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Adaptive Blind Source Separation for Virtually Any
Source Probability Density Function
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Abstract—Blind source separation (BSS) aims to recover a set
of statistically independent source signals from a set of linear mix-
tures of the same sources. In the noiseless real-mixture two-source
two-sensor scenario, once the observations are whitened (decorre-
lated and normalized), only a Givens rotation matrix remains to be
identified in order to achieve the source separation. In this paper,
an adaptive estimator of the angle that characterizes such a rota-
tion is derived. It is shown to converge to a stable valid separation
solution with the only condition that the sum of source kurtosis be
distinct from zero. An asymptotic performance analysis is carried
out, resulting in a closed-form expression for the asymptotic prob-
ability density function of the proposed estimator. It is shown how
the estimator can be incorporated into a complete adaptive source
separation system by combining it with an adaptive prewhitening
strategy and how it can be useful in a general BSS scenario of more
than two signals by means of a pairwise approach. A variety of sim-
ulations assess the accuracy of the asymptotic results, display the
properties of the estimator (such as its robust fast convergence),
and compare this on-line BSS implementation with other adaptive
BSS procedures.

Index Terms—Adaptive algorithms, blind source separation,
closed-form estimation, convergence and performance analysis,
higher order statistics.

I. INTRODUCTION

SINCE THE LATE 1980’s, the problem ofblind source
separation(BSS) has attracted a great deal of attention

from the signal processing community. This interest stems from
the great number of applications that accept a BSS model and,
hence, can be tackled by means of techniques for BSS. The
problem arises when a set of unobservable signals (thesources)
are to be extracted from a set ofsensor outputsor observed
signals, each of which can be regarded as a linear mixture of
the sources. The adjective “blind” stresses the fact that very
little is known or assumed about the mixing structure. This is
precisely the origin of the power and versatility of the BSS
model since in many cases, it is extremely difficult to model the
transfer functions between sources and sensors, or simply, noa
priori information is available about the mixture. Applications
comprise a variety of different areas such as radar and sonar,
communications, speech processing, seismic prospecting, and
medicine [3], [5]–[7], [19].
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In a number of cases, it is required to extract the source sig-
nals in real time. For instance, in the biomedical problem of
fetal electrocardiogram extraction [19], such adaptive methods
would allow on-line monitoring and condition diagnosis of the
fetus's heart. In other situations, the parameters of the mixing
system or the source signals are not stationary but are subject
to variations with time. A typical example is a multiuser mobile
communication system [3], where those variations in the mixing
pattern occur as the users roam around, thus altering the channel
characteristics. Even if the users remain still, the channel is still
subject to time variations (fading) due to changing atmospheric
conditions and environment. In all these instances, the perfor-
mance of so-called batch processing or off-line methods would
be very poor, and adaptive procedures are necessary for a rea-
sonable separation performance.

Interestingly enough, the first adaptive BSS implementa-
tion was also the first successful attempt to tackle the BSS
problem [11]. Jutten and Herault proposed a method based
on a neural network architecture aiming at the cancella-
tion of certain odd functions of the observations. Conse-
quently, the system is stable and provides good separation
solutions only for sources with different symmetric proba-
bility density functions (pdf's) [16]. In [5], a closed-form
expression is derived to find the orthogonal transformation
that remains to be unveiled once the observations have been
prewhitened (decorrelated and normalized) in the basic BSS
scenario composed of two sources and two sensors. The
work of Nandi and Zarzosso [13] benefits from such a result
to simplify the solution given in [12], supporting the con-
venience of a two-step approach to signal separation [18]:
first, decorrelation; second, search for higher order indepen-
dence. The estimator suggested in [5] depends exclusively on
the fourth-order cross-cumulants of the whitened sensor out-
puts. Hence, its adaptive implementation reduces to a simple
adaptive cumulant estimation, yielding the so-calledadaptive
rotation (AROT) algorithm. Departing from rather different
points of view, Gaeta and Lacoume [7] and Comon [6] ar-
rive separately at the same solution to the BSS problem: a
cost function (so-called by the latter author “contrast func-
tion”) composed of the fourth-order marginal cumulants of
the whitened observations, whose maximization leads to the
source extraction. The adaptive algorithm based on this con-
trast function is developed in [9]. The major drawback of
the implementations of [5] and [9] is that, by construction
of the respective algorithms, it is difficult to carry out their
convergence study.

A different approach is adopted in [3] by Cardoso and La-
held. Taking advantage of the implicit multiplicative structure
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of the BSS problem and employing the “relative gradient,” they
derive a family of adaptive algorithms with serial updating, i.e.,
the separating matrix is updated at each iteration by multiplying
the one obtained at the previous iteration by another matrix.
This class of algorithms, which are known asequivariant adap-
tive separation via independence(EASI) is shown to exhibit
uniform performancecharacteristics, that is, the quality of the
source estimation does not depend on the particular value of
the mixing matrix. In contrast with the other two methods cited
above, the performance analysis of this latter method is easily
accomplished with the conventional tools for the study of sto-
chastic algorithms. On the negative side, the stability of the al-
gorithm is very dependent on the choice and tuning of certain
nonlinear functions with respect to the source statistics, which
in a genuine blind separation problem are not knowna priori. In
addition, its convergence to nonspurious solutions is not guar-
anteed.

The objective of this paper is to put forward a new method
for adaptive BSS that avoids those two drawbacks, namely,
the dependence of the convergence on the source statistics
(shown, e.g., by the methods of [3] and [11]) and the difficul-
ties in analyzing the asymptotic performance of the algorithm
(as seen, e.g., in the methods of [5] and [9]). By contrast,
the new procedure exhibits two very desirable properties: 1)
convergence (virtually) independent of the source distribution
and 2) straightforward performance analysis. The algorithm
is based on the batch-processing method introduced in [20]
and [21], from which the first property is inherited. From
this fourth-order off-line procedure, its adaptive counterpart
is derived, resulting in a very simple updating rule in the
typical form of a stochastic adaptive algorithm that has been
so widely studied [1]. The analysis of its convergence and
asymptotic properties is presented herein as well. In prin-
ciple, most of the derivations are developed in the simplified
noiseless two-source two-sensor BSS scenario, but it is also
shown how the procedure can be extended to more than two
signals in the pairwise processing fashion already suggested
in the literature (for instance, in [5] and [6]). Simulations
endorse the effectiveness of this extension. Although some
of the results developed next could easily be extended to the
complex-signal case, we restrict our study to the treatment
of real-valued signals and mixtures.

The paper is organized as follows. In the first place, Section
II describes mathematically the problem of BSS and its basic
foundations. Next, Section III reviews the off-line method on
which the adaptive algorithm presented here is based. The most
attractive feature of this batch method is that it is valid for prac-
tically any source distribution combination and does not depend
on any choice of functions or nonlinearities to achieve the source
extraction. The adaptive version is developed in Section IV. Its
asymptotic performance and convergence characteristics are an-
alyzed in depth in Section V, whereas its computational com-
plexity is studied in Section VI. Section VII reports on some
simulation experiments carried out in order to test the validity
of the theoretical results, as well as to compare the proposed
method with other adaptive implementations. Section VIII con-
cludes the paper.

II. PROBLEM STATEMENT

Given the set of source signals
, where represents a discrete time index and the vector

transpose operator, the purpose of BSS is to extract them from
the set of instantaneous linear mixtures observed at
the sensor output, . If matrix

, which is also calledmixing or transfer
matrix, contains the mixture coefficients, then the BSS problem
accepts the matrix model

(1)

The channel variability in nonstationary environments would
be modeled by allowing the mixing matrix to be time-varying,

. In addition, in general, the observations
would be noisy, yielding an additive noise vector on
the right-hand side of model (1). However, in the sequel, only
noise-free observations will be considered.

Two basic assumptions are made in order to achieve the
source estimation and transfer matrix identification:

A1) The sources are statistically independent.
A2) The mixing matrix is full column rank.

The first hypothesis is the cornerstone of blind separation and,
albeit it could sound too strong, it is actually fairly plausible
in many real situations, given the physical independence of the
underlying phenomena generating the source signals.

Most approaches to BSS operate in two steps [2], [5], [6],
[10], [20], [21]. First, the observations are prewhitened by
estimating awhitening matrix, (symbol denoting the
Moore-Penrose pseudoinverse [8]), which results in a set of
uncorrelated and normalized (unit-power) signals
termed whitened observations. The operations necessary
to achieve off-line prewhitening correspond to well-known
second-order techniques (PCA) and, therefore, will not be
discussed here. For on-line prewhitening, in [3] and [5], for in-
stance, two different methods are proposed. The former method
is based on the adaptive minimization of the Kullback–Leibler
divergence between the whitened output and a random vector
with identity covariance matrix when their respective distribu-
tions are truncated at the second order, i.e., when a Gaussian
approximation is used. By employing the relative gradient of
this contrast, we arrive at the following serial updating rule for
the whitening matrix:

(2)

The point of interest is that once the observations have been
prewhitened, only an orthogonal transformation remains to
be estimated in order to identify the mixture [5], [6], [21] and,
thus, the sources as . If the time structure is
ignored or cannot be exploited, as in the i.i.d. case, the esti-
mation of this matrix requires the higher order statistical infor-
mation of the data. Several different methods to estimatein
a block fashion are reported in [5]–[7], [10], and [21]. In this
paper, we will focus on the adaptive estimation of. The ob-
tained results will then be combined with existing prewhitening
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strategies, such as that in (2), in order to yield a complete sep-
aration system. Fig. 1 summarizes graphically the typical setup
for adaptive BSS, as well as the terminology and all the matrix
and vector relationships referred to above.

III. A B ATCH-PROCESSINGMETHOD

This section briefly reviews, for the sake of completeness, a
method proposed in [20] and [21] for the estimation of the or-
thogonal matrix from a batch of whitened observation sam-
ples. The main results are summarized in Section III-A for the
noiseless BSS scenario composed of two sources and two sen-
sors. A generalization to more than two signals can also be car-
ried out as in Section III-B.

A. The EML: A Fourth-Order Angle Estimator

In the two-signal case, unknown matrix becomes an ele-
mentary Givens rotation matrix, which can be parameterized as

(3)

Hence, the estimation of reduces to the estimation of angular
parameter . The following closed-form estimator of angleis
developed and studied in [20] and [21]:

sign (4)

with

(5)

(6)

where denotes the whitened signals, and
is the imaginary unit. The angle or argument function “angle”
provides the phase in of its complex argument. The term
( ) can be interpreted, at each time instant, as the com-
plex form of the corresponding whitened-output bidimensional
scatter-plot point. Consequently, the sample estimate of (5) can
be considered as a centroid in the complex plane calculated as
the average value of such points raised to the fourth power.
Remark that is a complex-valued quantity, although we are
dealing with real mixtures. The term (6) is an estimate of the
source kurtosis sum (sks) ( ).

The simple algebraic formalism in terms of complex-valued
centroids simplifies the characterization of the statistical prop-
erties of the estimator [21]. As we will see in Section V, anal-
ogous analysis simplifications will be obtained for its adaptive
counterpart. Batch estimator (4) is shown to provide a valid sep-
aration solution as long as the sks is not null .
Under this basic condition, it is found to be unbiased for any
sample size when there is a symmetrically distributed source
and asymptotically unbiased and strongly consistent in the i.i.d.
case. An analytic expression of its asymptotic pdf is derived and
an interesting geometrical interpretation provided. Remarkable
connections with the approximate ML (AML) estimator of [10]
are also made. It is shown to generalize such an estimator, which
was originally derived under quite restrictive conditions, to vir-
tually any source distribution combination, hence, the acronym

Fig. 1. Graphical depiction of the adaptive BSS, summarizing the nomen-
clature and notation employed throughout the paper.

Fig. 2. Batch algorithm for BSS of more than two signals via the EML esti-
mator.

extended ML(EML). In fact, all the previous AML conditions
are reduced to the much weaker single restriction on the sks. For
a full account on this batch estimator, see [21]. The linkage be-
tween the EML method and the procedure of [5], together with
a number of other interesting results on closed-form estimators
for BSS, are investigated in [22]. Finally, by combining the re-
sults of [2] and [21], the uniform performance of the EML esti-
mator can be easily proven.

B. Extension to General BSS Scenario

The estimator presented in Section III-A is designed to op-
erate on two-sensor mixtures. Its extension to the general BSS
scenario composed of more than two mixtures of more than
two sources can be done by applying expression (4) in turn to
each pair of decorrelated measurements until convergence. This
heuristic notion was originally suggested in [5] and found math-
ematical justification in [6] when contrast functions of polyno-
mial form are utilized. Even though the convergence of such it-
erative scheme still lacks a solid mathematical proof, numerous
experiments endorse the empirical validity of this generaliza-
tion [21]. Fig. 2 summarizes this pairwise algorithm for more
than two signals. The number of sweeps over all signal pairs
necessary for convergence was empirically found to be roughly
the same as the value proposed in [6], that is, on the order of

.
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IV. A DAPTIVE SOURCESEPARATION

A. Adaptive Algorithm in the Two-Signal Case

The derivation of an adaptive algorithm from the batch ver-
sion depicted in Section III-A reduces to the adaptive estima-
tion of the centroid location (5) and the sks (6). It is this sim-
plicity that will lead to a straightforward analysis of the asymp-
totic properties of the resulting algorithm.

Let denote the fourth power of the prewhitened observa-
tion scatter-diagram point at time instant

(7)

Equations (5) and (6) can then be written, respectively, as
and . Therefore, and may be obtained

in an adaptive fashion from

(8)

(9)

where is the adaption coefficient at iteration. This coeffi-
cient balances a tradeoff between convergence speed and accu-
racy, as it is well established from the standard theory of adap-
tive systems [17]. If , then (8) and (9) become the
adaptive equivalents of the sample estimates (time averages) of
(5) and (6), respectively. The rotation angleis estimated at
each iteration from the above two parameters by replacing (8)
and (9) into (4)

angle sign (10)

In the following, a constant adaption coefficient will be
assumed: . This choice, in turn, allows the tracking
of nonstationarities in the mixing system, which is one of
the main rationales behind the use of adaptive separation
procedures. In that case, (8) may be written in the form

. Taking expectations at both
sides of the previous equation and assuming i.i.d. mixtures,

for . That is, adaptive estimator (8) of centroid
(5) is asymptotically unbiased. On the other hand, assuming
i.i.d. source processes, the variance ofbecomes Var

Var Var so
that it can be made arbitrarily small by choosingsufficiently
small. Totally analogous conclusions hold for adaptive esti-
mator (9) of the sks. These preliminary asymptotic results lead
to if the sks is not null since in that case,
given by (4) is also asymptotically unbiased [21].

Estimator (10) is referred to asadEML for adaptive EML.
A more exhaustive analysis of its convergence and asymptotic
properties is carried in Section V. Next, we address the exten-
sion of this adaptive scheme to BSS scenarios of more than two
signals.

B. Adaptive Algorithm for the General BSS Scenario

The extension of adaptive scheme (10) to the broader BSS
scenario in which more than two whitened observations appear
is very similar to that for its batch counterpart described in Sec-
tion III-B. Now, at each time instant, a whitened-signal sample is

Fig. 3. Adaptive algorithm for BSS of more than two signals via the adEML
estimator.

first obtained through a suitable adaptive prewhitening method.
Then, the resulting vector sample is processed in sweeps over all
its component pairs. For each sample pair, the associated cen-
troid and sks estimates are updated, as in (8) and (9), and the
resulting angle estimate (10) is obtained. From it, a counter-ro-
tation aiming at separation is performed on the sample pair. The
process is repeated in turn over all the other pairs and over sev-
eral sweeps. It is important to remark that the values of the cen-
troid and sks associated with a given signal pair are indepen-
dently stored for each sweep. If the signals are stationary, the
angle values obtained by this adaptive procedure will converge
to those of its batch counterpart. This adaptive algorithm is out-
lined in Fig. 3. This pairwise extension is very similar to that
suggested in [5] for the AROT method.

V. ASYMPTOTIC ANALYSIS

The most appealing feature about the adaption scheme (8),
(9) is that it accepts the classic adaptive algorithm form [1]

(11)

where, from (8), function can be identified as

(12)

and, accordingly, for (9). As a result, the standard tools for the
study of stochastic algorithms of this general form can be em-
ployed to analyze the convergence properties of the one sug-
gested herein. Our main goal is to obtain the asymptotic pdf of
the adEML estimator (10).

A. The ODE Method

In the first place, the ordinary differential equation (ODE)
method is employed to study the trajectories of the centroid lo-
cations (11). This method approximates the true trajectories of
the parameters of interest by the discretized solution of certain
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ODE. It is shown [1] that under quite general conditions and in
the limit of an arbitrarily small adaption coefficient, the true tra-
jectories followed by converge to the continuous function of
time discretized at time instants being given
by the solution of the ODE . The term , which
is calledmean field, is obtained from the function as

(13)

where is the population centroid location (5), and
symbol denotes the expectation with respect to the distri-
bution of the state for a fixed value of when is asymptot-
ically stationary. The conditions for the validity of this approxi-
mation are, essentially, that the adaptation coefficientbe very
small and the function be fairly regular. Having a
look at (12), it is clear that the last condition holds. In our case,
it is straightforward to obtain

(14)

where is the initial value, i.e., . For the source
kurtosis trajectories, the solution of its ODE is also readily found
as

(15)

where, again, is the initial value, and
represents the population sks (6).

B. Stability of the Equilibrium Points

Theequilibrium pointsor attractorsof (11) are those values
of such that the mean field vanishes. Therefore,
is the unique attractor of (8) [or (11)], as seen from (13) and
taking in (14). An attractor is said to belocally
asymptotically stable(LAS) if and only if [1]

(16)

has a negative real part. In the case of interest, and according
to (13), . Hence, the equilibrium point is
LAS always, regardless of the source distribution and the mixing
structure. Analogously, is the unique LAS equilibrium
point of its respective ODE. Therefore, the attractors of (10) are
LAS as well. On the other hand, since and converge to
their population values, the adEML equilibrium points consti-
tute valid separation solutions under the EML basic condition
on the sks. In conclusion, under such a condition, the attractors
of adaptive estimator (10) provide LAS valid separation solu-
tions.

C. Asymptotic Normality of the Centroid Locations

Under the above conditions, it is proved in [1, Th. 2, ch. 3]
that the asymptotic distribution of is Gaussian. Specifically

, where the covariance

Cov is given by the solution of the Lyapunov equation
, with

Cov (17)

In conclusion, the distribution of the centroid is asymptoti-
cally normal with mean and variance

(18)

The pdf of for large enough and sufficiently small is then
, which, as a func-

tion of the real and imaginary part of , becomes the
product of two uncorrelated real Gaussian pdf's

, with
. Now, we are ready to develop an expression

for the asymptotic pdf of the adaptive angle estimator (10).

D. Asymptotic Pdf of the adEML Estimator

First, if is sufficiently large and sufficiently small, it can
be reasonably assumed that the sign of the sks is accurately es-
timated so that it becomes a constant, and then, the “sign”
function in (10) may be neglected. In those conditions, and as-
suming, with no loss of generality, that such a sign is positive,
we have

angle (19)

This last expression naturally induces the change of variables
and . Integrating the joint pdf of

with respect to , the marginal pdf of , is obtained. With
the help of the symbolic mathematics package MAPLE™ [4]
and after some tedious algebraic simplifications,turns out to
be

erf (20)

where the symbol denotes the absolute value of the sks

(21)

With defined as above, it is easy to prove that pdf (20) is also
applicable to the case of negative sks. Finally, from (19)

(22)

which is the pdf of given by (10) when and .
Pdf is an even function of , and hence, ,

that is, adaptive estimator (10) isasymptotically unbiased.
Gaussian Approximation:Similarly, as occurred for the

batch EML method (see [22]), asymptotic pdf (20) admits a
Gaussian approximation. If is small enough, the ratio
becomes small too [since is proportional to ; see (18)],
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and hence, . In addition, the pdf is
mostly concentrated around so that

, and erf . Consequently, pdf (20)
reduces to

(23)

That is

(24)

in which indicates convergence in distribution [14]. From
this key result and (19), the asymptotic variance of the adaptive
EML is readily obtained as

Var (25)

Fig. 4 checks the quality of this approximation. The stan-
dard deviation of obtained by numerical integration of pdf
(20) is compared with the one obtained from the Gaussian ap-
proximation (23) [the square root of (25)]. The difference be-
tween both is within 1% for . Note also that
from (20) and (22), when the ratio becomes large (which
occurs when either the adaption coefficient is large too or the
sks is close to zero), the distribution of tends to a uniform
pdf with standard deviation 25.98. This
agrees with the behavior observed in the solid line of Fig. 4.

E. Remarks

In order to bring this analysis to an end, there are a couple of
remarks worth pointing out. In the first place, due to the relation-
ship between the source and whitened-output scatter plots [20],
[21], it can be proved that [see (17)] does not depend on the
unknown parameter of interest but only on the source signals.
In fact, assuming i.i.d. processes,is easily shown to reduce to

Var Var Var (26)

Observe also that in the case of i.i.d. sources, the variance
[see (18)] obtained from this value ofcoincides with the result
for this kind of sources initially given at the end of Section IV
when . Consequently, the variance [see (25)] and, hence,
the performance of the adEML estimator does not depend on the
mixture but only on the source signals and, more specifically, on
their statistics up to the eighth order. The uniform performance
property of batch estimator (4) is therefore inherited by its adap-
tive counterpart (10).

Finally, it is also interesting to realize the striking resem-
blance between the asymptotic pdf of the adaptive estimator
(10) and the large-sample asymptotic pdf found in [21] for its
block-processing version (4).

VI. COMPUTATIONAL COMPLEXITY

We now measure the computational burden of the adaptive
scheme presented in Section IV. Since additions are negligible
relative to products, we consider a floating point operation (flop)

Fig. 4. Asymptotic standard deviation of the adEML estimator versus para-
meter� =� . Solid line: From analytical pdf (20). Dashed line: From Gaussian
approximation (23).

as a real multiplication. A complex product, hence, takes four
flops and the multiplication of a real by a complex quantity
(real-complex product) two flops. At each time instant (itera-
tion) and for each signal pair , the source-extraction
algorithm described in Fig. 3 can be broken down in the fol-
lowing elementary steps:

1) Computation of (7): two complex products flops.
The computation of takes no additional flops since it
can be evaluated as by using interim results of the
computation of from .

2) Centroid updating (8): two real-complex products
flops. Sks updating (9): two real products flops.

3) Computation of (10) and rotation matrix set-up (3):
This would be platform dependent as it could be done
through a look-up table or even with fast built-in func-
tions. Say it takes flops.

4) Rotation: four flops.
This makes flops per signal pair per iteration.

With sweeps over the signal pairs, the overall
complexity per iteration of the adEML procedure becomes

flop/iteration. Usually,
(Section III-B), yielding .

These figures can be compared with the values of other adap-
tive methods, such as AROT [5] and EASI [3]. The former pro-
cedure entails a higher complexity since it involves divisions1

and square roots. However, with the equivalent centroid-based
formalism proposed in [22] for the AROT estimator, we ob-
tain . AROT's computational
cost is thus very similar to adEML's. By analogous reasoning,
the complexity of EASI's orthogonal-matrix serial update plus
source-sample extraction can be determined as

, where each nonlinearity element takes
flops (e.g., for cubic nonlinearities: ). An extra overhead
would have to be added in the normalized version of the algo-
rithm. Typically, hence, EASI is more involved than the other
two methods.

1Divisions by powers of two are neglected since they can be efficiently ac-
complished by simple register shifting.
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VII. EXPERIMENTAL RESULTS

Salient features of the theoretical results presented in the pre-
vious sections are to be illustrated through a variety of sim-
ulations. First, the theoretic asymptotic results of Section V
are validated. Then, a comparison with other adaptive methods
is established in several contexts. These include stationary pa-
rameters, nonstationary parameters, and abrupt changes of the
mixing system, and, finally, the whole separation system com-
prising the prewhitening stage in scenarios of two and more than
two signals.

A. Asymptotic Performance

ODE Solution:In the first place, it is seen how the ODE so-
lution is indeed a good approximation of the adaptive-system
actual evolution. From i.i.d. samples of two independent unit-
power uniformly distributed sources and an arbitrary fixed value
for the rotation angle, the solid line represented in Fig. 5 shows
the trajectory of the sks adaptive estimate (9) for . The
dashed line corresponds to the ODE solution (15), discretized
according to being the iteration (or sample) number.
Both curves are remarkably similar. The estimate settles down,
roughly, from iteration , corresponding to , for
which the exponential function in (15) has dropped below 1%
of its initial value.

Validation of Asymptotic pdf:In the second place, the accu-
racy of the asymptotic pdf found in Section V [see (20) and (23)]
is examined. We compare the empirical with the expected ana-

lytic results for the pdf of the adEML error ,
where is given by (10) and . Again,
two independent uniformly distributed signals act as sources,
with a fixed rotation angle of , yielding a hypothet-
ical set of two whitened observations. From independent
samples of such processes, the value of is evaluated by
means of the sample estimate of (26) (it was verified that iden-
tical results are obtained when computed from the sources or
the whitened signals), giving (population value
62.537). The true value of sks gives

. With these parameters and , the centroid stan-
dard deviation expected from the theoretical results [see (18)]
is , providing a ratio .
Now, adaptive estimator (10) is used on the first samples of
the whitened observations. In the previous paragraph, it was ex-
plained how the ODE solution stabilizes at . This remark
leads us to consider the values offrom , i.e.,
the last iterations, in order to estimate the adEML-bias
empirical pdf. To this end, the kernel pdf estimation method is
employed [15] with function width . This empir-
ical pdf is displayed in the solid-line curve of Fig. 6(a). The
dotted line represents the analytical pdf obtained from (20) and
the parameters and above. The dashed line corresponds
to Gaussian approximation (23) obtained from the population
values. All three curves are very similar.

Next, the experiment is repeated with a new adaption coef-
ficient and processing the whole of the initial
source samples. Now, and . From
the last iterations, the pdf of is estimated, again using

Fig. 5. Evolution of the source kurtosis sum adaptive estimate for a mixture of
two uniformly distributed signals� = 10 . Solid line: Estimator (9). Dashed
line: ODE approximation (15).

Fig. 6. adEML-error pdf for a mixture of two independent uniform distribu-
tions � = 30 . Solid lines: Empirical pdf estimates, kernel method with
function width w. Dotted lines: Analytic asymptotic pdf (20). Dashed
lines: Gaussian approximation (23). (a)� = 10 , last 5 � 10 iterations,
w = 0:909 . (b)� = 10 , last5 � 10 iterations,w = 0:303 .

the kernel method, this time with . This estimate ap-
pears in the solid line of Fig. 6(b). Formulae (20) and (23) pro-
duce the analytic curves displayed by the dotted and dashed line,
respectively, in the same figure. Now, the curves are even closer
than before and, as expected, the variance is reduced relative
to the previous case, roughly in the same proportion asde-
creases. This corroborates the asymptotic-variance expression
(25).

In order to demonstrate that all these asymptotic results also
hold for long-tailed and asymmetric source distributions, anal-
ogous experiments are carried out with a Laplacian (long-tailed
symmetric) and an exponential (long-tailed asymmetric) distri-
bution for the sources. The results appear in Fig. 7 for

(calculated from a -sample i.i.d. source
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TABLE I
ESTIMATED-ANGLE BIAS � STANDARD

DEVIATION FOR � = 30 AND ADAPTION COEFFICIENTS� = � = 10 ,
EVALUATED FROM THE LAST 5 � 10 OUT OF 5:5 � 10 ITERATIONS.

ALL VALUES ARE EXPRESSED INDEGREES.

TABLE II
ESTIMATED-ANGLE BIAS ± STANDARD DEVIATION FOR � = 30 AND

ADAPTATION COEFFICIENTS� = � = 10 , EVALUATED FROM THE LAST

5 � 10 OUT OF 10 ITERATIONS. ALL VALUES ARE EXPRESSED INDEGREES.

realization; population value ), (from the
population sks), and the same general conditions as above. The
two cases are a) , and

; and b) ,
and . The resemblance between the curves is also
outstanding.

Remark that in all the previous examples, the ratio
is approximately constant so that the pdf estima-

tion can be considered as reasonably “fair” in all cases.

B. Performance Comparison With Other Adaptive Algorithms

Stationary Parameters: The adEML estimator is to be com-
pared with two other adaptive procedures: the EASI [3]2 and the
AROT [5] methods. The prewhitening stage in the latter pro-
cedure is removed so that only the angle estimation from the
whitened observations is considered. In order to disclose the re-
maining orthogonal rotation, the AROT method requires to es-
timate the fourth-order cross-cumulants of the whitened sensor
outputs, which can be done from their moments (just as sug-
gested in [5]). To this end, the adaption coefficientis used to
estimate the second-order moments, whereas the adaption co-
efficient is employed to estimate the fourth-order moments.
For the part of the EASI method, when cubic nonlinearities are
chosen, the convergence condition is such that the sum of kur-
tosis of every pair of sources are negative [3]. Accordingly, if
the sks is positive, the choice of negative cubic nonlinearities,
in principle, guarantees the convergence. Table I displays the re-
sults, in the form “bias ± standard deviation,” obtained for the
angle estimated by those three methods for several source-pair
distributions. The true angle is , and, inspired by EASI,
equal values are chosen for the second and fourth-order adap-
tion coefficients . The results were calculated

2Original MATLAB code was downloaded fromhttp://www-
sig.enst.fr/~cardoso/guidesepsou.html .

Fig. 7. adEML-error pdf for a mixture of a Laplacian and an exponential dis-
tribution � = 30 . Solid lines: Empirical pdf estimates, kernel method with
function widthw. Dotted lines: Analytic asymptotic pdf (20). Dashed lines:
Gaussian approximation (23). (a)� = 10 , last 5 � 10 iterations,w =

4:444 . (b)� = 10 , last5 � 10 iterations,w = 1:379 .

Fig. 8. Example of the adEML centroid trajectory for a mixture of two uni-
form distributions� = 2 � 10 ; first 5 � 10 iterations. Solid line: Adaptive
estimator (8). Dashed line: ODE solution (14).

from the last out of a total of performed itera-
tions. The first two rows correspond to source pairs with nega-
tive kurtosis sum (uniform–uniform: 2.4, uniform–Gaussian:

1.2), whereas in the last two the source kurtosis sum is posi-
tive (Laplacian–exponential: 9, exponential–Rayleigh: ).
The same mixture realizations are fed into all three methods.
Note that EASI does not converge for the last two source pairs
(which, probably, could have been prevented with the normal-
ized version of the algorithm [3], although for the sake of a
meaningful comparison, only non-normalized implementations
of the methods were considered). For the standard deviation, it is
found that . Table II shows the out-
come of a similar experiment but, this time, with
and taking the last estimates from a total of iterations.
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Again, the above relationship among the respective standard de-
viations seems to hold.3

Regarding the convergence speed, it was observed that for
the same adaption coefficient, adEML converges considerably
faster than EASI and AROT. This is due to the fact that in order
to estimate the missing angle, the magnitude of relevance is not
the exact centroid location itself but only the centroid orienta-
tion. This orientation is estimated with great accuracy in just a
few iterations when the centroid is initialized at the origin of the
complex plane . This fast convergence feature is illus-
trated in Fig. 8, which plots the centroid trajectory for a mixture
of two uniform sources, with a true angle of 30(providing a
centroid orientation of ; see [21])
and step size . Further experiments (see Fig. 9) con-
firm that the convergence speed is practically independent of the
particular choice ofµ. In short, the adEML estimator exhibits a
high convergence speed that is extremely robust with respect to
the adaption coefficient.

Tracking Nonstationarities:A time-varying rotation angle is
applied to two uniformly distributed sources. Specifically, the
true angle used is mathematically described by

(27)
so that exhibits two abrupt changes: one at and
another one at . This function is represented by the
steady solid line of Fig. 10. The oscillating solid line in that plot
shows the angle estimated by the adEML from the set of resul-
tant whitened observations for averaged over 100
independent source realizations. The angle obtained by EASI
(without the prewhitening part in its serial updating rule) with

and averaged over the same 100 Monte Carlo
(MC) runs is displayed by the dashed line of the same figure.
The adaption coefficients of both methods were selected so that
they produced the same estimated-angle variance in steady state
in a bid to compare their convergence speed under the same ac-
curacy conditions. It can be observed in Fig. 10 that adEML is
faster than EASI in tracking the time-varying parameter and re-
covering from its abrupt oscillations. Nevertheless, the adEML
high-speed convergence characteristic remarked in the previous
paragraph could still be further exploited by means of a suit-
able abrupt-change detection scheme in order to yield a faster
more efficient performance in the presence of such rapid vari-
ations. Essentially, the centroid should be taken to the origin
of the complex plane as soon as the abrupt change is detected.
Some abrupt-change detectors are studied in [1].

Performance of the Full Separation System:As explained
in Section II, angle estimator (10) can be turned into a com-
plete separation system just by combining it with an adaptive
prewhitening stage. In the following simulations, the serial up-
dating rule (2) is used to obtain adaptively the whitening ma-
trix and generate the corresponding samples of the whitened

3Bear in mind, however, that the performance of AROT's estimator deterio-
rates as the true parameter� approaches zero [22].

Fig. 9. adEML angle evolution for adaption coefficients� = f10 ; 10 ;
10 ; 10 ; 10 g (superimposed) and a fixed mixture realization of
uniformly distributed sources with true angle� = 30 . Convergence is
invariably reached in all cases at around the 50th sample.

Fig. 10. Nonstationary rotation angle. Two uniform sources. Steady solid line:
True angle�. Oscillating solid line: Angle estimated by adEML� = 2 � 10 .
Dashed line: Angle estimated by EASI� = 5:5 � 10 . Results are averaged
over 100 independent Monte Carlo iterations.

Fig. 11. Evolution of the global system averaged over 100 independent signal-
realizations in the separation of a uniform and a binary source from two sensors
by the adEML method� = � = 10 fixed mixing matrix with condition
numbern . Solid lines:n = 10. Dashed lines:n = 10 .
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Fig. 12. Global system trajectories averaged over 100 independent signal-
realizations in the separation of a uniform and a binary source from two
observations by the EASI method, cubic nonlinearities,� = 10 , fixed
mixing matrix with condition numbern . Solid lines:n = 10. Dashed
lines:n = 10 .

observations from which the adEML estimator (10) can then
be employed in order to find the missing rotation. The same
prewhitening strategy is used for AROT. The incorporation of
prewhitening allows us, in turn, to pay attention to the impact of
the mixing-matrix conditioning on the algorithms' convergence.

a) Two signals:A two-sensor mixture is made up of a uni-
formly distributed source, a binary source, and a fixed regular
mixing matrix with condition number .4 We choose the
step sizes . The trajectories of the modulus of the
elements of the global mixing-unmixing system (which relates
true and estimated sources; see Fig. 1) by the adEML averaged
over 100 independent source-realizations are plotted in the solid
lines of Fig. 11. Two of the elements converge to 1, whereas the
other two do so to 0, thus achieving a successful source sep-
aration. The same mixture realizations are processed by EASI
(this time including the prewhitening stage as well) with positive
cubic nonlinearities and identical adaption coefficient. The se-
lected nonlinearities fulfill the stability condition of this method
for the mentioned kinds of sources. The averaged global ma-
trix elements obtained by EASI are represented in Fig. 12 (solid
lines). The results obtained by AROT under exactly the same
conditions appear in Fig. 13 (solid lines). All three procedures
converge nearly as fast, with minor differences in their oscilla-
tions once convergence is reached (at about the 500th iteration).
The adEML and EASI results are quite similar, whereas AROT
seems to exhibit more difficulties in the transient period until
the moments are estimated with enough accuracy. The inclusion
of the prewhitening stage accounts for the decrease in speed of
the adEML method relative to the results of the preceding sec-
tions. A theoretical study of the influence of prewhitening on
the method's performance is required to confirm this hypoth-
esis. However, we lack space here for such thorough analysis.

On the other hand, the impact of the mixing-matrix condi-
tioning is evidenced by the dashed lines of Figs. 11–13 obtained

4The condition numbern is defined as the ratio of the largest to the smallest
singular value ofM .

Fig. 13. Global matrix coefficients averaged over 100 independent signal
realizations in the separation of a uniform and a binary source from two
measurements by the AROT method,� = � = 10 , fixed mixing matrix
with condition numbern . Solid lines:n = 10. Dashed lines:n = 10 .

Fig. 14. Modulus of global system coefficients averaged over 100 mixture
realizations. Three-source (binary-uniform-sinusoid) three-sensor scenario.
adEML method,� = � = 4:5 � 10 , fixed mixing matrix with condition
numbern = 10.

for . Convergence is delayed as the mixing-matrix
conditioning worsens.

b) More than two signals:In this scenario, the extension
described in Section IV-B and Fig. 3 is used for the adEML
method. On the part of the AROT method, only a single sweep
is performed over the signal pairs, following the guidelines
of [5]. A fixed regular 3 3 mixing matrix is chosen, with

, which generates a set of three mixtures when applied
on a set of three independent sources:

• binary sequence;
• uniformly distributed process;
• sinusoid with random frequency and initial phase.

The adaption coefficients are now selected as
for all three methods. Figs. 14 and 15 display the tra-

jectories of the global system entries obtained by adEML and
EASI, respectively, averaged over 100 independent MC realiza-
tions. AROT's results are not shown since the procedure did not
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Fig. 15. Modulus of global system coefficients averaged over 100 mixture
realizations. Three-source (binary-uniform-sinusoid) three-sensor scenario.
EASI method, cubic nonlinearities,� = 4:5 � 10 , fixed mixing matrix with
condition numbern = 10.

converge on 20% of the MC runs (perhaps this negative out-
come could have been prevented with some sort of normaliza-
tion in the algorithm; this could be a subject of further investiga-
tions). Looking at Fig. 14, we can see that the proposed exten-
sion works fine, which is a conclusion supported by additional
experiments. EASI's results are smoother than adEML's, but the
former method consistently converged to a nonseparating solu-
tion, in which one of the sources was extracted but the other two
remained mixed at the separator output. The influence of the
mixing-matrix conditioning on the convergence was observed
to be analogous to that in the two-signal case.

VIII. C ONCLUSION

An adaptive estimator of the relevant separation parameter
after prewhitening in the two-source two-sensor BSS scenario of
real instantaneous linear mixtures has been derived. This adap-
tive estimator is implicitly based on the fourth-order statistics
of the observed signals. Its convergence to a stable separation
solution has been theoretically proven (in the i.i.d. case) for any
source distribution combination, as long as the source kurtosis
sum is not zero. This attribute is in sharp contrast with other
adaptive methods (e.g., [3] and [11]), which are not guaranteed
to converge to the desired solution. In addition, the simple al-
gebraic formalism on which this adaptive method is based has
allowed us to capitalize on the standard devices for the anal-
ysis of stochastic algorithms when studying the properties of the
method. In particular, its asymptotic pdf has been determined,
together with its Gaussian approximation and asymptotic vari-
ance, which depends exclusively on the source statistics. Sim-
ulations have shown the accuracy of the asymptotic results, as
well as the fast convergence of the adaptive estimator. This high
convergence speed has proven very robust to the adaption coef-
ficient choice. By using a pairwise extension of computational
cost comparable with other adaptive procedures, the estimator
has also been made applicable in BSS contexts of more than
two signals, which has been empirically supported. Experiments
have also demonstrated the use of the estimator in a complete

separation scheme, revealing a performance up to the mark of
other adaptive BSS methods.

Paths of further research include the extension of the proce-
dure to complex mixtures and the study of alternative gener-
alizations to the BSS scenario of more than two signals. The
former issue begins to receive attention in [23]. The theoretical
convergence of the pairwise scheme for the general BSS case
remains an open question. The effects of noise, as well as of
prewhitening, on the performance of the proposed adaptive es-
timator also deserve to be investigated.
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