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performance improves to 3% on average (from 2% minimum to 6%
maximum) when we first carry out the proposed unsupervised initial-
ization of the first-layer features, again with approximately equal num-
bers of false alarms and misdetections (97% accuracy, 98.5% precision,
and 97% recall). (The decision threshold of the output node is set at
zero, i.e., all positive output values are judged as vehicles while nega-
tive values are for nonvehicles.)

In contrast with the results above for the multiview inputs, the results
of the 3-D CNN trained on the single-view data are worse by 40%
on average when tested on the multiview 94-object test set, indicating
that the multiview input is indeed important for improved performance.
When the multiview data are also made available to the 3-D CNN for
training in the single-view fashion (one inputind = 0 in Fig. 6) its test
results are still worse but only by 10% on average, suggesting that the
data specifics might be responsible for the reduced performance gain.

IV. CONCLUSION

We presented a useful framework for categorization of segmented
3-D data via convolutional learning systems. The framework is based
on extensions and enhancements of the known 2-D convolutional
neural network. We implemented the SMD method to train our 3-D
CNN in the supervised mode. We demonstrated noticeable perfor-
mance improvements when the supervised training is preceded by our
proposed unsupervised training of the first-layer features, as well as
when the multiview representation of the object is used as the input.

Our approach is advantageous over published approaches of tem-
plate matching [2], [4] and any projection method in general because it
is still possible to loose valuable information about 3-D features when
projecting onto 2-D.

Though the discussed application utilizes 3-D data obtained by a
lidar, the approach itself is clearly not limited to a specific volumetric
sensor. Future work may include 1) more extensive experimentation
with this system employing larger, multiclass data sets and opti-
mization of our architectural and training (hyper)parameters, and 2)
improving computational efficiency of our implementation by com-
bining sparsity of object representation with naturally parallelizable
CNN computations.
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A Contrast Function for Independent Component
Analysis Without Permutation Ambiguity

Vicente Zarzoso, Pierre Comon, and Ronald Phlypo

Abstract—This brief deals with the problem of blind source separation
(BSS) via independent component analysis (ICA). We prove that a linear
combination of the separator output fourth-order marginal cumulants
(kurtoses) is a valid contrast function for ICA under prewhitening if the
weights have the same sign as the source kurtoses. If, in addition, the
source kurtoses are different and so are the linear combination weights,
the contrast eliminates the permutation ambiguity typical to ICA, as the
estimated sources are sorted at the separator output according to their
Kkurtosis values in the same order as the weights. If the weights equal the
source kurtoses, the contrast is a cumulant matching criterion based on
the maximum-likelihood principle. The contrast can be maximized by
means of a cost-efficient Jacobi-type pairwise iteration. In the real-valued
two-signal case, the asymptotic variance of the resulting Givens angle
estimator is determined in closed form, leading to the contrast weights
with optimal finite-sample performance. A fully blind solution can be
implemented by computing the optimum weights from the initial source
estimates obtained by a classical ICA stage. An experimental study
validates the features of the proposed technique and shows its superior
performance compared to related previous methods.

Index Terms—Blind source separation (BSS), contrast functions, inde-
pendent component analysis (ICA), Jacobi optimization, kurtosis, perfor-
mance analysis.

I. INTRODUCTION

We consider the problem of blind source separation (BSS) where
instantaneous linear mixtures of N possibly complex-valued sources
s = [51,52,...,5v]7 € CV are observed on N sensors. After spa-
tially prewhitening the data, the observation model takes the form

z = Qs (D
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where Q is an unknown (N x N) unitary matrix, and vector z €
CY represents the whitened observations. The goal is to recover the
source realizations from the sole observation of the whitened realiza-
tions. To this end, a separating matrix F is sought so that the separator
output vector y = Fz is equal to the source vector s up to admissible
indeterminacies.

Under the assumption of statistically independent sources, these can
be estimated with the tool of independent component analysis (ICA)
[4]. ICA is typically performed by means of contrast functions quanti-
fying the statistical independence of the separator-output components.
Most of these contrasts are functions of cumulant-based approxima-
tions of information-theoretical measures such as maximum likelihood
(ML) and mutual information (MI) [3], [4]. As in the contrast max-
imization (CoM2) method of [4] based on the sum of the separator-
output squared kurtoses, conventional ICA can at best obtain a source-
vector estimate of the form y = APs, where A is an invertible diag-
onal matrix and P is a permutation matrix. While the scale and phase
indeterminacy represented by A is immaterial in most applications, the
permutation ambiguity can lead to an increased computational com-
plexity in situations where only a source, or a small set of sources, is
required. In sequential separation schemes, failure to find the source(s)
of interest among the first extracted components can also result in a
poor signal estimation quality caused by error propagation through suc-
cessive deflation stages [6]. To partially overcome these drawbacks, the
contrast recently presented in [10] fixes the permutation ambiguity be-
tween sources with different kurtosis signs if these signs are known
a priori. A computationally efficient Jacobi-type signal-pair sweeping
algorithm can be employed to perform source separation or extraction
relying on this contrast.

This brief takes a step further in this line of research. A linear com-
bination of the separator-output kurtoses is proven to be a contrast
under certain assumptions on the weight coefficients relative to the
source kurtosis values (Section III). The contrast of [10] and the cu-
mulant-based approximate ML principle of [3] appear as particular in-
stances of the new criterion. In addition, the new contrast eliminates
the permutation ambiguity if the source kurtoses are distinct and so are
the weights. As in [4] and [10], the optimization of the new contrast
function can be performed by the cost-effective Jacobi-like iterative
technique (Section IV). In the real-valued two-signal case, the asymp-
totic variance of the resulting Givens angle estimator is determined in
closed form (Section V). In most practical settings, however, the source
statistics are not known in advance. To surmount this difficulty, a fully
blind solution with improved performance can still be implemented by
using the weight ratios with optimal finite-sample performance com-
puted from the sources estimated by a classical ICA stage (Section VI).
Numerical experiments illustrate the comparative performance of the
proposed technique (Section VII).

II. PRELIMINARIES AND ASSUMPTIONS

In what follows, all random variables are assumed to have zero mean
and unit variance; this conventional standardization is enforced by the
prewhitening process and preserved under unitary transformations. The
separator-output fourth-order marginal cumulant or kurtosis, defined
as i, = Cum{y:, i, y; .y}, is linked to the whitened observation
fourth-order cumulants Ynpe = Cum{zn,, zn, 2, z; } through the
multilinear relationship

Hi = Z FimFinF;;)Fiz')'/mnpq (2)
mnpq
where F;; = [F];; and symbol * stands for complex conjugation. If

we denote G the global filter, i.e., G = FQ with elements [G];; =
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Giij, the separator-output cumulants can also be related to the source
kurtoses &, as

N
i = Z |Gin|4"{n- (3)

n=1

In the sequel, indices n are assumed, without loss of generality, to be
such that ,, is nondecreasing, i.e., Kn41 > Kn, V7.

1) First Assumption (Al): Assume that the first p sources are known
to have negative kurtosis k, < 0,1 < n < p, and the remaining
(N — p) have positive kurtosis s, > 0,p < n < N.

Denote S the set of sources satisfying this assumption, and ) the set
of observations generated by the orthogonal group Q acting on §. The
following result is proven in [10].

Proposition 1: The optimization criterion defined as

N

V. (y) = Z&'lli 4)

=1

where 2, = —1for1 <i < p,and=;, = 1 forp < i < N is a contrast
function over the set of observations ) = Q - S.

2) Second Assumption (A2): Assume that the real numbers {«; }f\: 1
are related to the unknown source kurtoses {#;}/w; via an unknown
but strictly increasing function f(-) passing through the origin: o; =
fri).

In other words, we know not only how many positive and negative
kurtoses there are (as in Assumption A1), but we also know how many
are equal and which ones. For instance, if &1 < as < a3 < 0 < oy,
then it means that k1 < k2 < k3 < 0 < k4. Note that because {x;}
are nondecreasing, so are {a; }. In practice, we often have enough in-
formation to know such an ordering, but not enough to know the source
kurtosis values with good accuracy. This lack of accuracy prevents us
from resorting to the ML criterion [3], and we are generally bound to
ignore the knowledge of ordering and execute a standard ICA algo-
rithm [4]. The contrast proposed in Section III, while incorporating
some prior knowledge on the source kurtosis values, is rather robust
to inaccuracies in their estimation. This feature will be illustrated in
the experiments of Section VII.

III. NEwW CONTRAST FUNCTION

Proposition 2: Under Assumption A2, the optimization criterion
N
Valy) = o ®)
=1

is a contrast function over the set of observations Y = Q - S.

See part A of the Appendix for a proof. Now, it was shown in [3] that,
for independent sources and prewhitened observations, the fourth-order
cumulant approximation to the ML function results in expression (5)
with a; = k;, 1 < @ < N (see [3, eq. (3.9)]). This cumulant-based
approximation, however, was never shown to be a contrast. The proof
presented in [8] for a similar cumulant-matching approach requires the
sources to have the same cumulant sign. Proposition 2 not only proves
that the approximate ML criterion is indeed a contrast whatever the
source kurtosis signs, but also extends its validity to other values of
{a; Y, as long as they fulfill Assumption A2. Moreover, we show
next that this contrast makes it possible to recover the sources in an
order specified beforehand by these coefficients.

Proposition 3: If ¥ (y) = ¥u(s), then y = APs, where permu-
tation P is equal to the identity matrix for every row ¢ (or column 7)
for which a;; # «;, ¢ # j, and the entries of diagonal matrix A are of
unit modulus.
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This result is proven in part B of the Appendix. Proposition 1 (which
is also Proposition 1 of [10]) may now be seen as a particular case
of Proposition 2, where coefficients «; are set to £1 according to the
source kurtosis signs. However, if the source kurtosis values are all dis-
tinct, Proposition 3 shows that the maximization of contrast (5) guaran-
tees the recovery of the sources in the order determined by such values
relative to weight coefficients «;. The permutation ambiguity typical
to ICA is thus avoided with the use of the new contrast. Again, perfect
knowledge of the source kurtoses is not necessary for resolving the per-
mutation ambiguity. Rough guesses of these quantities may suffice, as
itis only required that {ov; }7_, fulfill the conditions of Assumption A2.
By analogy with function (4), called kurtosis sign priors (KSP) contrast
[10], we refer to (5) as kurtosis value priors (KVP) contrast.

The KVP contrast is reminiscent of the nonsymmetrical contrasts
presented in [8] and the closely related family of blind extraction con-
trasts later proposed in [5]. However, these nonsymmetrical contrasts
are based on the absolute value of higher order cumulants. As a re-
sult, the permutation ambiguity cannot be resolved if the source cu-
mulants are different but have the same absolute values. Moreover,
the gradient-based algorithms used for the maximization of such con-
trasts may get trapped in spurious local extrema. The maximization of
contrast (5) through the numerical algorithm described in Section IV
has yielded permutation-free source separation in all our experiments
whenever Assumption A2 is verified, even if two sources have the same
absolute kurtoses (see Section VII).

IV. CONTRAST OPTIMIZATION

As for function (4), the Jacobi-like pairwise iterative procedure origi-
nally proposed for ICA in [4] can also be employed to optimize contrast
(5) in the complex as well as the real case. For simplicity, in the sequel
we will focus on the case of real-valued sources and mixtures. At each
iteration, the contrast is maximized for a pair of separator-output sig-
nals yi; = [y:,y;]", 1 < i # j, < n, by means of a suitable Givens
rotation

1 1 ¢
F) = — [ ‘ } : £eR
( Vi+e =€ 1
acting on the corresponding whitened-signal pair z;; = [z;, z;]7 . The

following claims are proven in part C of the Appendix. Due to the
multilinearity relationship of cumulants recalled in (2), the contrast be-
comes a rational function of a single parameter £ with («;, ;) and the
fourth-order cumulants of z;; as coefficients

4
> axgt

To(yij) = aipti + ajpty = o ©)
Yij, H THg (1_1_52)2

where ao = ;Viiii + V555, a1 = Vi — 05Yijs5), G2 =

6(cvi + aj)7iijy, as = 4(aiviji; — ajviiij), and aa = @ivjy55 +

o viiii . The local extrema of this function are given by the roots of the

fourth-degree polynomial

azét +2(az — 2a4)€” + 3(a1 — a3)& +2(2a0 — a2)€ — a1 (7)

which can be obtained algebraically through Ferrari’s formula for quar-
tics. The above equation is the same as that found for contrast (4) in
[10], but replacing =; by v; in the expressions for coefficients {ay }i—o.
Among the four roots, the one, say £y, maximizing (6) is retained; this
is the global maximizer of ¥, (y;,) with respect to ¢ in R. The sepa-
rator-output signal pair y;; is then updated by applying matrix F(&o)
onto z; ;. The process is repeated for all signal pairs over several sweeps
until convergence. Instead of the whitened observations, the most re-
cent update of each separator-output signal is used at each iteration.
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Note that in the two-signal case, function f(-) linking coefficients
o; with their respective source kurtoses x; (Assumption A2) may not
pass through the origin. It actually suffices that

OL’151+(12H2>0 and (Oél—(l’g)(ﬁl—l{g)>0. (8)
These are the necessary conditions for the two-signal contrast (6) to
have its global maximum at the separation solution without permuta-
tion (part C of the Appendix).

V. ASYMPTOTIC PERFORMANCE ANALYSIS

In the real-valued two-signal scenario, the source separation problem
reduces to the identification of angle # characterizing the Givens rota-
tion Q in model (1). The asymptotic (large sample) variance of the
estimator of this angle through the maximization of contrast (5) for in-
dependent identically distributed (i.i.d.) sources is given by

ofE{s} + a3E{s3} — 201 ax E{s{}E{s;}

rar(f) =
var(f) T(a1k1 + azkz)?

C)]

where T denotes the sample size (part D of the Appendix). The asymp-
totic variance of (4) is similarly obtained by replacing «; by <; in (9).
If &n = K1 and oy = K2, i.e., the weight parameters are adapted to the
source kurtoses, the above expression can be shown to be the asymp-
totic variance of the MI-based CoM2 method of [4] and the approxi-
mate ML estimator of [3]. Equation (9) can be written as a function of
a single parameter, the ratio a2 /oy . The optimal ratio minimizing (9)
is readily computed as

( o )
1 opt

To complete the optimal choice of weights (a1, a2 ), it remains to select
their signs so that the contrast applicability conditions in the two-signal
case [see (8)] are fulfilled. We refer to the KVP contrast with these
optimal weights as KVPopt.

The weight ratio with optimal asymptotic performance given
by (10) will be different, in general, from the source kurtosis ratio,
ie., (a2/a1)opt # (K2/rK1), even though the latter can be linked
to the cumulant-based ML criterion of [3]. This occurs because the
ML criterion is only approximate, as it is based on the truncated
Gram—Charlier expansion of the source probability density function.
Consequently, its finite-sample performance can be improved by
fine-tuning the contrast coefficients according to (10).

The above asymptotic performance results are analogous to those in
[1], [8], and [9]. As opposed to [8], here we do not require the sources to
have the same kurtosis sign. Zarzoso et al. [9] find the optimal weight
between two estimators of angle ¢ based on fourth-order cumulants.
Abrar and Nandi [1] aim at the optimal relative weight for a composite
contrast made up of squared third- and fourth-order cumulants; CoM2’s
asymptotic variance can also be obtained as a particular case of the
analysis developed therein (a general analysis of CoM2 and related
contrasts can be found in [2]). However, contrary to the present work,
the contrasts in [1] and [9] are not designed to reduce the permutation
ambiguity of ICA.

ko E{s5} + s E{s] }E{s3
rE{sS} + ko E{st}E{si}"

10)

VI. IF THE SOURCE STATISTICS ARE UNKNOWN

In a fully blind problem, the source statistics are unknown and so are
the weights {«; } L. The optimal weights minimizing the asymptotic
variance in the two-signal case cannot be found for the same reason. To
surmount this difficulty, a simple two-stage procedure can be proposed
as follows. In the first stage, a conventional separation technique such
as the CoM2 method [4] is employed to obtain an initial estimation of
the sources. Then, the source estimates are ordered according to their
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TABLE I
ENSEMBLE STATISTICS OF THE PSEUDORANDOM BINARY SOURCES USED IN
THE EXPERIMENTS. Prob; DENOTES THE PROBABILITY OF ONE OF THE
Two EVENTS IN THE CORRESPONDING BERNOULLI DISTRIBUTION

Ki -2 —1.2 -1 1 2 3 5 6
E{s]} 1 1.8 2 4 5 6 8 9
E{s$} 1 4.04 5 19 29 41 71 89
Prob; 0.5 0.704  0.724 0.827 0.854 0.873 0.899 0.908
10 T I T
— KVP empirical
------- KVP theoretical
Of — CoM2 empirical
- CoM2 theoretical

Pl (dB)

Fig. 1. Fitness of theoretical asymptotic variance. Solid lines represent the av-
erage PI values obtained empirically from the separation of random orthogonal
mixtures of sources with kurtoses (—2, 1) and T = 1000 samples over 100 in-
dependent realizations. Dotted lines plot the theoretical asymptotic variance (9)
using the source ensemble statistics. The vertical dashed line marks the location
of the optimal ratio (2 /a1 )opt according to (10).

kurtosis values. Using the sample statistics of the estimated sources, the
optimal weights are computed for each source pair as explained in the
previous section. Sweeps are then performed by contrast (5) with the
optimal weight coefficients for each signal pair. We refer to this fully
blind two-stage technique as CoM2-KVPopt.

VII. EXPERIMENTAL PERFORMANCE EVALUATION

A few numerical experiments evaluate the comparative performance
of the contrast developed in this brief. In the following, the source sig-
nals are N zero-mean unit-variance pseudorandom binary sequences
with different kurtosis «;, 1 < ¢ < N; their ensemble statistics are
summarized in Table I. The source distributions are skewed except for
ki = —2. Each source realization, composed of 7" = 1000 samples, is
mixed by a random orthogonal matrix with appropriate dimensions, so
that no whitening is required. The permutation-sensitive performance
index

1 l\r’ ‘ l\r’ )
Pl = NZPL with PL = (|Gu| - 1D)*+ ) G5 (D)
i=1 I

is averaged over 100 independent realizations of the sources and the
mixing matrix. For N = 2, this index provides an estimate of le(é)
near permutation-free separation solutions. When considering the
CoM2 method of [4], its permutation ambiguity is resolved by suitably
reordering the estimated sources after separation.

Fig. 1 illustrates the fitness of asymptotic variance (9) for the source
pair with kurtoses (—2, 1). The theoretical approximation is very ac-
curate in the region where the validity conditions of the KVP contrast
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KSP
CoM2 I
KVP

CoM2-KVPopt

-
o b + x

0 1 2 3 4 5
sweep number
(b)

Fig. 2. Source separation performance as a function of the Jacobi sweep
number. (a) Normalized KVP contrast. (b) Permutation-sensitive quality index.
Mixture sizes: N = 2 (solid), N = 3 (dashed), N = 5 (dotted).

hold; the location of the optimal ratio (s /a1 )ops Obtained according
to (10) and Table I equals 0.2059 and agrees with the experimental
results. The approximation to CoM2’s asymptotic variance, obtained
from (9) with a; = k;, ¢ = 1,2, is also very precise. KVP with the
optimal weight ratio (KVPopt) achieves a performance gain of up to
20 dB relative to CoM2 for this particular source combination.

Next, the source kurtoses are randomly chosen without replacement
from the set {—2,—1, 1, 2,5}. KVP’s weight coefficients «; in (5) are
matched to the theoretical source kurtoses, whereas KSP’s ¢; in (4) are
set to the source kurtosis signs. The average normalized KVP contrast,
defined as ¥ (y)/Ta(s), is plotted as a function of the pairwise-it-
eration sweep number in Fig. 2(a). The trajectories of index (11) are
shown in Fig. 2(b). These plots confirm that the Jacobi-like procedure
of Section IV is able to maximize contrast (5) and, in turn, this maxi-
mization succeeds in separating the sources without permutation. The
sources are estimated by KVP as accurately as with the original ICA
method of [4] followed by reordering. The KSP method fails to re-
solve the source permutation as soon as several sources with the same
kurtosis sign appear in the mixture, hence the poor average PI values.
For all N considered in this experiment, the fully blind CoM2-KVPopt
method is able to reduce the PI by half (—3 dB) with just a single sweep
of the optimum-weight KVP contrast over the sources estimated by
CoM2.
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Fig.3. Source separation performance with varying cv;., for mixtures of N = 5
sources and five Jacobi sweeps. Coefficients «;, ¢ # k, are matched to their
respective theoretical source kurtoses, marked by vertical lines.

KVP’s robustness to the choice of weight coefficients in (5) is as-
sessed by Fig. 3, which considers orthogonal mixtures of N = 5
sources with kurtosis values {—2, —1.2, 1,3, 6}. To obtain each of the
curves observed in the plot, coefficient « is left to vary while «;,
i # k, are kept matched to their respective theoretical source kurtoses.
Five sweeps over all signal pairs are performed using a given set of
weight coefficients. A successful permutation-free source separation is
achieved for a range of weight values bounded by neighboring source
kurtoses, as pointed out by Assumption A2.

VIII. CONCLUSION

A contrast function for ICA using fourth-order statistics has been
put forward in this paper. The new contrast generalizes a recently pro-
posed function based on the source kurtosis signs [10], proves that the
approximate ML criterion of [3] is indeed a contrast, and extends it to
the case where a mismatch between the weight coefficients and the ac-
tual source kurtosis values may appear. In turn, this connection confers
the new criterion a certain degree of optimality in the ML sense. As a
by-product, our analysis confirms that the CoM2 method of [4], despite
arising from the MI principle, presents ML-optimality features, since it
achieves, up to permutation, the same asymptotic performance as KVP
with weights matched to the source kurtoses. Since these are only ap-
proximate ML techniques, source separation performance can be fur-
ther improved by a judicious selection of the weight coefficients in the
two-signal case according to the theoretical asymptotic results derived
in this work. If the source kurtoses are distinct, only rough guesses on
their values suffice for the new contrast to avoid the ICA permutation
ambiguity at the separator output. In the case where the source statistics
are totally unknown a priori, a simple procedure based on the weights
with optimal pairwise asymptotic performance can be used to refine
a conventional fully blind ICA method. Although the convergence of
the pairwise optimization technique used to maximize the contrast is
in theory not guaranteed, it has always proven satisfactory in our ex-
periments. Further research should aim at a theoretical proof of global
convergence, and the extension of the present contrast to single-source
extraction.

APPENDIX

A. Proof of Proposition 2

The proposition relies on the following result.
Lemma 1: Let u and v be two vectors of R™, and let the entries
of u be sorted in nondecreasing order. Then, the permutation P that
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maximizes the scalar product u’ Pv is the one sorting the elements of
v in nondecreasing order as well.

The proof of this lemma is simple and proceeds by contradiction.
Assume that, for the optimal permutation, there exist two entries
of v such that vy > vgyp,, with p > 0. By construction, we have
(ukyp — uk)(ve — veyp) > 0. Expanding the product, we get
Uk4pVk + UkVktp > UkVE + Uk4pViip, Which shows that trans-
posing the two entries of v increases the scalar product; hence, the
permutation was not optimal.

Now we are ready to prove Proposition 2. Two cases can be
distinguished.

Case 1) Distinct «;’s. By definition (5) and relationship (3), we can
write

Vo) <Y ol |36 | <3l Gl I |
7 7 17

Since G is unitary, we have |G,;|* < |G;;|* for any in-
dices, so that

Taly) <O lellGi [Pl .
ij
Yet, the matrix formed with entries |G;;|* is itself bis-
tochastic since its rows and columns sum up to one. Hence,
from Birkhoff’s theorem [7], there exists a set of real posi-
tive numbers 3¢ such that

1G> = BePj(6) and Y pe=1
£ £

where P (/) are permutations matrices. This yields the in-
equality

To(y) D el Y 8P (0).
ij ¢

The maximum of the right-hand side is reached when the
convex linear combination reduces to one of its vertices,
that is, when all 3’s are null but one, say 3¢, . Then, from
Lemma 1, P(¢,) precisely relates to j and ¢ so that both
|ae;| and || are sorted in increasing order

Uo(y) <) lajn,l = Tals). (12)
J

If the equality holds, then the same reasoning as in [10]
would show that G = AP.

Case 2) Possibly nondistinct «;’s. When «;’s are not distinct, we
can group them by packets of equal values. Let A, de-
note the gth such packet. Similarly, values of ; can be
grouped within the same packets, according to Assump-
tion A2. Since permuting indices within a set .4, does not
change the value of the criterion, the proof still holds true.

O

B. Proof of Proposition 3

Now we will make use of the fact that not only moduli | ;| are sorted,
but also weights «; themselves. If equality holds in (12), it means in
particular that there exists a permutation P such that

T, (y) = Z(lipijl/w']’ = Za]’n]’ = T.(s).
]

J

From Lemma 1, we know that permutation P is uniquely defined if
there is a unique way to sort the x,, in increasing order. This will be the
case if all source kurtoses ., are distinct. Should this not be the case,
the permutation is not unique: any permutation of indices keeping the
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order of x, nondecreasing will still lead to the same maximum of the
contrast. The permutation indeterminacy P is then made up of diagonal
blocks D(q), whose size corresponds to the number of elements in each
set Ag. |

It should be remarked that the above proofs are proper to contrast (5)
and not immediate extensions of those in [10].

C. Derivation and Analysis of the Contrast for N = 2

The pairwise contrast (6) is actually a function of £ only, and may
be denoted as ¥, (&) with some abuse of notation. Its first derivative
is given by W, (£) = va(€)/(1+ £%)*, where v (€) = ¢/ (6)(1 +
€%) — 4€¢(€) and ¢(¢) = Y} _, ar&". Simple polynomial products
lead us to ¥a (&) = Yoi_, bi€* with by = a1, b1 = 2(as — 2a0),
by = 3(as — a1), by = 2(2a4 — az2), and by = —ay. The contrast
stationary points are the solutions of 1, () = 0, which is equivalent
to finding the roots of polynomial (7). The contrast second derivative
is WL (€) = ¢ (6)/(1+€)” = 66va(§)/(1+€%)". At the stationary
points, the second term on the right-hand side cancels out, so that the
convexity of the contrast can be studied by analyzing the sign of 9., (£)
at such points. Other candidate stationary points are |{| — +0o0. These
are horizontal asymptotes with ordinate equal to a4.

By multilinearity [see (2)], the contrast can be written as a func-
tion of the source statistics and the global matrix entries by replacing
the whitened observation cumulants by the source cumulants in coef-
ficients {ax }{_o and redefining £ = tan(A#), where A6 = (§ — 6)
is the rotation angle parameterizing G. When ensemble statistics are
used (i.e., assuming infinite sample size), we have that

ap = Q1K1 + Qake g = a1ka + Q2K (13)
and ar, = 0, &k = 1,2, 3. Recall that the stationary points of ¥, (&)
are given by the roots of ¢’ (€) and |§] — +oo. Function ¥ (&) =
4€(as€% — ap) cancels at ¢ = 0 and € = 4+/ag/aa. The first root
corresponds to the desired permutation-free separation solution. The
two other will generally be spurious and can appear only if sign(ao) =
sign(a4). The limit || — +oc achieves source separation with permu-
tation. Since ¥/}, (£) = 4(3a4£? — ao), the desired solution £ = 0 is a
local maximum only if g > 0. In such a case, the spurious stationary
points will be local minima. For the local maximum to be global as
well, we also require that ¥, (0) > ¥o (€)]j¢|— o0, thatis, ag > aa.
Taking into account (13), these conditions can be expressed as in (8).

D. Asymptotic Analysis of the Contrast for N = 2: Derivation of
Variance (9) and Optimal Weight Ratio (10)

If the sample statistics used to compute {ax}i—, from finite data
length are asymptotically unbiased, so will be the estimator based on
the maximization of (5) in the two-signal case, i.e., E{f} — 6 as
T — oc. The large-sample variance of the KVP estimator in the (2 x 2)
real-valued scenario can be computed as shown next. First, we denote
& = tan(Af), with A = (§— ), and express the separator output cu-
mulants in terms of the source cumulants, as in part C of the Appendix.
For finite sample size, ensemble statistics are approximated by their
sample counterparts, giving rise to the sample function W, (§). The es-
timating equation Ul ) = 0 will yield a sample estimate £ of the so-
lution to the contrast optimization. To work out its variance, let us con-
sider the first-order Taylor expansion of V(€ ) around £, which reads:
Do l(€) & Dal€) +Uh()(€ = €). The term ¢ (€) is null since, by hy-
pothesis, é maximizes the sample contrast. Then, evaluating the above
expression at the permutation-free ensemble solution £ = 0 yields

_1a(0)
D4 (é)

€~ (14)
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For sufficient sample size, we can assume that é is close enough
to the true solution ¢ = 0 and then ¢/, () ~ ¢L(0) = b =
—44o = —4(a1kRi111 + aofooe2), where we have also con-
sidered that the source sample cross cumulants are negligible
relative to the source kurtoses, and so a2 <« dg. Moreover,
11;)0,(0) = Z;(] = &1 = 4(&1}2‘,1112 — (1’2}271222). Under the WOI‘kng
assumptions [see (8)], the numerator of (14) will be dominated by the
denominator, which can be assumed to be constant and equal to its
ensemble average 4ao = 4(av1 k1 + ak2). As a result, the variability
of é will mainly stem from the variability of the numerator, so that

E{éz} ~ E{(01'31112 — 01231222)2}
(a1k1 + agkao)?

Now, for whitened sample cumulants estimated as T'hiii; =

S il s (n)s;(n), with i # j, some tedious but otherwise straight-
forward algebraic manipulations show that TE{#;;;} = E{s{} and
TE{RiuijRijj;} = E{.s?}EA{.sj*} Because £ = (), we have Af = ¢

and thus var(Af) = var(£). The proof concludes by noticing that

var(f) = var(A#), hence (9). Finally, the weight values minimizing

the estimator’s asymptotic variance are found by canceling the deriva-

tive of (9) with respect to the ratio (a2 /a1 ); this readily leads to (10).

O

The asymptotic variance of the CoM2 estimator [4] can be worked
out similarly.
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