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Abstract—Blind source separation (BSS) aims at the reconstruc-
tion of unknown mutually independent signals, so-called sources,
from their mixtures observed at the output of a sensor array. The
BSS of instantaneous linear mixtures, which finds application in
numerous fields, can be solved through the statistical tool of inde-
pendent component analysis (ICA). This paper concentrates on the
analytic solutions for the fundamental two-signal ICA scenario. A
novel estimation class, so-called general weighted fourth-order es-
timator (GWFOE), is put forward, which is based on the fourth-
order statistics of the whitened sensor output. By means of a weight
parameter, the GWFOE is able to unify a variety of apparently
disparate estimation expressions previously scattered throughout
the literature, including the well-known JADE method in the two-
signal case. A theoretical asymptotic performance analysis is car-
ried out, resulting in the GWFOE large-sample mean square error
and the source-dependent weight value of the most efficient esti-
mator in the class. To extend the pairwise estimators to the gen-
eral scenario of more than two sources, an improved Jacobi-like
optimization technique is proposed. The approach consists of cal-
culating the necessary sensor-output fourth-order statistics at the
initialization stage of the algorithm, which can lead to significant
computational savings when large sample blocks are processed.
Based on this idea, adaptive algorithms are also devised, showing
very satisfactory convergence characteristics. Experiments illus-
trate the good performance of these optimal pairwise ICA strate-
gies, in both off- and on-line processing modes.

Index Terms—Array signal processing, blind source separation,
higher order statistics, independent component analysis, perfor-
mance analysis, unsupervised learning.

I. INTRODUCTION

A. Problem and Motivation

The problem of blind source separation (BSS) consists of re-
covering a set of unobserved signals, so-called sources, from an-
other set of observed signals which are mixtures of the sources
[1]-[3]. The term “blind” signifies that (typically) very few as-
sumptions are made about the sources and the mixing process.
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By contrast, conventional array processing techniques (e.g., for
direction-of-arrival estimation) assume a certain structure for
the mixing matrix in terms of the array manifold, or the array
response as a function of the arrival angle. Deviations of the as-
sumed structure from reality (calibration errors) can have a sig-
nificant negative impact on the algorithms’ performance. The
relative freedom given by BSS methods to the mixing structure
makes them very robust to calibration errors [4]. This flexibility
and robustness have spurred the interest in the BSS problem over
the last decade. Another important motivation has been the vast
number of application areas where BSS proves useful [2], [3],
[5], ranging from communications [6] to biomedical signal pro-
cessing (electrocardiogram and electroencephalogram analysis,
fMRI, brain imaging) [7]-[9], condition monitoring, image pro-
cessing [10], financial data analysis, seismic exploration, clas-
sification, or data compression and coding [11], among others.
Instantaneous linear mixtures, where no time delays occur in the
propagation from sources to sensors, is a very accurate signal
model in many of those applications. The solution of the more
elaborate convolutive-mixture model can often be decoupled
into a stage resolving the effects caused by the multipath channel
(time equalization) followed by the separation of the remaining
instantaneous mixture. The separation of nonlinear mixtures is
more involved, and is also receiving attention by some authors
(see, e.g., [2], [3], and references therein).

When the time structure cannot be exploited or is simply
ignored, the basic approach to instantaneous linear source
separation consists of projecting the observation vectors into
some basis where the resulting components are statistically
independent. This is the independent component analysis (ICA)
of the observed data [12], and in its more general form it relies
(explictly or not) on higher order statistics. A previous spatial
whitening process (entailing second-order decorrelation and
power normalization) helps to reduce the number of unknowns,
resulting in a set of normalized uncorrelated components
(whitened signals) related with the sources through a unitary
transformation. ICA is then tantamount to the identification of
this unitary matrix.

B. Closed-Form Solutions in the Two-Signal Case

In the fundamental real-valued two-signal case, the problem
reduces to the identification of a single parameter, the un-
known angle characterizing the Givens-rotation mixing matrix.
A variety of closed-form methods for the estimation of this
angle have been proposed in the literature. These methods
arise from approximations of certain optimality criteria (con-
trast functions) and provide direct solutions with no iterative
search involved. Most of these share the common feature
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of being based on the fourth-order statistics of the sensor
output. The first expression was obtained in [13] by relating the
fourth-order statistics of sources and sensors. Its performance
was later shown to depend on the actual value of the unknown
parameter [14], [15], thus losing the desirable uniform perfor-
mance property [16]. A good number of early methods were
derived from the maximum likelihood (ML) approach. The
truncated Gram—Charlier expansion of the source probability
density function (pdf) yielded the solution of [17], restricted to
symmetric sources with normalized kurtosis in certain positive
range. These validity conditions were broadened through the
extended ML (EML) and the alternative EML (AEML) estima-
tors [14], [18], [19]. The EML also generalized the maximum
kurtosis (MK) cost function of [20], [21], initially thought to be
valid only for sources with same kurtosis sign [14], to source
pairs with nonzero source kurtosis sum (sks). The EML and the
AEML remain consistent providing the sks and source kurtosis
difference (skd) are not null, respectively. This deficiency was
overcome in [14], [19], and [22]. In [14] and [19], the choice
between the EML or the AEML was made with a simple
decision rule as a function of the sensor-output fourth-order
statistics. In [22], adopting the ML framework of [17], the two
estimators were unified into a single analytic expression, the
approximate ML (AML).

The contrast function of [12], which had earlier been reached
from the ML principle [23], is itself an approximation of a
negentropy maximization principle measuring the deviation of
the separator output from Gaussianity. Negentropy can also be
readily connected to alternative information-theoretical criteria
such as the mutual information (MI) between the separator
outputs or the sum of their marginal entropies (ME) [4], [5].
Another major group of two-dimensional closed-form solu-
tions arises from the trigonometric expansion and approximate
minimization of the ME contrast criteria developed in [12]. The
MaSSFOC (maximum of sum squared fourth-order cumulant)
estimator [24] and the recently proposed sinusoidal ICA (SICA)
[25], which resemble the AML, are approximate minimizers
of the fourth-order contrast function. Further simplifications
of this contrast function when the source kurtoses have the
same modulus lead to the so-called source kurtosis sum and
source kurtosis difference estimators (SKSE, SKDE) [24], very
similar to the EML and AEML estimators [14], [18], [19],
respectively. The simultaneous exploitation of orders three and
four is shown to improve the separation performance when
some of the sources present nonsymmetric distributions [26].

The original solution to Comon’s fourth-order contrast in-
volved finding the roots of a fourth-degree polynomial (a bi-
quadratic or quartic equation). An analytic procedure for rooting
quartics is well known since the sixteenth century (Ferrari’s
formula), but its calculation can be cumbersome; approximate
numerical methods are usually preferred instead. The closed-
form estimators that we are concerned with are considerably less
elaborate: they consist of simple formulas involving straight-
forward operations on certain statistics of the whitened sensor
output.

The notion of linearly combining estimators was originally
put forward in [22]. Through a weight parameter, the EML
and AEML are combined together into a single expression, the
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so-called weighted AML (WAML) estimator. It was suggested
that the weight parameter could be adjusted by taking advantage
of a priori information on the source pdfs, although no specific
guidelines were given on how the actual choice should be made.

C. Scenario of More Than Two Signals

In the n-dimensional case, n > 2, ICA can be carried
out by applying the two-signal estimators to each whitened
signal pair over several sweeps until convergence [12]. This
iterative approach is reminiscent of the Jacobi optimization
(JO) technique for matrix diagonalization [27], [28], and can
indeed be seen as its extension to higher dimensional tensors
[12]. Although no theoretical proof of global convergence has
yet been obtained for the pairwise iterations in the tensor case
[12], [29], the method remains valid in practice since no exper-
imental or theoretical counterexample of misconvergence has
been encountered to date, provided that the validity conditions
of the two-dimensional criteria are fulfilled for every signal
pair. In the standard JO iteration, the fourth-order statistics
used by the closed-form estimators need to be computed for
each signal pair at every sweep until convergence. Typically,
the statistics are estimated from the signal samples, which may
involve extensive computations especially when processing
long signal blocks. Adaptive algorithms, such as the so-called
adaptive rotation (AROT) [13] and the adaptive EML (adEML)
[30], are easily derived from this strategy. However, they some-
times show poor convergence, especially for a large number of
sources.

D. Contributions and Outline

Many successful methods are available to perform ICA in the
general scenario of more than two sources (see, e.g., [2], [3],
and references therein). Nevertheless, the two-signal case re-
mains a scenario of fundamental importance, since it is the most
basic and can be considered as the elementary unit for the so-
lution of the general » > 2 in the JO approach. Despite this
relevance, the relationships between the different analytic solu-
tions have only been explored to a limited extent. The purpose
of this paper is to fill the gap in these connections. By means of
the complex-centroid notation used in the EML and the AEML
[14], [18], [19], [31], we arrive at a compact formulation for the
WAML estimator of [22]. It is seen that through different values
of the weight parameter, many of the existing fourth-order es-
timators are obtained, including the well-known JADE method
[4] for n = 2; hence the more suitable name of general weighted
fourth-order estimator (GWFOE). The centroid formalism al-
lows a simple derivation of the estimator’s large-sample mean
square error (MSE), from which the weight parameter of the op-
timal estimator is determined as a function of the source statis-
tics. Here, “optimal” refers to the asymptotically most efficient
estimator in the GWFOE class.

In the general case of more than two signals, we aim to op-
timize the computational cost of the JO technique. An alterna-
tive moment-calculation procedure is proposed, which is less
costly in scenarios where the sample size is large relative to the
number of sources. The relevant statistics are computed from the
sensor-output samples before starting the JO iterations and then
modified according to the pairwise rotations. We refer to this
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method as initialized JO (1JO). By comparing the complexity
of the proposed and the conventional moment-estimation pro-
cedure, a decision rule is derived to select the most computa-
tionally efficient option. This results in the optimal JO (OJO).
Adaptive algorithms based on IJO can also be designed to im-
prove the convergence properties of previous online approaches.
In short, the results presented in this paper unify, generalize, and
enhance ICA techniques based on two-dimensional fourth-order
contrasts.

This paper encompasses substantially extended as well
as thoroughly revised versions of conference publications
[32]-[36]. The material is organized as follows. After re-
viewing the BSS signal model and ICA contrast functions in
Section II, Section III derives the GWFOE, highlights its con-
nections with other analytic solutions, performs its asymptotic
analysis, and obtains the best estimator of the class. Section IV
is devoted to the scenarios of more than two signals, featuring
the computationally efficient IJO and OJO procedures. Adap-
tive implementations are the focus of Section V. Experimental
results are reported in Section VI. Section VII concludes herein.
The Appendices contain some proofs and other mathematical
derivations.

E. Notations

Throughout this paper, vectors and matrices are represented
as lowercase and uppercase boldface letters, respectively.
Symbols (-)T and (-)~! indicate the transpose and inverse
matrix operators, respectively. R and C are the sets of real
and complex numbers, respectively; symbol 5 = /—1 is the
imaginary unit; Re(-) and Im(-) denote the real and imaginary
part of its complex argument, respectively, whereas function
/(-) supplies its principal value (i.e., its argument in the in-

terval | — m, 7]). E[-] represents the mathematical expectation.

. . def
Given a set of signals {s;}.;, M5, = E[s; --s;] and

Ci def Cum[s;,...,8:.], 1 < i < n, 1 <k <1y
denote their rth-order moments and cumulants, respec-
tively, whose mathematical definitions can be found in
[37] and [38]. For the pairwise case, we prefer Kendall’s

s def

notation [37]: p_, , MY, , = E[si"s}] and
N~
T—p P
s def s
kp_pp = C7 |, , stand for the rth-order moment and
=~
T—P P

cumulant of the signal pair s = [s1, so]T

II. BSS AND ICA

A. Matrix Model

In its simplest form, the BSS problem accepts the
following matrix model. The entries of sensor-output
vector x(t) = [z1(t),...,7m(t)]T are instantaneous
linear combinations of a set of unobserved source signals

s(t) = [s1(1), ..., sn(t)]T

x(t) = As(t) @)
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where A represents the mixing matrix, with dimensions (mxn),
m 2 n. In this paper all signals and mixtures are assumed to be
real valued. If the mixing matrix is full column rank, the sources
are mutually independent, and at most one of them is Gaussian,
it is possible to obtain a separation matrix B and estimate the
sources [12], [39] as

y(t) = Bx(t) = BAs(t) = Cs(t). 2)

Since the scale and order of the components of s(¢) do not af-
fect their statistical independence, a satisfactory separation is
characterized by a global matrix C with a nonmixing structure,
that is, with a single nonnull element per row and per column
(the product of a invertible diagonal matrix and a permutation
matrix). As the source amplitudes are not important, it can be
assumed, without loss of generality, that the source variance is
unity E[s(#)s(t)T] = L,.

Source separation is typically carried out in two steps. First,
whitening or standardization [principal component analysis
(PCA)] projects the observed vector on the signal subspace and
yields a set of second-order decorrelated, normalized signals
z(t) = [21(t), ..., z.(t)]T such that E[zz"] = I,,. As a result,
the source and whitened vectors must be related through a
unitary transformation

z(t) = Qs(t). (3)

The separation problem thus reduces to the computation of uni-
tary matrix Q, which is accomplished in a second step. The ICA
approach to BSS consists of computing Q such that the entries
of the separator output y(#) = QTz(t) are as independent as
possible.! Since we consider methods that do not exploit the
temporal structure of the source process s(t), in the sequel, the
time index ¢ will be dropped when convenient.

B. Contrast Functions

A contrast function [12] is a mapping v(y) from the set of
densities {p,,y € R"} to R satisfying the following require-
ments. If y has independent components, then ¥ (y) > ¢ (Ay),
VA nonsingular (domination), with equality if and only if
A is nonmixing (discrimination); also, ¥ (y) is unaltered by
permutations or scaling of the components of y (invariance).
Thus, the maximization of a contrast function yields the ICA
solution. Contrasts are attractive because they allow an optimal
processing in the presence of unknown noise and interference,
adding robustness to the separation performance.

The ML principle provides the contrast [23]

n

o = D108 pa, (yi)—log | det Al
=1

“)

I'This two-step process corresponds to the “hard whitening” approach. Re-

cently, the “soft whitening” concept has been introduced [40], in which the
second- and higher order processing is carried out simultaneously.

M (y) = log pa(x|A)

xX=
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If this function is maximized for all possible distributions under
the whitening constraint, we arrive at the ME contrast [41]

n

PME(y) = = Hiyi] )

i=1

where H[-] represents the differential entropy. Using the Edge-
worth expansion of the source pdf [37], after second-order
whitening, the ME contrast can be approximated as a function
of the fourth-order cumulants [12], [41]

n

byit(y) = Z (Ci’m)Q (6)

=1

where CY,. is the fourth-order marginal cumulant (kurtosis)
of ¥;, which, in the zero-mean unit-variance case, reduces
to (E[y#] — 3). This contrast is discriminating over the set
of random vectors y having at most one non-kurtic compo-
nent [12]. Alternatively, instead of maximizing the ML for
all possible distributions, we can also exploit some available
information on the source pdf to maximize the ML contrast.
In the fourth-order case, if all sources have the same sign of

kurtosis, (6) simplifies to [20]

it (y) =+ > Eyi]. (7)

1=1

Finally, the JADE method [4] is based on the criterion

n

,lszADE: Z (Ci}qkl)z (8)

ik, =1

whose maximization can be efficiently carried out as the joint
approximate diagonalization of a set of matrix slices of the
whitened cumulant tensor. In the two-signal scenario, approx-
imations to these optimality criteria can be solved in closed
form as explained in the next section. In the case of JADE, the
associated closed-form estimator that we develop is an exact
minimizer of criterion (8).

III. OPTIMAL ANALYTIC SOLUTION IN THE TWO-SIGNAL CASE

A. Complex Centroids

In the two-signal case, Q is a Givens rotation matrix, charac-
terized by an unknown angle 6 €] — 7, 7]

cos b
sin

(€))

cos 0

—sinf
Q) - | |
ICA then reduces to the estimation of § from the whitened
sensor outputs. Relation (3) accepts a compact complex-valued
formulation

21+ jzo = e (s1 + jso) (10)
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or g = ¢/ +0, where (21 +j22) = pel® and (s14js2) = pei®’.
Geometrically, (10) signifies that the whitened-signal pdf is a
rotated version of the source pdf.

Centroids are defined as particular nonlinear averages of the
complex points (10) [14], [18], [31]. The following centroids are
useful in deriving closed-form expressions for the estimation of
0

def 7 z z z . z z

& = Elp*e’*?] = (ki — 6k3y + K5y) + 34 (K5, — ki) (1D
def 1 P P . 2 P

& S E[p*e’®?] =(rGy — £54) + 42 (K5, + Ki3) (12)
def P 2 2

B = E[p*] = 8 = Kip + 265, + Ky (13)

When written as a function of the source statistics, the above
centroids yield

& =7l & =ned® B=q (14)

where symbols y o (Kip+Kg) andn et (K0 —K{4) represent
the sks and the skd, respectively.2

B. General Weighted Fourth-Order Estimator (GWFOE)
The EML estimator [18] can be expressed as

A 1
femML = Zl(ﬁfy) (15)
Similarly, the AEML [19] reads
A 1
OapML = ilfn- (16)

Under mild conditions, the sample versions of centroids &, &,
and 3 are consistent estimators of ye*?, ne’2? and +, respec-
tively, so that QAEML and @ AEML consistently estimate 6 as long
asy # 0 and n # 0, respectively [14], [18]. The lack of consis-
tency for certain values of source kurtosis is precisely the main
drawback of these two estimators.

In order to circumvent this deficiency, let us form the com-
pound centroid

fawrop = whE, + (1 —w)éy, 0<w < 1. a7
Then, parameter # can also be estimated through
A 1
fawroe = - L{GWFOE (18)

4

which we call the GWFOE. The relevance of the GWFOE lies
in the fact that it is a consistent estimator of ¢ for any source
distribution, since the GWFOE centroid consistently estimates
the complex number [w~y? + (1 —w)n?]e’*?. More importantly,
the GWFOE unifies many of the analytic solutions already pro-
posed in the literature, which are simply obtained for different
values of the weight parameter w:
i) w = 0: AEML estimator of [14], [19];
ii) w = 1/3: AML estimator of [22];
iii) w = 3/7: SICA estimator of [25], [33];

2Note that /3 is an estimate of -y from the whitened sensor output. Hence, the
equality expressed in (14) only holds for the ensemble averages.
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iv) w = 1/2: MaSSFOC estimator of [24];

v) w = 1: EML estimator of [14], [18].

In addition, Appendix I proves that the solution provided by
JADE [4] for n = 2 sources is equivalent to the GWFOE with
w = 1/2. Similarly, the fourth-order part of the recently pro-
posed CuBICA method [26] corresponds to the GWFOE with
w = 3/7. On the other hand, by substituting 3 with +1 in
(17)—-(18), we also obtain the ML, MK, and SKSE/SKDE es-
timators of [17], [20], [21], [24], and [41]. These latter methods
require advance knowledge of the source kurtosis sign.

Some of the above estimators arise from the ML criterion
when the source pdf is approximated by its Gram—Charlier ex-
pansion truncated at fourth-order, and the sources are symmet-
rically distributed. Different solutions are then obtained under
additional conditions:

EML estimator: n = 0, v # 0;

AEML estimator: v = 0,  # 0;

AML estimator: v # 0, n # 0.
The GWFOE does not directly arise from the ML criterion, but
it can be considered as the combination of two solutions (EML
and AEML) which are approximate ML estimators under spe-
cific assumptions. Even if the validity conditions of an approx-
imate ML solution hold, the use of a different weight w will di-
vert the GWFOE from such a solution. However, the GWFOE
variance can be fine-tuned by appropriately selecting w. In this
manner the GWFOE can be made more efficient than any of the
pairwise ML methods, especially in scenarios where their va-
lidity conditions do not hold. This improved efficiency is pos-
sible because the other estimators are only approximate ML so-
lutions. This interesting feature will be developed in the next
section and illustrated by the experiments of Section VI.

The use of the complex-centroid formalism allows us to bring
out the connections with other existing closed-form solutions
and facilitates the theoretical performance analysis of the esti-
mator (as carried out next). Since some of these solutions (such
as MaSSFOC or SICA) were originally obtained as approxima-
tions to optimality criteria other than ML, we prefer to adhere
to the more generic denomination of GWFOE.

C. Performance Analysis: Optimal GWFOE

In this section, we intend to provide specific guidelines for
the choice of GWFOE’s weight parameter. We search for the
value of w that minimizes the asymptotic (large-sample) MSE
of the GWFOE class.

The asymptotic MSE of the GWFOE (18) is determined in
Appendix II and is given by

MSEgwroE
E{[w’y (s‘i’82—5153)+(1_w)77 (5:1))52"'515%)]2} 19
T [wy>+(1—w)y?]? )

where T is the number of samples per signal. It is interesting to
note the following.
i) MSEgwrog reduces to the asymptotic MSE of the
AEML and EML estimators [14], [15] for w = 0 and
w = 1, respectively. This is not surprising, since the
GWEFOE becomes such estimators at those weight values
(see the previous section).
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i) When v = 0 (respectively, n = 0), GWFOE performance
reduces to that of the AEML (respectively, EML) esti-
mator, forany 0 < w < 1.

If |k50| # |K4l, the global minimum of MSEgwror (19) is

obtained at (see Appendix II)

2 2
1 Hholha (550" = (68a)7] + ora (o — 1)

Wopt = 3 + 2 2
2 2 [(”Zo) 15s — (Kda) Mgo]

(20)
If wopt & [0, 1], the derivative of MSEgwror Wwith respect to
w does not change sign and thus MSEGgwrog is monotonic in
such an interval. In that case, we choose between wg,; = 0
(AEML) and w,p,; = 1 (EML) the value that provides the lowest
MSEgwror in (19). If |s55| = |x§4|, case ii) holds. Hence,
given the source statistics, one can select the estimator of the
GWFOE family with minimum asymptotic MSE. The experi-
ments of Section VI will illustrate the validity of the asymptotic
approximation (19) and the performance improvements that can
be derived from the use of the optimal weight coefficient.

In the event that nothing is known in advance about the source
statistics, a possible simple strategy is to perform an initial sep-
aration with any w €]0, 1[. The optimal value of w can then
be estimated from the obtained sources, and the separation can
be repeated until w,,¢ converges. This iterative estimation of
Wopt converges very fast (typically within one to two iterations),
as will be demonstrated in the experiments of Section VI. De-
pending on the actual source statistics and the application in
hand, the performance gain may compensate the increased cost
of performing several separations.

IV. MORE THAN TwO SIGNALS CASE

A. Standard Jacobi Optimization

Jacobi optimization (JO) techniques have favorable
rounding-error properties and high computational parallelism,
allowing for numerically stable efficient implementations [28].
In the ICA context, Comon applied a JO-like procedure to
extend a two-dimensional contrast ¢(f) to the n-dimensional
scenario, with n > 2. Thanks to its flexibility, the JO approach
can easily integrate any valid two-signal solution, such as the
GWFOE.

Algorithm (JO-GWFOE)

n-dimensional GWFOE using conventional Jacobi
optimization.
1) Whitening. Compute the whitened signals as z = Wx
from a whitening matrix W. Sety = z and sweep number
c =1
2) Sweep c.Forall g = n(n—1)/2pairs,1 < p < ¢ < n,do
a) Set [2,,2,]T = [yp,y,]T and compute the Givens
angle 6,, = HAGWFOE from (18).
b) If |64 > Omin, rotate the pair [yp, yg]™ by Opq.
3) End? If the number of sweeps c reaches a maximum value
¢ = K or no angle 6,, has been updated, terminate.
Otherwise go to Step 2) for another sweep, with ¢ = ¢+ 1.
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In [41], the algorithm only stops when the whole set of ¢
Givens rotations have been updated by a value under a threshold
Omin, but no limit is set on the number of sweeps c. The value
Omin is chosen in such a way that rotations by a smaller angle
are not statistically significant; typically, O, = 1072/ VT,
where T' is the sample size. In [12], the algorithm stops after
K =1+ /n sweeps. This limit is also appropriate in our im-
plementation, due to the existing connection between the con-
trast of [12] in the basic two-dimensional case and the GWFOE
solutions. In a bid to avoid useless computations, we also set a
fixed threshold 60,,;, = 7/360 rad (0.5°).

B. Initialized Jacobi Optimization

Step 2a) of the JO-GWFOE computes the Givens angle §,,, by
using (18). The centroids (11)—(13) are calculated by averaging
over the whole set of samples of signal pair [z, z,]*. Since the
sample averaging is repeated over several sweeps, this proce-
dure may be computationally very costly for large sample sizes.

A more efficient alternative may be obtained as follows. Cen-
troids (11)—(13) may be written as a function of the moments
of the current output pair { [Lz_i_i}z,l_o. The idea is to compute
the whole set of whitened-signal moments just once at an ini-
tial stage and later “rotate” them at each step of the algorithm
without reusing the observed signal samples. The relationship
between the moments of the whitened sensor output and their
rotated counterparts is established below (Appendix III).

Proposition 1: Lety = Vz(t), where V is an arbitrary (n x
n) matrix. Then, there exists a symmetric (7 X ) matrix M?,
with r = n(n + 1)/2, such that

M- (a(i, j), a(k,1)) = MZ;, (21
where
a(i,j)z(i—l)(n—%>—|—j7 I<i<j<n (22

Moreover, there exist vectors v, Vpq, and v, of length 7, such
that the fourth-order moments of the outputs [y, y,]" are given
by
y _ T gz y _ T gz
Hao = VppM7VPP7 H31 = VppM7VP'I7
y _ ., T y _ T
Hag = VppMZV,Iq, Hi3 = quMZVQ<17

[gs =V M vy, (23)

The formulation introduced above allows an easy computa-
tion of the output statistics for a given rotation matrix, as the
entries of V are easily arranged into the three “rotation vec-
tors” vyp, Vpg, and vy, used in (23). Since only the subset
1<i<j<k<I<nisneeded in matrix M?, the number of
computed moments reduces to ("f’) = (n+3)!/((n—1)!4!).
The resulting ICA algorithm based on this algebraic structure is

outlined below.

Algorithm (IJO-GWFOE)

n-dimensional GWFOE using initialized Jacobi optimization.
1) Whitening. Compute a whitening matrix W and set
z = Wx.
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2) Moments Initialization. Compute matrix M? in (21) from
the sample estimates of M7, 1 < i, j, k, | < n. Initialize
the accumulated rotation matrix as V = I,,.

3) Sweep c.Forallg = n(n—1)/2pairs,1 <p < ¢ <mn,do

a) Compute the moments of current signal pair
from (23) and V. Compute the Givens angle
Hpq = HGVVFOE from (18)

b) if |6pg| > Omin, update the rotation matrix V by
rotating an angle 6, the proper coordinates.

4) End? If the number of sweeps c satisfies c = K or no
angle 0, has been updated, terminate. Otherwise return
to Step 3) for another sweep, with ¢ = ¢ + 1.

At convergence, matrix V is an estimate of QT in (3). The
main advantage of the alternative formulation presented in this
section is that the whitened sensor samples are directly used
only once, for computing matrix M? before starting the itera-
tions. The moments of each signal pair at each step of Algorithm
IJO-GWFOE are computed as quadratic forms involving simple
vector-matrix products. The main drawback of this alternative
procedure is that at a large number of components, the number
of entries of the moment matrix is of order O(n*). However, we
will show later in this section that the complexity of the stan-
dard JO can be improved if the number of sources is low. Hence,
memory problems will not appear. By “initialization” we mean
a previous computation of the whitened-signal statistics to sim-
plify subsequent calculations.

The 1JO algorithm described above is reminiscent of JADE
[4]. Indeed, the GWFOE with w = 1/2 is equivalent to JADE
in the scenario of n = 2 sources, as seen in Section III-B
and Appendix I. Moreover, JADE also calculates the cumulant
matrix in advance and performs planar rotations in a JO-like
fashion. Nevertheless, the equivalence between JADE and
GWFOE-based algorithms vanishes in the presence of more
than two sources, for JADE’s cost function involves cumulants
from more than two signals at each Jacobi iteration. On the
other hand, JADE updates the cumulant matrix with the Givens
angles after each iteration, whereas the 1JO algorithm calculates
the pertinent signal-pair cumulants from the moment matrix as
in Proposition 1, without updating the moment matrix.

C. Computational Complexity: Optimal Jacobi Optimization

This section compares the computational complexity of the
initialized and standard JO methods. As in [30], and for the sake
of comparison, a floating-point operation (flop) will be consid-
ered as a real multiplication followed by an addition. The fol-
lowing values are used: g = n(n — 1)/2 is the number of signal
pairs, K = 1 + \/n denotes the maximum number of sweeps
in the JO, and = n(n + 1)/2 represents the dimension of the
moment matrix M? in (21).

The computational burden of a fourth-order moment sample
estimate is 37" flops. The number of flops for the JO-GWFOE
algorithm is

f10 = 15gKT + 4gKT = 19gKT. 24)

The first term is the computational cost related to the calcula-
tion of the moments, whereas the second accounts for the data
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log, (M)

Fig. 1. Computational burden ratio between the JO and the 1JO approaches.
The vertical lines represent the range of (2, T') with I' between 0.9 and 1.1.

rotation performed at Step 2b) of Algorithm JO-GWFOE. The
number of operations of the IIO-GWFOE algorithm is given by

n+3

4 (25)

fIJo=3T< ) +gKr(r+1)

where the first term is the number of operations needed to com-
pute the entries of the moment matrix (21). Since some multi-
plications are repeated in the calculation of the moments (e.g.,
the product x;z; appears in any term of the form z;x;x17),
this number could be further reduced to 7'( ("1’3) + (";‘1) ). The
second term in (25) is the number of operations in computing

(23) at each Givens angle. Hence, the relation between fjo and
fizo is

19gKT
(") + ("3) + gKr(r+ 1)

I'(n,T) = (26)

Fig. 1 plots the loci of I'(n,T") = 1. We can draw the fol-
lowing conclusions. Since usually 7 > 102, 1JO is to be used for
a low number of sources, n < 5. Asn — 00, the number of mo-
ments /i7;,; becomes of the order O(n*), making T'(n, T) < 1
for any sample size. This outcome takes place at n = 40. Since
the 1JO is not to be used for large numbers of components, po-
tential memory problems associated with the storage of matrix
M? are avoided. As a result of the above decision rule, the fol-
lowing computationally optimal JO algorithm can be devised.

Algorithm (OJO-GWFOE)

n-dimensional GWFOE using computationally optimal Jacobi
optimization.
1) Compute the condition I'(n, T') in (26), and decide:
a) IfI'(n,T) < 1 then use JO-GWFOE.
b) Else, use [JO-GWFOE.
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V. ADAPTIVE ALGORITHMS

A. Adaptive Jacobi Optimization

The JO procedure is easily extended to operate online, re-
sulting in the adaptive Jacobi optimization (AJO). The AROT
[13] and the adEML [30] are methods of this type. This section
derives the AJO implementation of the GWFOE pairwise solu-
tion. This implementation is referred to as AJO-GWFOE.

The JO computes the two-dimensional estimate HAGWFOE for
each signal pair over several sweeps. Accordingly, centroids
(11)—(13) must be calculated for every sweep c and signal pair
(p,q). In the design of an adaptive version, such statistics can
be updated with a new sample arriving at instant ¢ as

f’(yC,pq)(t +1)=(1- )\)gffﬂ”‘”(t) + )\pim(t)ejwc,pq(t) (27)
é’c,pq)(t +1)=(1- )\)gr(lc,pq)(t) + /\pipq(t)ej%“”(t) (28)
BEPD (4 1) = (1= NBEPD(E) + A (5 ,0(1) —8)  (29)

where A is the learning or adaption coefficient. Since we esti-
mate the rotation matrix V under the whitening constraint, we
must first update the whitening matrix W (¢). In the following,
we will use the relative gradient based whitening algorithm [16]

L, —z(t)z(t)T

Wt+1) = Wt + o T @)

W(t)  (30)

where « is the associated learning rate, which may be different
from A. The adaptive algorithm is then:

Algorithm (AJO-GWFOE)

Adaptive n-dimensional GWFOE using standard Jacobi
optimization.

Initial setting. Set W (0) = L, xm.

At each sample instant: run Algorithm JO-GWFOE replacing
the following steps:

Step 1) Use (30) to update the whitening matrix W (¢).
Compute z(t) = W(t)x(t). Set y(t) = z(t) and
c=1.

Step 2)

&) Set [25(0). 24(B)] = [y,(1), ya ()] 1o update
centroid estimates 55”’ q)(t), fgc’p ) (t) and
BP9 (t) in (27)-(29). Compute the Givens

angle ég&?FOE in (18) from those estimates.

Algorithm AJO-GWFOE is the adaptive version of Al-
gorithm JO-GWFOE. From the connections established in
Section III-B, it turns out that adEML of [30] is equivalent to
the AJO-GWFOE with w = 1.

B. Adaptive Initialized Jacobi Optimization

In this section, we develop the adaptive version of the 1JO-
GWFOE—consequently called AIJO-GWFOE—aiming to al-
leviate the computational burden and covergence problems of
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the previous algorithm. The main idea is to adaptively update
matrix M* of Proposition 1 as

M*(t+1) = (1 = M)MP?(t) + AM?(1) 31
where matrix M?*(¢) is computed as M? in (21) but using only
z(t), the whitened-output sample at time instant ¢. The corre-
sponding adaptive algorithm takes the form:

Algorithm (AIJO-GWFOE)

Adaptive n-dimensional GWFOE using initialized Jacobi
optimization.

Initial setting. Set W (0) = I, x,, and V(0) = I,,.
* At each sample instant:
1) Whitening. Update the whitening matrix W (¢)
as in (30) and obtain the whitened output sample
z(t) = W(t)x(t).
2) Moment matrix updating. Adaptively compute matrix
M?*(t) as in (31) using the current whitened output
z(t) to form matrix M(t).
e Each N samples: set sweep number ¢ = 1 and run Steps
3)—4) of Algorithm IJO-GWFOE.

In the conventional AJO-GWFOE algorithm, centroids
are updated from samples of the last estimated outputs
[yp(t), y4(t)]". However, these outputs depend on the updated
statistics of previous pairs of outputs and sweeps, and, in con-
sequence, the statistics of latest sweeps cannot converge until
the previous statistics do. Furthermore, fluctuations around the
convergence point of the statistics in the first sweeps make
those in the final stages fluctuate as well, in a manner difficult to
predict, compromising the stability of the algorithm. Since the
number of sweeps grows with the dimension of the problem,
the AJO method typically shows convergence problems for a
high number of components.

By contrast, in the AIJO-GWFOE, the learning of the sep-
aration system and the computation of the solution are decou-
pled. In the first stage, the output moments are updated with the
last output sample. In the second stage, a current separating ma-
trix B(t) is computed. The right solution for B(#) is obtained
if the learning of IM~* has converged. Classical results of adap-
tive-algorithm analysis [42] show that, if the whitened-output
moments are well defined, the equilibrium point of moment ma-
trix update (31) is locally asymptotically stable and corresponds
to the ensemble average M~. Consequently, this two-stage de-
sign improves the stability and convergence rate of the conven-
tional AJO. To reduce complexity, the computation of V (¢) can
be carried out every NV samples, with N > 1. In such a case, the
algorithm could better be regarded as semi-online.

C. Computational Complexity of the Adaptive Algorithms

We now estimate the computational cost of the AIJO-
GWFOE and compare it to that of the AJO-GWFOE, AROT
[13] and EASI [16]. The authors of [30] estimate the number
of flops per iteration for the adEML (an AJO method) and
the AROT as Cajo = CagqeML = g(18 + f)(l + \/ﬁ) and
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Fig. 2. Computational complexity as a function of the number of sources for
AJO-GWFOE, AROT, EASI, and AIJO-GWFOE with N = 50 and N = 200.

Caror = ¢(14 + f)(1 + /n), respectively, where f = 26.
They also compute it for the EASI as Cgasr = n3 + 3n? + hn,
where each nonlinearity elements assumed to require % flops
(e.g., for cubic nonlinearities h = 2). An extra number of flops
would have to be added in the normalized version of EASI [16].
Note also that the figures for C's 30 and Caror in [30] do not
include the whitening stage, so n2(n + 1) flops must be added.

Regarding the AIJO-GWFOE algorithm, at each sample in-
stant this algorithm must perform the following tasks.

1) Whitening: The whitening algorithm (30) takes n2(n + 1)

flops.

2) Moment matrix calculation: As described before, the
number of flops necessary to compute M?Z*(t) can be
reduced to ("?) + ("17).

3) Moment matrix updating: Ada%)tively computing matrix
M(#) in (31) takes 72 = (";‘1) flops.

On the other hand, each N samples, for each signal pair, we
have the following.
Compute the moments: As described before, the number of
flops needed to compute (23) is approximately g Kr(r+1).
Compute 6%8) - Using (18), this task takes about f =
26 flops.
Rotate: 4 flops.

This makes ("1*) + ("7 [("F") + 1] + n® + n? flops per
iteration plus no more than (1 + /n)(n(n — 1)/2)[(’”2'1)3 +
("3') + 30] flops every N iterations.

Hence, the computational burden of AIJO is always higher
than that of AJO, AROT, and EASI when N = 1. However, as
N increases and for a reduced number of sources, we can force
the complexity of AIJO below that of AJO and AROT, and of
the order of EAST’s. This result is illustrated in Fig. 2, which
displays the number of flops per iteration as a function of the
number of sources for these four adaptive methods, with N =
50 and N = 200. When the number of independent sources is
n < 7and N = 50 is selected, the complexity of AIJO is lower
than AJO and AROT, as evidenced by the dotted line of Fig. 2.
Also, when N is increased to 200, AIJO is less costly than AJO
and AROT if the number of independent sources is n < 10, as
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Fig. 3. ISR performance of the GWFOE versus sample size, for different

weight coefficients. Uniform-Rayleigh sources, & = 15°, v independent

Monte Carlo runs, with #7" = 5-106. Solid lines: average experimental values.
Dashed lines: asymptotic MSE (19).

observed in Fig. 2. In such a case (/N = 200 and n < 7), the
computational burden of AIJO is still heavier than EASI’s, but
they become of the same order of magnitude.

VI. EXPERIMENTAL RESULTS

The interference-to-signal power ratio (ISR) will be used as
an objective separation index [1] to illustrate the main results
presented in this paper. This performance index reads

" " eij]2
ISR:Z Z_]_l| J| 1

(32)
o\ maxei]?
J
where ¢;; represents the element (4, j) of the global mixing—un-
mixing matrix C. The ISR is an objective measure of separation
performance, for it is method independent. In the two-signal
case, the ISR approximates the MSE of the angle estimates
around any valid separation solution (as shown at the end of
Appendix II).

A. Performance of the GWFOE

We first demonstrate the potential benefits of the GWFOE and
test the goodness of asymptotic approximation (19). Two source
signals with independent identically distributed (i.i.d.) uniform
and Rayleigh distribution are mixed through a unitary transfor-
mation with § = 15°. According to (20), this source combi-
nation provides an optimal weight value of wg,e = 0.7141.
Centroids are computed from their polar forms (11)—(13). ISR
values are averaged over v independent signal realizations, with
vT = 5 -10°. Fig. 3 shows the ISR performance obtained by
the EML, AEML, AML, MaSSFOC, and optimal GWFOE, to-
gether with the expected asymptotic MSE, for varying sample
size. The optimal GWFOE substantially outperforms the other
estimators; e.g., it proves five and ten times more efficient than
the AML and the AEML, respectively. The fitness of asymp-
totic approximation (19) is very precise in all cases and im-
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Fig. 4. Performance of the GWFOE as a function of the weight coefficient in
the experiment of Fig. 3. Solid line: theoretical MSE (19). “X”: experimental
values from Fig. 3.
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Fig. 5. ISR performance versus sks v and skd 1. GGD sources, k5, = 0.5,
# = 15°, T = 5 - 10° samples, 10> Monte Carlo runs.

proves as 1" increases, as expected. Fig. 4 shows the variation
in the MSE of the GWFOE angle estimates as a function of the
weight coefficient. The solid line plots the theoretical values of
T - MSEgwror from (19), whereas the crosses represent the
empirical values of 7" - ISR obtained in Fig. 3. Remark that a
10-dB gap appears between the maximum and the minimum
performance achievable by the GWFOE family in this scenario.
These results highlight the substantial impact that the choice of
w can have on the separation performance.

The generalized Gaussian distribution (GGD) with shape pa-
rameter «, p(s) o exp(—|s|%), is used as source pdf in the sim-
ulation of Fig. 5. We fix k3, = 0.5 and smoothly vary 3, to
generate a range of sks and skd values. The optimal GWFOE,
with wqpe calculated as in (20) and shown in Fig. 6, is com-
pared with other analytic solutions and the Cramer—Rao lower
bound (CRLB) obtained in [22] for the real case. The optimal
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opt

Fig. 6. Optimal value of the GWFOE weight parameter in the separation sce-
nario of Fig. 5.

GWFOE avoids EML’s and AEML’s performance degradation
around v = 0 and n = 0 (respectively) and, though closely
followed by MaSSFOC and AML, approaches the CRLB more
tightly than any of the other methods.

When the source distribution is unknown, the iterative proce-
dure presented at the end of Section III-C can be used to esti-
mate GWFOE’s optimal weight. To illustrate the performance
of this iterative method, uniform-Rayleigh source realizations
are mixed by a (2 X 2) mixing matrix with elements drawn from
a zero-mean unit-variance Gaussian distribution. The mixture
is first whitened via PCA based on the singular value decom-
position of the observed data matrix. The GWFOE with ini-
tial weight uniformly distributed in [0, 1] is then applied to the
whitened signals, resulting in a set of estimated sources. From
the sample estimate of the source statistics, wop is obtained as
in (20); then the GWFOE with the new weight is applied to the
whitened observations, and so forth. Fig. 7 displays the trajec-
tories of the w,p,¢ estimate as a function of the iteration number,
for several sample sizes 1. The curves have been averaged over
v independent Monte Carlo runs, with v 1" = 5- 108. The method
typically converges to the theoretical value of the optimal weight
within just one to two iterations, the final bias decreasing as the
sample size increases.

B. Performance of the OJO-GWFOE

The performance of the n-dimensional OJO-GWFOE using
SICA [25] (w = 3/7) is compared to JADE [4], the fourth-
order-based ME method by Comon [12], and the FastICA al-
gorithm [43].3 The same whitening method is used in all algo-
rithms, as the focus is on the computation of the unitary matrix
Q. A few changes are introduced in the code by Comon to save
up some operations, while FastICA is executed with the param-
eters by default, including stabilization. In the OJO-GWFOE,

SMATLAB code for these methods is available at ftp://sig.enst.fr/pub/
jfc/Algo/Jade/jadeR.m,  http://www.i3s.unice.fr/~comon/matlab.html, and
http://www.cis.hut.fi/projects/ica/fastica/index.shtml.
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Fig. 8. Comparison of Comon’s ME, OJO-GWFOE, JADE, and FastICA in
the n = 6 dimensional case: (a) mean ISR, (b) flops, and (c) CPU time.

JADE, and ME by Comon, the Jacobi optimization stops when-
ever no angle has been updated more than 7 /360 rad (0.5°) or
it has iterated more than K = 1 + /n times. The flop count
and CPU time are used as indices of computational complexity.
The mixing matrix entries a;; are random numbers in the range
[—1,1]. The experiments have been performed using MATLAB
on an Intel Pentium 4 2.40-GHz processor and 512 MB RAM.

In this experiment, n = 6 zero-mean unit-variance signals
with different distributions are mixed: uniform, Laplacian
(p(s) oc e~l*l), Rayleigh (p(s) oc se™"/?), exponential
(p(s) o« e, s > 0), Gaussian (p(s) o e */2), and log-
normal (p(s) oc e=(°8)°/2) We study the performance in the
sample-size range 3 - 103 < T < 3 - 10*. Each point corre-
sponds to the average of 1000 independent Monte Carlo runs in
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Fig. 9. Performance of the AIJO-GWFOE, AJO-GWFOE, and EASI methods
for (a) n = 3 (uniform, binary, and sinusoid) and (b) n = 8 (six uniform, one
binary, and one sinusoid).

which the mixing matrix is randomly chosen. Fig. 8(a) shows
that OJO-SICA and ME have nearly identical performance,
as expected. JADE also shows a good performance, close to
that of the OJO-SICA. The FastICA method exhibits the worst
behavior. Regarding the computational cost [Fig. 8(b) and (c)],
the OJO-GWFOE method presented in this paper clearly out-
performs the other methods. Although JADE takes a larger
number of flops than the ME, its CPU time is lower. Similar
results may be expected for other mixtures, except for FastICA.
Although this latter method usually presents good performance
at a low complexity, it may exhibit poor convergence and a
high computational burden if its parameters are not properly
chosen, as discussed in [25] and [44]. This is evidenced in this
experiment, where the parameters by default yield a poor ISR,
and a number of flops and CPU time out of the plotted range.

C. Performance of the ALJO-GWFOE

The AIJO-GWFOE method with weight parameter w = 1 is
compared to other adaptive procedures: AJO-GWFOE with the
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same value of w (adEML) [30] and EASI [16]. The adaptation
coefficient for both the whitening stage and the EASI method
is selected as & = 5 - 103, whereas the learning rate is set to
A = 1072 for the two other methods. For all methods, the sep-
arating matrix is initialized at the identity B(0) = I,,. Perfor-
mance curves are averaged over 1000 independent Monte Carlo
runs. By default, the solution of the AIJO-GWFOE method is
calculated at each sample, N = 1. Results for any other N may
be easily deduced from the plots for N = 1 by holding the
value obtained for sample kN until sample (k + 1)N. The first
experiment considers a mixture of three independent sources: a
binary sequence, a uniformly distributed process, and a sinu-
soid with random frequency and phase. Fig. 9(a) shows that
AIJO-GWFOE converges to a lower ISR than AJO-GWFOE
and EASI. In addition, the stationary state is reached faster than
in the two other methods.

To compare the performance of the three algorithms in a
more complex separation system, a mixture of eight indepen-
dent sources is observed in a second setup. All but two of these
are uniformly distributed processes; the other two are a binary
sequence and a sinusoid with random frequency and phase. The
evolution of the performance curves in Fig. 9(b) demonstrates
again that the AIJO-GWFOE provides the best final ISR in the
lowest number of iterations. By contrast, the AJO-GWFOE
algorithm shows a slow poor convergence.

VII. CONCLUSION

This paper has investigated the approximate closed-form
solutions to ICA contrasts in the two-dimensional case. The
GWFOE gathers under the same expression many existing ana-
lytic solutions based on fourth-order statistics. In particular, for
w = 1/2 the GWFOE is equivalent to JADE in the two-source
scenario. The weight parameter of the most efficient estimator
in the GWFOE class has been obtained as a function of the
source statistics. Even if these are unknown, a simple iterative
procedure allows a fast accurate estimation of the optimal
weight. The optimal GWFOE can considerably outperform
other analytic solutions, as demonstrated by experimental
results.

Analytic solutions can be extended to the general scenario
of more than two sources by means of the pairwise JO tech-
nique. The algebraic structure of the problem has been exploited
through the multilinearity property of moments and cumulants
in a bid to optimize the computational complexity of the conven-
tional JO procedure. The resulting IJO computes the necessary
statistics before the iteration process, so that the observed signal
samples are employed only once. A detailed discussion has con-
cluded that the decision on which method to use (JO or 1JO) de-
pends on the relative values of source number and sample size.
In our experiments, IJO-GWFOE using SICA has achieved a
similar performance than Comon’s ME and FastICA, with a re-
duced complexity.

In the adaptive implementation of 1JO, the learning of the
system and the computation of the ICA solution are decoupled.
This feature enhances the convergence properties (particularly
the stability) of the algorithm. With a complexity that can be re-
duced to the order of EAST’s, AIJO presents the advantage of an
increased robustness to the source distributions. Experimental
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results have shown that the convergence of AIJO is faster than
EAST’s and adEMLs (indeed, its ISR evolution is always below
that of the other methods), reaching the best final performance
for any number of sources and different source distributions.

Further work includes the development of GWFOE’s optimal
weight coefficient as a function of the array-output statistics in
order to enable a fully blind operation and the incorporation of
the optimal GWFOE in the multidimensional JO-based algo-
rithms. The separation performance and convergence character-
istics in the presence of additive noise and interference needs to
be explored, for both offline and online implementations. Ex-
tensions to statistics of orders other than four also deserves to
be investigated. The use of characteristic functions [45] might
prove helpful in that line of inquiry.

APPENDIX I
EQUIVALENCE BETWEEN GWFOE
WITH w = 1/2 AND JADE FOR n. = 2

The maximization of contrast function (8) is associated with
the joint approximate diagonalization of the so-called parallel
set of cumulant matrices {N,.}, whose entries are defined as
(N;);; = Cijiy [4]. In this Appendix we prove that, in the
two-source scenario, the solution provided by the conventional
version of JADE based on the parallel set provides the GWFOE
solution (18) with w = 1/2.

For n = 2, the cumulant matrices of the parallel have the
ar b
fomN, = | " T
¢ dy
Kiy Ka K K3
No= | ] NN = [
k31 Ka2 K22 K13
K39 KI
N, = [ 2 ﬂ (33)
K13  Kos

As shown in [4, Sec. 8.1], the joint diagonalization criterion is
equivalent to maximizing ¢ = ) _|a;. — d'|?, where (a.,d.)
are the diagonal elements of QTN,.Q, matrix Q denoting the
sought Givens rotation of angle # in (9). Following [4, Sec.
8.1], the criterion can be expressed as ¢ = vIHv, with v =
[cos 26, sin 20]T and H ' GGT, G = lg1,.-.,84], & =
[a, — d,, b, + ¢.]T, where (a,,d,) and (b,, c,) represent the
diagonal and off-diagonal entries, respectively, of N,.. Hence,
v is the dominant eigenvector of the symmetric matrix H =

[Z Z} , whose elements are given by

— K53)" + (K3, — K5)° (34)

=2n3 (Kig — K32) + 4K3, (K31 — Ki3)
+ 2r73 (K33 — Kgq) (35)
4
d=Y (b +ec)?
r=1
22 22 2 \2
=4 (k31)" +8(k3e)” +4(ki3)" . (36)
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Now, to find the dominant eigenvector of H, we take into ac-
count that its eigenvector matrix must be of the form V =
[v,V], with v = =£[—sin 26, cos26]T. Also, matrix V must
diagonalize H. Thus, we force a diagonal structure for matrix
VTHV, which leads to two constraints on the resulting off-di-
agonal elements reducing to v Hv = b(cos? 26 — sin? 26) —
(a — d) cos 260 sin 20 = 0. We thus obtain tan 46 = 2b/(a — d).
By means of some straightforward algebraic manipulations on
(34)-(36), this solution is readily shown to coincide with the
GWFOE solution (18) for w = 1/2. O

APPENDIX II
ASYMPTOTIC ANALYSIS OF THE GWFOE

In this Appendix, we analyze the asymptotic performance of
the GWFOE estimator (18) for i.i.d. sources. Our main objec-
tive is an analytic expression for its large-sample MSE. The es-
timator reads

0= {whé, + 1 -w)é} 37)
where
A1 L . T 1 T
ngzpie14‘f’k-7 3 :?Zp4ej2¢‘ /3_?20%—8
k=1 k=1 k=1

are the sample estimates of centroids (11)-(13). Note that

é{ — éﬁ,e“e, én _ é/?ejze (39)
with
. 1L . . 1 E .
=g 2 et 6= 5> ke @0
k=1 k=1
Hence, AH et (0 —6) = (1/4)2, where & = wﬁé’

(1-w)éy
source centr01d f’ is a consistent estimator of a positive real
number

. By virtue of the law of large numbers, the combined

B[] ———wy” + (1 —w)r’. (41)

It follows that the GWFOE is also consistent and, in particular

[AG] — 0.

(42)
T—o0

Now, MSEqwror = MSE[A] = E[A#2]. At large 7', and

since the estimator is consistent, Af will be close to zero; thus

4Af0 =~ tan(4AH). Also, since Af is small and, according to

(41), typically E[Re(£")] > E[lm(€")], the variations of § will
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be mainly due to fluctuations in the imaginary part of £’. As a
result, we can approximate

E [umZ(é')]

16E[Af%] ~ W.

(43)

Being real valued, /? does not alter the argument of éfy More-
over, on the grounds of consistency, it can be further assumed
that 8 = ~. Then

Re(£') ~ wyRe? (éﬁ,)
+(-w){Re? (&) -2 (&)} @4
m(€') ~ wylm? (Ai/)
+2(1 — w)Re (;]) Im (7)) (45)
with
1 &
&= T Z (s1k — 653,53), + 1)
k=1
4z
+7 T 81k82k - Slksgk) (46)
k=1
N 2 =
=7 > (stk — s31) +im Z S8k + s1k55;) (47)
k=1 k=1
where, to ease the notation, we have written s, = s,(k),

p = 1,2. The denominator of (43) can be easily obtained by in-
voking the consistency of the real part of é’ "in (41). The calcula-
tion of the numerator is slightly more involved. From (45)—(47),
we have (48) as shown at the bottom of the page. Taking into ac-
count the i.i.d. assumption, the most significant parts of terms
A—C turn out to be

A=TE [(3132 — 8133)2}
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Gathering and rearranging terms, we arrive at

16
T_)OO A —E { [ww (3132 — slsg)

+(1—w)n (3:1532 + 3133)]2} . (50)

B [m?()] ——

Finally, the combination of (41), (43), and (50) yields the
asymptotic MSE of the GWFOE shown in (19).

The derivation of wep is simplified with the substitutions
5 = y(siso — s155) and 77 = n(s3sy + s1s3), in which case
MSEgwFoE can be written as

B{lwG -0 +il’}

MSEgwroE = .
T [w(y? = n?) +n?]?

(D

This function of w becomes constant if yn = 0, i.e., |k5,] =
|k§4|. Performance then reduces to that of the EML (when n =
0) or AEML (when v = 0) estimators for any w. Otherwise, in
the interval of interest, 0 < w < 1, we have that w(y? — %) +
n? # 0. The derivative of (51) then cancels at

E {n(v*n—n*y)}
E{v20? + 0?32 — (v + n?)An}

(52)

Wopt =

Some tedious but straightforward algebraic simplifications then
show that the above expression reduces to (20). In addition, it
is simple to check that (‘32MSEGWFOE/8w2|wom > 0, so that
Wopt defines a minimum.

To conclude this asymptotic study, it is interesting to realize
the connection between MSE[f] and the ISR performance pa-
rameter (32). Assuming a unitary mixture in the two-signal case,
the global transformation C = VQ = QTQ is a rotation
of angle (6 — f). Any angle estimate of the form 0 —0) =
AG + kr /2, with small A# and integer k, provides a valid sep-
aration solution up to the inherent separation indeterminacies
mentioned in Section II. This angle estimate produces ISR =
tan2 Af &~ A#2. As aresult, in the vicinity of a valid separation

_ _ _ 2 3 3)2
B=T(T = 1)(T = 2)r'k [(8182 + 8182) } solution, the average ISR approximates MSE [6] without the po-
C=T(T — 1)nE [(s3s2 — s153) (sis2 + s153)] . (49) tential bias introduced by the admissible (k7/2)-rad rotations.
E 2/ &1 16w 7 3 3 3
m-({')| = ZZE 5380 — 511322) (31132] 313521)]
i
A
Z Z Z ZE s1; — 5 (S%j - S%j) (Si)ks?k + 81k5%k) (5?1521 + 811531)]
B
32w(l —w
g 32wl —w)y (48)

T Z Z ZE (5152 — s1i53:) (515 — 52;) (sTe526 + s10531)]
k

i j

~

~

C



3062

APPENDIX III
PROOF OF PROPOSITION 1

Expression (23) is a particular case of

iJ kl

Let us denote M the (7 x7), 7 = n(n+1)/2, symmetric matrix
containing the fourth-order moments { ufjkl}?j 11— Moment
473 1s stored in the entry M*(a(i, ), a(k, 1)), where a is given
by (22). In order to exploit the symmetry of the whitened-output
moment tensor, only the moments with 2 < j and k£ < [ are
kept. The computation of (53) can be expressed as a quadratic
form involving matrix M~ and a pair of column vectors related
to matrix V

y _ T z
Hpgrs = VM Vis.

(54)

To guarantee the equivalence between this quadratic form and
(53), vectors v, and v, must be constructed by arranging the
entries of V in accordance with the structure of M*

oy d V@ )V(g )+ V(p,i)V(gi), i<j

Vpq (0(1/7J)) - {V(p,z)V(q,z) i :j
(55)
where indexes (7, j) and a are related through (22). O

ACKNOWLEDGMENT

V. Zarzoso wishes to thank P. Comon for his kind hospitality.

REFERENCES

[1] V. Zarzoso and A. K. Nandi, “Blind source separation,” in Blind Esti-
mation Using Higher-Order Statistics, A. K. Nandi, Ed. Boston, MA:
Kluwer Academic, 1999, ch. 4, pp. 167-252.

[2] A.Hyvirinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis.  New York: Wiley, 2001.

[3] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Pro-
cessing. Chichester, U.K.: Wiley, 2002.

[4] J. F. Cardoso and A. Souloumiac, “Blind beamforming for
non-Gaussian signals,” Proc. Inst. Elect. Eng. F, vol. 140, no. 6,
pp. 362-370, Dec. 1993.

[5] J. F. Cardoso, “Blind signal separation: Statistical principles,” Proc.
IEEE, vol. 86, pp. 2009-2025, Oct. 1998.

[6] A.Caamaiio-Fernandez, R. Boloix-Tortosa, J. Ramos, and J. J. Murillo-

Fuentes, “Hybrid higher-order statistics learning in multiuser detec-

tion,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 4,

pp. 417-424, Nov. 2004.

S. Makeig, T.-P. Jung, D. Ghahremani, A. Bell, and T. Sejnowski,

“Blind separation of auditory event-related brain responses into

independent components,” in Proc. Nat. Acad. Sci., 1997, pp.

10979-10984.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetal electrocar-

diogram extraction by blind source subspace separation,” IEEE Trans.

Biomed. Eng. (Special Topic Section Advances in Statistical Signal

Processing for Medicine), vol. 47, pp. 567-572, May 2000.

V. Zarzoso and A. K. Nandi, “Noninvasive fetal electrocardiogram ex-

traction: Blind separation versus adaptive noise cancellation,” IEEE

Trans. Biomed. Eng., vol. 48, pp. 1218, Jan. 2001.

[10] J. Murillo-Fuentes, H. Molina-Bulla, and F. Gonzalez-Serrano, “Inde-
pendent component analysis applied to digital image watermarking,”
in Proc. ICASSP’01, Salt Lake City, UT, May 2001, vol. III, pp.
1997-2000.

[11] T. Lee, M. Lewicki, and T. Sejnowski, “Unsupervised classification
with non-Gaussian mixture models using ICA,” in Advances in Neural
Information Processing Systems. Cambridge, MA: MIT Press, 1999,
vol. 11, pp. 58-64.

[7

—

[8

—_

[9

—

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

[12] P. Comon, “Independent component analysis, a new concept?,” Signal
Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.

, “Separation of stochastic processes,” in Proc. Workshop Higher-
Order Spectral Anal., Vail, CO, Jun. 28-30, 1989, pp. 174-179.

[14] V.Zarzoso, “Closed-form higher-order estimators for blind separation
of independent source signals in instantaneous linear mixtures,” Ph.D.
dissertation, Univ. of Liverpool, Liverpool, U.K., Oct. 1999.

[15] V. Zarzoso and A. K. Nandi, “Unified formulation of closed-form es-
timators for blind source separation in real instantaneous linear mix-
tures,” in Proc. ICASSP’00, Istanbul, Turkey, Jun. 5-9, 2000, vol. V,
pp. 3160-3163.

[16] J. F. Cardoso and B. H. Laheld, “Equivariant adaptive source separa-
tion,” IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017-3030,
Dec. 1996.

[17] F. Harroy and J.-L. Lacoume, “Maximum likelihood estimators and
Cramer-Rao bounds in source separation,” Signal Process., vol. 55, no.
2, pp. 167-177, 1996.

[18] V. Zarzoso and A. K. Nandi, “Blind separation of independent sources
for virtually any source probability density function,” IEEE Trans.
Signal Process., vol. 47, no. 9, pp. 2419-2432, Sep. 1999.

[19] V. Zarzoso, A. K. Nandi, F. Herrmann, and J. Millet-Roig, “Combined
estimation scheme for blind source separation with arbitrary source
PDFs,” Electron. Lett., vol. 37, no. 2, pp. 132-133, Jan. 2001.

[20] E. Moreau and O. Macchi, “Higher order contrast for self-adaptive
source separation,” Int. J. Adapt. Contr. Signal Process., vol. 10, no.
1, pp. 19-46, Jan 1996.

[21] P. Comon and E. Moreau, “Improved contrast dedicated to blind sep-
aration in communications,” in Proc. ICASSP’97, Munich, Germany,
1997, vol. V, pp. 3453-3456.

[22] M. Ghogho, A. Swami, and T. Durrani, “Approximate maximum like-
lihood blind source separation with arbitrary source pdfs,” in Proc.
SSAP’00, Pocono Manor, PA, Aug. 14-16, 2000, pp. 368-372.

[23] M. Gaeta and J.-L. Lacoume, “Source separation without a priori
knowledge: the maximum likelihood solution,” in Proc. EUSIPCO’90,
Barcelona, Spain, 1990, vol. V, pp. 621-624.

[24] F. Herrmann and A. Nandi, “Blind separation of linear instantaneous
mixture using close forms estimators,” Signal Process., vol. 81, no. 7,
pp. 1537-1556, Jul. 2001.

[25] J. J. Murillo-Fuentes and F. J. Gonzdlez-Serrano, “A sinusoidal
contrast function for the blind separation of statistically independent
sources,” IEEE Trans. Signal Process., vol. 52, pp. 3459-3463, Dec.
2004.

[26] T. Blaschke and L. Wiskott, “CuBICA: Independent component
analysis by simultaneous third- and fourth-order cumulant diagonal-
ization,” IEEE Trans. Signal Process., vol. 52, pp. 1250-1256, May
2004.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Bal-
timore, MD: Johns Hopkins Univ. Press, 1996.

[28] A. Bunse-Gerstner, R. Byers, and V. Mehrmann, “Numerical methods
for simultaneous diagonalization,” SIAM J. Matrix Anal. Applicat., vol.
14, no. 4, pp. 927-949, 1993.

[29] P. Comon, “Remarques sur la diagonalisation tensorielle par la
méthode de Jacobi,” in Proc. XIVeme Colloque GRETSI, Juan-les-Pins,
France, Sep. 13-16, 1993, pp. 125-128.

[30] V. Zarzoso and A. K. Nandi, “Adaptive blind source separation for
virtually any source probability density function,” IEEE Trans. Signal
Process., vol. 48, pp. 477-488, Feb. 2000.

[31] 1.J. Clarke, “Direct exploitation of non-Gaussianity as a discriminant,”
in Proc. EUSIPCO’98, Rhodes, Greece, Sept. 8-11, 1998, vol. IV, pp.
2057-2060.

[32] V. Zarzoso, F. Herrmann, and A. K. Nandi, “Weighted closed-form
estimators for blind source separation,” in Proc. SSP-2001, 11th IEEE
Workshop Statist. Signal Process., Singapore, Aug. 6-8, 2001, pp.
456-459.

[33] J. Murillo-Fuentes and F. Gonzalez-Serrano, “Independent component
analysis with sinusoidal fourth-order contrast,” in Proc. ICASSP’01,
Salt Lake City, UT, May 2001, vol. V, pp. 2785-2788.

[34] J. J. Murillo-Fuentes, R. Boloix-Tortosa, and F. J. Gonzdlez-Serrano,
“Initialized Jacobi optimization in independent component analysis,”
in Proc. ICA-2003 4th Int. Symp. Indep. Comp. Anal. Blind Signal Sep-
arat., Nara, Japan, Apr. 1-4, 2003.

, “Adaptive initialized Jacobi optimization in independent com-
ponent analysis,” in Proc. ICA-2003 4th Int. Symp. Indep. Comp. Anal.
Blind Signal Separat., Nara, Japan, Apr. 1-4, 2003.

[36] J.J. Murillo-Fuentes, R. Boloix-Tortosa, S. Hornillo-Mellado, and V.
Zarzoso, “Independent component analysis based on marginal entropy
approximations,” in Proc. ISIAC’04 5th Int. Symp. Intell. Autom.
Contr., Seville, Spain, Jun. 28-Jul. 1, 2004.

[13]

[35]



ZARZOSO et al.: OPTIMAL PAIRWISE FOURTH-ORDER INDEPENDENT COMPONENT ANALYSIS

[37] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics, 6th
ed. London, U.K.: Edward Arnold, 1994, vol. I.

[38] P.McCullagh, Tensor Methods in Statistics, ser. Monographs on Statis-
tics and Applied Probability. London, U.K.: Chapman & Hall, 1987.

[39] F.J. Theis, “A new concept for separability problems in blind source
separation,” Neural Comput., vol. 16, pp. 1827-1850, 2004.

[40] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Trans. Signal
Process., vol. 50, pp. 1545-1553, Jul. 2002.

[41] J. F. Cardoso, “High-order contrasts for independent component anal-
ysis,” Neural Comput., vol. 11, no. 1, pp. 157-192, Jan 1999.

[42] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximations. Berlin, Germany: Springer-Verlag, 1990.

[43] A.Hyvirinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp.
626-634, 1999.

[44] X. Giannakopoulos, J. Karhunen, and E. Oja, “An experimental
comparison of neural ICA algorithms,” in Proc. ICANN’98, Skovde,
Sweden, Sep 1998, pp. 651-656.

[45] J. Eriksson and V. Koivunen, “Characteristics-function based indepen-
dent component analysis,” Signal Process., vol. 83, pp. 2195-2208,
2003.

Vicente Zarzoso (S’94-M’03) was born in Valencia,
Spain, in 1973. He graduated (with highest distinc-
tion) in telecommunications engineering from the
Universidad Politécnica de Valencia in 1996. The
beginning of his Ph.D. studies were partly funded
by a scholarship from the University of Strathclyde,
Glasgow, U.K., and the Defence Evaluation and
Research Agency (DERA) of the United Kingdom.
He received the Ph.D. degree from the University of
Liverpool, U.K., in 1999.

He spent five years with the University of Liver-
pool under a Research Fellowship from the Royal Academy of Engineering,
U.K. Since September 2005, he has been a Lecturer with the Université de Nice
- Sophia Antipolis and a Researcher with the Laboratoire d’Informatique, Sig-
naux et Systeémes de Sophia Antipolis, France. His research interests include
blind statistical signal and array processing and its application to biomedical
problems and communications.

Juan José Murillo-Fuentes (M’99) was born in
Sevilla, Spain, in 1973. He received the telecommu-
nications engineering degree from the Universidad de
Sevilla in 1996 and the Ph.D. degree in telecommu-
nication engineering in 2001 from the Universidad
Carlos III de Madrid, Spain.

He is currently an Associate Professor in the De-
partment of Signal Theory and Communication, Uni-
versidad de Sevilla. His research interests lie in al-
gorithm development for blind source separation and
other signal-processing tools and their application to
digital communications and image processing.

3063

Rafael Boloix-Tortosa received the M.Eng. degree
in telecommunications engineering and the Ph.D. de-
gree from the Universidad de Sevilla, Spain, in 2000
and 2005, respectively.

He joined the School of Engineering there in
1999 as Research Assistant with the Department of
Electronic Engineering. Currently, he is an Assistant
Professor with the Department of Signal Theory
and Communications. His research interests include
blind source separation and higher order statistics
and their application to digital communications.

Asoke K. Nandi (SM’96) received the Ph.D. degree
from Trinity College, University of Cambridge, Cam-
bridge, U.K., in 1979.

He held research positions with Rutherford Ap-
pleton Laboratory, U.K.; the European Organisation
for Nuclear Research, Switzerland; the Department
of Physics, Queen Mary College, London, U.K.; and
the Department of Nuclear Physics, Oxford, U.K.
In 1987, he joined Imperial College London as the
Solartron Lecturer in the Signal Processing Section
of the Electrical Engineering Department. In 1991,
he jointed the Signal Processing Division of the Electronic and Electrical
Engineering Department, University of Strathclyde, Glasgow, U.K., as a Senior
Lecturer; subsequently, he became a Reader in 1995 and a Professor in 1998.
In 1999, he joined the University of Liverpool, Liverpool, U.K., as the David
Jardine Chair of Signal Processing in the Department of Electrical Engineering
and Electronics. In 1983, he was a member of the UA1 team at CERN that dis-
covered the three fundamental particles known as W+, W~ and Z°, providing
the evidence for the unification of the electromagnetic and weak forces, which
was recognized by the Nobel Committee for Physics in 1984. Currently, he
is Head of the Signal Processing and Communications Research Group, with
interests in the areas of nonlinear systems, non-Gaussian signal processing, and
communications research. With his group he has been carrying out research in
blind source separation, blind deconvolution, machine condition monitoring,
signal modelling, system identification, communication signal processing,
time-delay estimation, biomedical signals, underwater sonar, and applications
and development of machine learning. He has authored or coauthored more
than 130 journal papers and more than 300 technical publications, including
Automatic Modulation Recognition of Communications Signals (Boston, MA:
Kluwer Academic, 1996) and Blind Estimation Using Higher-Order Statistics
(Boston, MA: Kluwer Academic, 1999).

Prof. Nandi is a Fellow of the Cambridge Philosophical Society, the Institu-
tion of Engineering and Technology, U.K., the Institute of Mathematics and its
Applications, the Institute of Physics, and the Royal Society of Arts. He received
the Mounbatten Premium Division Award from the Electronics and Communi-
cations Division, the Institution of Electrical Engineers, in 1998 and the Water
Arbitration Prize from the Institution of Mechanical Engineers, U.K., in 1999.



