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Optimal Step-Size Constant Modulus Algorithm

Vicente Zarzoso, Member, IEEE, and Pierre Comon, Fellow, IEEE

Abstract— The step size leading to the absolute minimum of
the constant modulus (CM) criterion along the search direction
can be obtained algebraically at each iteration among the roots
of a third-degree polynomial. The resulting optimal step-size
CMA (OS-CMA) is compared with other CM-based iterative
techniques in terms of performance-versus-complexity trade-off.

Index Terms— Adaption coefficient, blind equalization, CMA,
exact line search, SIMO and SISO channels.

I. INTRODUCTION

AN important problem in digital communications is the
recovery of the data symbols transmitted through a

distorting medium. The constant modulus (CM) criterion
is arguably the most widespread blind channel equalization
principle [1], [2]. The CM criterion generally presents local
extrema — often associated with different equalization delays
— in the equalizer parameter space [3]. This shortcoming
renders the performance of gradient-based implementations,
such as the well-known constant modulus algorithm (CMA),
very dependent on the equalizer impulse response initializa-
tion. Even when the absolute minimum is found, convergence
can be severely slowed down for initial equalizer settings with
trajectories in the vicinity of saddle points [4], [5]. The con-
stant value of the step-size parameter (or adaption coefficient)
must be carefully selected to ensure a stable operation while
balancing convergence rate and final accuracy (misadjustment
or excess mean square error). The stochastic gradient CMA
drops the expectation operator and approximates the gradient
of the criterion by a one-sample estimate, as in LMS-based
algorithms. This rough approximation generally leads to slow
convergence and poor misadjustment, even if the step size is
carefully chosen.

As opposed to recursive (or sample-by-sample) algorithms,
block (or fixed-window) methods obtain a more precise gra-
dient estimate from a batch of channel output samples, im-
proving convergence speed and accuracy [6]. Tracking capa-
bilities are preserved as long as the channel remains stationary
over the observation window. Moreover, sample-by-sample
versions are easily obtained from block implementations by
considering signal blocks of one data vector and iterating
over consecutive received vectors. The block-gradient CMA
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(simply denoted as CMA hereafter) is particularly suited to
burst-mode transmission systems. Unfortunately, the multi-
modal nature of the CM criterion sustains the negative impact
of local extrema on block implementations. Asymptotically
(for sufficient block size), the least-squares CMA (LSCMA)
[7] guarantees global convergence to a cost function stationary
point, for any initial weight setting, with a cost per iteration
similar to CMA’s. This is achieved at the expense of an
increased computational overhead due to the calculation of the
data matrix pseudoinverse or its QR factorization, needed to
solve the LS step at each iteration. In the QR-CMA method of
[6], data prewhitening through the QR decomposition of the
sensor-output matrix simplifies the block-CMA iteration, so
that bounds on its step size can be found to ensure monotonic
convergence. The recently proposed recursive least squares
CMA (RLS-CMA) [8], which operates on a sample-by-sample
basis, also proves notably faster and more robust than the
classical CMA. The derivation of the RLS-CMA relies on
an approximation to the CM cost function in stationary or
slowly varying environments, where block implementations
may actually prove more efficient in exploiting the avail-
able information (the received signal burst). Interestingly, the
RLS-CMA turns out to be equivalent to the recursive CMA
(RCMA), put forward over a decade earlier in [9]; it also bears
close resemblance to the orthogonalized CMA (O-CMA) of
[10].

Analytical solutions to the minimization of the CM criterion
are developed in [11], [12]. After solving a linearized LS
problem, these methods require to recover the right structure
of the solution space when multiple equalization solutions
exist. In the general case, this can be achieved through a
costly QZ matrix iteration. In addition, special modifications
are required for input signals with a one-dimensional (i.e.,
binary) alphabet [11]–[13]. More importantly, these analytic
methods aim at exact solutions to the CM criterion, which
may yield suboptimal equalizers in the presence of noise.

A judicious alternative to existing techniques consists of
performing consecutive one-dimensional absolute minimiza-
tions of the CM cost function. This technique, known as exact
line search, is generally considered computationally inefficient
[14]. However, it was first observed in [15] that the value of
the adaption coefficient that leads to the absolute minimum
of most blind cost functions along a given search direction
can be computed algebraically. It was conjectured that the use
of this algebraic optimal step size could not only accelerate
convergence but also avoid local extrema in some cases.
The present Letter carries out a more detailed (yet concise)
theoretical development and experimental evaluation of the
optimal step-size CMA (OS-CMA) derived from this idea,
which was briefly presented in [16] under a different name.
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II. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbols {sn} are transmitted at a known
baud-rate 1/T through a time dispersive channel with impulse
response h(t). The channel is assumed linear and time-
invariant (at least over the observation window), with a stable,
causal and possibly non-minimum phase transfer function, and
comprises the transmitter pulse-shaping and receiver front-end
filters. The channel order is M baud periods. Assuming perfect
synchronization and carrier-residual elimination, fractionally-
spaced sampling by a factor of P yields the discrete-time
channel output

xn =
M∑

k=0

hksn−k + vn (1)

in which xn = [x(nT ), x(nT + T/P ), . . . , x(nT + T (P −
1)/P )]T ∈ C

P , x(t) denoting the continuous-time baseband
received signal. Similar definitions hold for hk and the addi-
tive noise vn. Eqn. (1) represents the so-called single-input
multiple-output (SIMO) signal model, and reduces to the
single-input single-output (SISO) model for P = 1. The SIMO
model is also obtained if spatial diversity (e.g., an antenna
array) is available at the receiver end, with or without time
oversampling, and can easily be extended to the multiple-input
(MIMO) case.

To recover the original data symbols from the received sig-
nal, a linear equalizer is employed with finite impulse response
spanning L baud periods f = [fT

1 , fT
2 , . . . , fT

L ]T ∈ C
D,

D = PL, fl = [fl,1, fl,2, . . . , fl,P ]T ∈ C
P , l = 1, . . . , L.

This filter produces the output signal yn = fHx̃n, where
x̃n = [xT

n , xT
n−1, . . . , xT

n−L+1]
T ∈ C

D. In these conditions,
the channel effects can be represented by a block Toeplitz
convolution matrix with dimensions D × (L + M) [3], [17].

The equalizer vector can be blindly estimated by minimiz-
ing the CM cost function [1], [2]:

JCM(f) = E
{(|yn|2 − γ

)2}
(2)

where γ = E{|sn|4}/E{|sn|2} is a constellation-dependent
parameter. The CMA is a gradient-descent iterative procedure
to minimize the CM cost. Its update rule reads

f(k + 1) = f(k) − µg(k) (3)

where g def= ∇JCM(f) = 4E
{
(|yn|2−γ)y∗

nx̃n} is the gradient
vector at f , symbol µ represents the step-size parameter and k
denotes the iteration number. In the sequel, we assume that a
block of length Nd baud periods xn is observed at the channel
output, from which N = (Nd − L + 1) received data vectors
x̃n can be constructed.

III. OPTIMAL STEP-SIZE CMA

A. Exact Line Search

Exact line search consists of finding the absolute minimum
of the cost function along the line defined by the search
direction (typically the gradient) [14]:

µopt = arg min
µ

JCM(f − µg). (4)

In general, exact line search algorithms are unattractive be-
cause of their relatively high complexity. Even in the one-
dimensional case, function minimization must usually be
performed using costly numerical methods. However, as orig-
inally observed in [15] and later also remarked in [16], the
CM cost JCM(f − µg) is a polynomial in the step size µ.
Consequently, it is possible to find the optimal step size µopt

in closed form among the roots of a polynomial in µ. Exact
line minimization of function (2) can thus be performed at
relatively low complexity.

B. Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the
derivative of JCM(f −µg) with respect to µ is the 3rd-degree
polynomial with real-valued coefficients:

p(µ) = dµ3 + d2µ
2 + d1µ + d0

d3 = 2E{a2
n} d2 = 3E{anbn}

d1 = E{2ancn + b2
n} d0 = E{bncn} (5)

where an = |gn|2, bn = −2IRe(yng∗n), and cn = (|yn|2 − γ),
with g = gHx̃n. Alternatively, the coefficients of the OS-CMA
polynomial can be obtained as a function of the sensor-output
statistics, calculated before starting the iterative search. These
two equivalent forms of the OS-CMA coefficients are derived
in [18], [19].

Having obtained its coefficients, the roots of 3rd-degree
polynomial (5) can be extracted with standard algebraic pro-
cedures such as Cardano’s formula, or other efficient iterative
methods [20], [21].1 The optimal step size corresponds to
the root attaining the lowest value of the cost function, thus
accomplishing the global minimization of JCM in the gradient
direction. When complex conjugate roots appear, the real root
typically provides the lowest equalizer output mean square
error (MSE). Once µopt has been determined, the filter taps
are updated as in (3), and the process is repeated with the new
filter and gradient vectors, until convergence. This algorithm
is referred to as optimal step-size CMA (OS-CMA).

To improve numerical conditioning in the determination of
µopt, gradient vector g should be normalized. This normal-
ization does not cause any adverse effects since the relevant
parameter in the optimal step-size technique is the search
direction g̃ = g/‖g‖.

C. Computational Complexity

Table I summarizes the OS-CMA’s computational cost in
terms of the number of real-valued floating point operations
or flops (a flop represents a multiplication followed by an
addition; multiplies and divisions are counted as flops as well).
Also shown is the cost for other CM-based algorithms such
as the CMA, the LSCMA [7], the QR-CMA [6] and the
RLS-CMA [8], [9]. Complex-valued signals and filters are
assumed; rough estimates of complexity for the real-valued
signal scenario can be obtained by dividing the flop figures by
4. For typical values of (D,N), the OS-CMA is more costly
per iteration over the observed signal block than the other

1The MATLAB code of a general algorithm for extracting the roots of a
3rd-degree polynomial is given in [18] (see also [14]).
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TABLE I

COMPUTATIONAL COST IN NUMBER OF REAL-VALUED FLOPS FOR SEVERAL CM-BASED ALGORITHMS. D: NUMBER OF TAPS IN EQUALIZER VECTOR; N :

NUMBER OF DATA VECTORS IN OBSERVED SIGNAL BURST. THE BOTTOM HALF OF THE TABLE CORRESPONDS TO THE EXPERIMENTAL SET-UP OF

SECTION IV AND FIGS. 1–2.

Flops CMA LSCMA QR-CMA RLS-CMA OS-CMA

(D, N ) initialization — 4D2N 4D2N — —
per block iteration 4(2D + 1)N (8D + 5)N (8D + 5)N 2D(7D + 10)N 2(6D + 7)N

(4, 199) initialization 0 12736 12736 0 0
per block iteration 7164 7363 7363 60496 12338
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Fig. 1. Performance vs. complexity trade-off of CM-based algorithms with
QPSK source, signal bursts of Nd = 200 symbols, equalizer length L = 2
baud periods, oversampling factor P = 2, SNR = 20 dB, 1000 Monte Carlo
runs. (a)Linearly invertible 4 × 4 channel convolution matrix (channel order
M = 2). (b) Lack of linear invertibility of the channel, with a 4× 6 channel
convolution matrix (channel order M = 4)

CM-based algorithms except the RLS-CMA. The initial cost
and the cost per iteration are of order O(D4N) and O(D4),
respectively, with the second form of the OS-CMA polynomial
[18], [19].

IV. EXPERIMENTAL RESULTS

We evaluate and compare the equalization quality as a func-
tion of computational cost (performance vs. complexity trade-
off) achieved by the CM-based methods considered in this
Letter. Bursts of Nd = 200 baud periods are observed at the

output of a T/2-spaced channel (P = 2) excited by a QPSK
source (γ = 1) and corrupted by complex circular additive
white Gaussian noise with 20-dB SNR. For L = 2, these
parameters result in an equalizer vector f composed of D = 4
taps. The channel impulse response coefficients are randomly
drawn from a normalized complex Gaussian distribution. After
a given number of iterations, performance is measured as the
MSE between the equalizer output and the original channel
input. Results are averaged over 1000 channel, source and
noise realizations. For each plot in the figures, markers are
placed at block iterations [1, 2, 3, 5, 8, 14, 24, 41, 69, 118, 200].
We set µ = 10−3 for the conventional fixed step-size CMA (a
value found empirically to provide fastest performance while
preventing divergence in our simulation set-up), and the typ-
ical forgetting factor λ = 0.99 and inverse covariance matrix
initialized at the identity for the RLS-CMA [8]. Double first-
tap initializations are chosen for the equalizer vectors. Two
scenarios are considered, depending on the linear invertibility
of the channel matrix.

Scenario 1: linearly invertible channel. A channel order
M = 2 yields an equivalent 4× 4 channel convolution matrix
that can be perfectly inverted in the absence of noise, thus
guaranteeing the global convergence of the fractionally-spaced
CMA [17]. Fig. 1(a) shows that the OS-CMA dramatically
outperforms the conventional fixed step-size CMA and slightly
improves on the other CM-based methods at low complexity.

Scenario 2: lack of linear invertibility. A channel order
M = 4 results in a 4× 6 channel convolution matrix. Despite
the lack of linear invertibility of the channel, a linear equalizer
may still attempt to estimate the channel input at an extraction
delay with reasonably low MSE. As shown in Fig. 1(b),
the OS-CMA’s quality-cost trade-off is only surpassed by
the RLS-CMA’s for sufficient complexity. In both scenarios,
results at the reported 20-dB SNR level are quite representative
of the methods’ relative performance under the same fixed
complexity over a wider [0, 40]-dB SNR range.

Optimal step-size trajectory. The average evolution of the
OS-CMA’s optimal step size in the above experiments is
represented in Fig. 2. Depending on the cost function shape
(which is determined by the actual channel, source and noise
realizations), the optimal step size may take negative values
at a given iteration. This fact may explain the peaks observed
in the curves. Nevertheless, the optimal step size shows a
monotonically decreasing trend.

V. CONCLUSIONS

Global line minimization of the CM cost function can be
carried out algebraically by finding the roots of a 3rd-degree
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Fig. 2. Optimal step-size average trajectory in the simulation scenarios of
Fig. 1(a) (dashed line) and Fig. 1(b) (solid line).

polynomial with real coefficients. The resulting OS-CMA
presents a performance versus complexity trade-off similar
to the LSCMA [7], the QR-CMA [6] and the RLS-CMA
[8], [9], slightly improving on those methods when perfect
equalization conditions are not met. Due to space constraints,
the numerical study presented in this Letter is of rather
limited scope, and thus needs to be completed with a more
thorough theoretical and experimental analysis of the OS-
CMA technique evaluating its performance against a variety of
system parameters such as block size, SNR, equalizer length,
channel conditioning, etc. Indeed, additional experimental
results reported in [18], [19] seem to point out that the optimal
step-size strategy arises as a promising practical approach
to improving the performance of blind equalizers in burst-
mode transmission systems. The continuation of this work
should also include the incorporation of the optimum step-
size scheme in alternative blind and semi-blind criteria for
equalization and beamforming. A first step in this direction
has already been taken in [22], [23].
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