commented at the end of the preceding section.

VI. RESULTS

A. Results With Simulated AF ECGs

The proposed two step approach was applied over a set of
10 simulated recordings with known AA content, and was com-
pared to the results obtained by applying only the first step, i.e.,
an ICA algorithm. As explained above, the FastICA fixed-point
algorithm was chosen as ICA method [16]. Several approaches
included in the ICALAB toolbox [10] have also been tested
(JADE, AMUSE, etc.), obtaining equivalent solutions. After ap-
plying ICA, at least one AA source was identified among the
whole set of 12 independent sources. Performance evaluation
was then measured in terms of NMSE and CCs. In addition,
the spectral concentration (SC) around the main frequency peak
was also computed. In those cases where more than one source
contained AA, it was selected the source that better matched the
known AA according to the performance parameters NMSE and
CC. However, after applying SOBI, the AA was present in only
one source for the signals under study.

Table 1. shows the results obtained. After applying the second
stage (i.e., SOBI), the NMSE is reduced up to 40% in average.
Correlation indexes also indicate an improvement in the estima-
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TABLE 1
PERFORMANCE INDEXES OF THE ESTIMATED AA IN SIMULATED ECGS

Tvpe Main ICA ICA - SOBI
YP®  Frequency NMSE (%)  CC SC(%) NMSE (%) CC SC (%)
Patient 1 AF 5.74 128.54 0.656 20.18 68.96 0.752 38.03
Patient 2 AF 4.78 114.02 0.687 32.76 74.04 0.759 42.32
Patient 3 AFL 3.59 42.61 0.825 31.74 31.13 0.861 38.15
Patient 4 AF 6.45 117.32 0.677 28.53 49.7 0.812 49.96
Patient 5 AF 5.38 45.60 0.830 50.70 21.54 0.906 65.55
Patient 6 AF 6.45 109.90 0.688 27.86 98.09 0.722 37.23
Patient 7 AFL 3.35 72.16 0.766 19.53 27.08 0.889 35.37
Patient 8 AF 7.29 148.14 0.640 13.14 59.39 0.787 62.43
Patient 9 AFL 4.42 43.03 0.831 20.76 20.08 0.906 60.88
Patient 10 AFL 3.60 19.55 0.908 55.18 19.77 0.907 60.39
Mean 74.19 0.751 30.04 46.98 0.830 49.03
TABLE Il wl ' ' -
SPECTRAL ANALYSIS OF ESTIMATED AA IN REAL ECGS -
S —
< 70t
|
Main Spectral concentration -g 60 |
Frequency (Hz) ICA ICA-SOBI £ T
AF Patients 6.19-0.73  37.1=11.8% 53.7+11.7% 8 sl :
AFL Patients 4.06 + 0.65 54.5+194% 652=+13.9% 3 |
= 40t ‘ L
tion of the AA. After applying ICA, there exists a 0.751 correla- a 307 e
tion between the estimated and the real AA. However, if SOBI 20t _:_
is also applied, the correlation indexes arise up to 0.830. Con- ICA ICA-SOBI A CA-SOBI
cerning the spectral concentration around the main frequency AF AFL
peak, it can b.e observed that the AA e.Stlmated by using the Fig.5. Spectral concentration of the AA for AF and AFL (‘box-and-whiskers’
complete spatiotemporal approach has higher spectral concen-  plop).

tration than that estimated by ICA. The validity of this parameter
for performance evaluation will be further discussed in the next
section.

B. Results With Real AF ECGs

ICA and ICA-SOBI were applied to the database of 14 AF
ECGs and 11 AFL ECGs. In all cases, it was possible to es-
timate the AA source. A spectral analysis was carried out in
order to detect the main frequency. The AA source estimated
with ICA provides the same frequency as the AA source esti-
mated with ICA-SOBI, being of 6.19 + 0.73 Hz for AF and
4.06 4 0.65 Hz for AFL. However, the AA source obtained with
ICA-SOBI has a higher spectral concentration around the main
frequency peak. In average, ICA obtains a spectral concentra-
tion of 37.1% for AF and 54.5% for AFL. The spectral concen-
tration is increased with ICA-SOBI up to 53.7% and 65.2% for
AF and AFL, respectively. Table II and Fig. 5 summarize the
spectral analysis of the AA. The higher spectral concentration
of the AA signal obtained after SOBI processing indicates that
part of the noise present in the AA signal after ICA has been
removed. Fig. 6 shows the results from patient 3, where the es-
timated AA obtained by ICA (top) is free from QRS complexes
but it still contains noise, giving rise to a smeared frequency
distribution with spurious peaks. After the SOBI stage, the esti-
mated AA (bottom) is successfully denoised, its frequency spec-
trum closely resembling that of a typical AF signal.

Regarding the kurtosis values of the VA and the AA, the re-
sults confirm the hypothesis employed in the separation model.
Indeed, VA is supergaussian, with a kurtosis value of 16.5+5.9

Fy 5.26Hz
SC: 18.4%

Normalized
amplitude
S I
=3 =3
%) IS

Fy: 5.26Hz
SC: 47.6%

Normalized
amplitude
2D oo s
(=]

(3]

0
0 2 4 6 8 10

second Frequency

Fig. 6. An example where the proposed ICA-SOBI outperforms ICA.

TABLE III
KURTOSIS VALUES OF VENTRICULAR AND ATRIAL SOURCES

kva kaa
Simulated ECGs 122+5.8 -0.17+0.68
AF Patients 149+5.6 0.03+0.34
AFL Patients 18.5+59 -0.52+0.38

for the ECGs under test. By contrast, AA cannot be assumed
not to be Gaussian, with a kurtosis value of —0.21 £ 0.45 for
this database. Table III details the kurtosis values of VA and
AA sources for AF and AFL patients. The significance level
(p-value) of these results was obtained by means of a kurtosis
statistical test about the gaussianity of VA and AA sources. A
t-student test where the null hypothesis is that the sources are
Gaussian (i.e., the kurtosis distribution have zero-mean value)
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Fig.7. Histogram and kurtosis values (k) of the estimated VA and AA sources.
The continuous solid lines on the right-hand side plots represent the closest
Gaussian approximations to the observed distributions.

was performed. For the kurtosis distribution of AA, we obtain
p = 0.236 (the hypothesis null should not be discarded), and
for the kurtosis distribution of VA we obtain p = 1.22 - 1013
(the hypothesis null can be discarded). The histograms of VA
and AA sources from patient 10 are shown in Fig. 7, where
the normalized Gaussian distribution has been superimposed
for comparison. As can be observed, the VA is supergaussian,
clearly more ‘peaky” and with heavier tails than the Gaussian
pdf, whereas the AA exhibits a near-Gaussian distribution. The
fact that the estimated ventricular and atrial sources fulfil the
hypothesis assumed in the problem formulation regarding their
statistical behavior and spectral characteristics validates the pro-
posed approach for the enhanced estimation of AA in patients
with AF.

VII. STUDY LIMITATIONS

The BSS-based AA-extraction approach presented in this
paper has been validated using a self-constructed database
of simulated AF recordings and an own database of real AF
ECGs, as previously explained. Although the proposed val-
idation methodology introduces some useful concepts and
the results are consistent, this study presents some inherent
limitations that are considered next.

Regarding the simulation model for generating AF record-
ings, the 12-lead synthesized AA contains reconstructed sam-
ples within the intervals corresponding to the QRST waves.
Therefore, the number of reconstructed points is considerable
with respect to the number of true AA samples. This fact
could render the extrapolated AA information rather inaccu-
rate, specially near the center of the extrapolation window. This
limitation could be addressed, e.g., by employing ventricular
asystole periods registered from AF patients. These recordings
consist of several seconds length ECG segments without any
VA, which can be triggered by blocking the atrioventricular
conduction (His bundle) within the heart. This action is highly
invasive and, therefore, is not applicable or convenient in most
situations.

In addition, the SC parameter may not be sufficiently discrim-
inating in real AF recordings. Indeed, the SOBI algorithm em-
ployed in the second separation stage tends to enhance narrow-

band components (with high SC) in wide-band noise. Although
the SC parameter has been contrasted and shows a high de-
gree of correlation with other objective parameters in simulated
recordings, this index could unfairly benefit the proposed ap-
proach against other methods. Alternative parameters should
also be employed to assess the performance of the estimated
AA. In this respect, further research is needed to search for
new parameters to determine either numerically or qualitatively
(e.g., more clinical indexes) the correct estimation of the desired
source.

VIII. DISCUSSION AND CONCLUSIONS

A typical feature of ICA-based BSS techniques is that they
are able to estimate independent sources by exploiting spatial
information from multilead signals. Usually, temporal infor-
mation is not taken into account. This paper has demonstrated
that the source temporal information is indeed relevant in the
estimation of AA from ECG recordings of AF episodes. A
spatiotemporal BSS algorithm adapted to this specific problem
has been designed and implemented. The algorithm consists of
an initial spatial-HOS based separation stage (ICA) aiming to
remove non-Gaussian interference (mainly VA), followed by
a time-SOS based separation stage (SOBI) aiming to cancel
Gaussian-like noise. Hence, the AA can be separated not only
from VA, but also from other independent sources of noise and
interference regardless of their distribution. As an important
advantage, the BSS-based approach does not require a previous
R-peak detection, thus avoiding any subsequent problems
such as sensitivity to ectopic beats, false negatives/positives
in automated processes, etc. With this new method, results
on synthesized AF signals have experienced a significant im-
provement in AA estimation performance. A study with real
AF signals has further validated the suitability of the proposed
method.

This work has also tackled the problem of synthesizing pseu-
doreal signals for ICA. The proposed approach does not take
into account the generative model of instantaneous linear mix-
tures of the bioelectric sources assumed by BSS techniques in
this biomedical problem. This detachment from the assumed un-
derlying signal model allows the definition of more significant
indexes for objective performance evaluation and comparison.

In addition, the lack of objective parameters to measure per-
formance in real AF recordings has led us to propose a new
parameter based on the spectral concentration, which shows a
correlation with the AA estimation quality. In the experimental
results, AA estimation has always improved with the application
of the second separation stage based on the exploitation of tem-
poral information. Even in some ECGs where ICA had already
estimated the AA accurately (e.g., because the existing AA was
far from Gaussian), the second step has been able to maintain
the separation quality. Since the statistical behavior of the AA
source is not a priori known, it seems sensible to make use of
the full two-step approach in all cases.

This contribution improves the existing solutions for AF anal-
ysis. Once the AA has been extracted, it can be further ana-
lyzed for spectral characterization, pattern recognition, time-
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frequency parameter extraction, etc. Some clinical applications
derived from the AA analysis could involve, e.g., the prediction
of AF recurrence after successful cardioversion. A significant
number of patients return to sustained AF in few days after elec-
trical cardioversion. The analysis of the AA could contribute to
the prediction of AF recurrence in order to prevent some pa-
tients from suffering ineffective electrical discharges. Other in-
teresting application could be based on the analysis of parox-
ysmal AF (PAF), which appears and terminates spontaneously.
It is commonly accepted that PAF is a precursor of persistent
AF. Improved knowledge about the mechanisms that cause PAF
and its spontaneous termination may introduce improvements in
the treatment of AF. The proposed methodology, thus, emerges
as a helpful tool in clinical diagnosis.
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