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Source Extraction by Maximizing the Variance in the
Conditional Distribution Tails
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Abstract—This paper presents a method for signal extraction
based on conditional second-order moments of the output of the
extraction filter. The estimator of the filter is derived from an ap-
proximate maximum likelihood criterion conditioned on a pres-
ence indicator of the source of interest. The conditional moment
is shown to be a contrast function under the conditions that 1) all
cross-moments of the same order between the source signal of in-
terest and the other source signals are null and 2) that the source of
interest has the largest conditional moment among all sources. For
the two-source two-observation case, this allows us to derive the
theoretical recovery bounds of the contrast when the conditional
cross-moment does not vanish. A comparison with empirical re-
sults confirms these bounds. Simulations show that the estimator
is quite robust to additive Gaussian distributed noise. Also through
simulations, we show that the error level induced by a rough ap-
proximation of the presence indicator shows a strong similarity
with that of additive noise. The robustness, with respect both to
noise and to inaccuracies in the prior information about the source
presence, guarantees a wide applicability of the proposed method.

Index Terms—Conditional likelihood, contrast functions, esti-
mation, source extraction.

1. INTRODUCTION

IGNAL extraction methods focus on the estimation of a
S specific source when only a linear combination of source
signals is available on a sensor array. A classical approach to the
estimation of a specific source from the observations is based on
a complete separation of the observations into its sources, fol-
lowed by a posterior selection of the source of interest. The first
step is solved for with the class of blind source separation (BSS)
algorithms. Their aim is to recover source signals when only a
mixture of them is observed on a sensor array. This implicitly
involves the inversion of an estimate of the linear mixture. This
inverse of the estimate applied to the observations then yields
outputs that are estimates of the source signals.

In the past two decades, the topic of blind separation has re-
ceived growing interest, specially since the introduction of the
quite natural model of independent sources, which seems to
be an appropriate model for communications and biomedical
signal analysis, to give a few examples. BSS under the afore-
mentioned model can be achieved by the tool of independent
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component analysis (ICA) [1], [2]. The algorithms for ICA are
based on the optimization of a contrast function, imposing a
measure for independence on the separator outputs. It has been
shown that the optimization of any such measure based on the
independence of the outputs is sufficient to solve the separation
of the observations into the independent sources, up to the in-
herent ambiguities of scaling, source permutation (order), and
phase [3]. Since these ambiguities are waveform preserving,
they are generally admissible. However, the above divide-and-
conquer strategy presents a significant computational overload
for the estimation of a single component, especially when large
datasets are considered.

Recently, specific contrast functions for source extraction
have been proposed in the literature, e.g., in [4] and [5], and
valuable objective functions are known to depend (implicitly)
on the marginal negentropy of the extractor output. Theoret-
ically, the extraction order of the sources can be fixed, based
upon their stochastic properties [6], allowing for the more
informative sources (higher negentropy) to be extracted first.
However, when the source of interest is not the source with
highest negentropy, the extraction has to be pursuit, estimating
source by source until the source of interest has been found.
To prevent having twice an estimate of the same source, the
observation space is deflated by the current source space before
a next source has to be estimated [7], [8]. Unfortunately, this
iterative estimation-deflation scheme engenders a propagating
error that accumulates over the iterations [7], [9]. Since the
source of interest is not always the source with highest entropy,
and since the extraction order of the sources cannot always be
fixed in practice, the source of interest accumulates an error in
its estimate whenever it does not appear in the first extraction.

It is clear from the above that we cannot resolve for the
permutation ambiguity without adding some discriminating
information about the source of interest—other than negen-
tropy—into the source extraction objective function. However,
the prior information used to discriminate our source of interest
from the other sources should be kept to a minimum if we want
to keep the source extraction maximally blind. This is the aim
of the class of constrained ICA (cICA) algorithms proposed
in [10] and [11]. cICA introduces a constraint on the solution
space of the (approximated) negentropy objective function, by
means of a penalizing term, generally based on a maximally
admissible distance measure between the output and a reference
signal. In contrast to the solution obtained by minimizing the
squared error between the filter output and the reference signal
(the basis to the Wiener filter [12]), the solution to cICA is
the output that has maximal negentropy among the solutions
meeting the constraint on the distance measure. A closely
related algorithm is BSS with a reference (BSSR) [13], based
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on the higher order dependencies between the output signal and
a reference. The BSSR algorithm differs from the Wiener filter
mainly in the distance measure used. Because higher order mo-
ments are considered, BSSR offers a better performance when
the reference signal has relatively few nonzero values [13].
The quadratic higher order criteria (QHOC) [14], [15] can be
considered as a generalization of the BSSR approach. QHOC
have been proven to be contrasts for source separation, but they
have not been derived in a maximum likelihood sense, so that
they do not inherit the estimation optimality of maximum like-
lihood estimators in the sense of Fisher’s information. Since the
reference signal is chosen arbitrary, there is no explicit control
over the extractor output. The best one could do if a specific
source of interest has to be estimated is the use of the QHOC
with an estimation-deflation scheme until the source of interest
has been found. But this estimation-deflation scheme suffers
from error propagation and accumulation as mentioned above.

The method of conditional moments (MCM) has also been
used for source separation [16], where a possible link with the
theory of contrast functions has been evoked. In this paper, we
will show that the use of well-chosen conditional moments in-
deed results in a contrast function for source extraction. But
contrary to the method of Xerri et al., our method is not lim-
ited to symmetrical distributions, does handle the extraction of
Gaussian sources, and does not require a posteriori manipula-
tions, such as correcting rotations for super-Gaussian distributed
sources. Note also that the method in [16] does not envisage
the estimation of a specific source but focuses solely on the full
separation problem. On the other hand, although the approach
of conditional moments differs from that of reference-based fil-
tering, we will show that for certain well-defined cases, the
above algorithms (BSSR, QHOC, and Wiener filtering) can be
related to the theory presented in this paper.

This paper begins with an introduction on the signal model
and the notational conventions in Section II. We then provide
the theoretical aspects of the framework and present our method
in Section III. Section IV places the presented method in per-
spective with respect to some competing models and algorithms
found in literature. We show that under certain conditions, some
explicit or implicit relations exist between these methods and the
proposed method. Because of their similarities, these algorithms
and models will be used in comparison studies in Section V after
the performance bounds and some properties/characteristics of
our model have been examined. This will be followed by a dis-
cussion in Section VI and a summary in Section VIL

II. SIGNAL MODEL AND NOTATION

A. Notational Conventions

Scalar variables, column vectors, and matrices are, respec-
tively, given by lowercase lightface (u), lowercase boldface (u),
and uppercase boldface (U) characters. Consistency of the no-
tations then requires the jth entry of u to be denoted by u; and
the jth column of U by u;. The probability density function
(pdf) associated to the random variable a will be denoted by
P, for continuous sample domains and P, for discrete sample
domains. The association is denoted as a ~ p, and p,(u) =
p(a = wu). Realizations of random variables or vectors are,
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respectively, given as scalars or vectors with an (arbitrary) in-
dexing to identify the samples, e.g., u[k] stands for a sample
of u, referenced by the index k. Also, let constants be given
as uppercase lightface characters (U), the set of real numbers
as R, and sets by calligraphic uppercase characters, such as
U, whose cardinal number is #(U). A set of K realizations
from the random vector u (a population) is then defined as
U = {ulk]ju ~ pu,k = 1,2... K} and will be referred to
by the shorthand notation {u} g, although with some abuse of
notation we will commonly drop K as well as the accolades.

Furthermore, the mathematical expectation of a function f
with respect to u defined as [ py(x)f(x)dx will be denoted by
E{f(u)}. Finally, the transpose of a column vector u is written
asu-.

B. Signal Model and Contrast Functions

In this paper, we assume the generative linear model where an
M -dimensional random observation vector y can be linked to
the underlying N -dimensional random source vector s through
the instantaneous linear relation

y = As ey

with M > N. Contrary to classical algorithms, we as-
sume that s; is independently distributed with respect to
S = [s1,82,..-,8j-1,8j+1,---,5n]T, while mutual depen-
dencies may exist between the entries of s. We further assume
that all random variables are zero-mean, without loss of gener-
ality. We denote by z = h”'y an output of the filter h acting
ony.

Our goal is to estimate s; from the observations y. An appro-
priate strategy is to use the notion of a contrast function for the
extraction of s;.

Definition 1: A function ¥(x) is a contrast function for the
extraction of the source s; from the observations under the
model (1) if it fulfils the following three properties.

P1) Scaling Invariance:

U(z) = U(Az), VAeR\ {0}

P2) Domination:

W(s;) > U(g"s), Vg eRY.

P3) Discrimination:
U(s;) = U(g's) & g = A;.

A; is the jth column of a nonsingular diagonal scaling matrix
A € RVXN.

It follows that, if W(z) is a contrast function for
the extraction of s; from the observations, we have
that h = argmaxy U(hTy) is an extraction filter and
T = flTy = 5;. We also observe that, by fixing the index 7, no
permutation ambiguity exists with the above definition of con-
trast functions for source extraction, contrary to the definition
of contrast functions for source separation [2] and the previous
definitions of contrasts functions for source extraction [4], [5],
[15]. This follows from the fact that previous definitions of
contrast functions for source extraction are based on a source by
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source extraction scheme to solve the full separation problem
and do not consecrate more importance to s; than to any other
source.

III. METHODS

A. A Likelihood— Based Contrast

If we start from the distribution of s and we suppose M = N,
we obtain the expected likelihood of the observations y as

Lpss(Aly) = /pAqy(u) log ps(u)du — log | det(A)|
RN

where A has been supposed nonsingular. This is the maximum
likelihood approach to BSS proposed in [17], [18]. By factor-
izing ps|s, as ps,;ps and retaining only the terms depending on
the jth column of H = (A_I)T, which we denote by h, we
obtain

Lobly) x [ pury()logp, (Wdu @
R

where we have discarded the last term of Lpgg, since
log|det(H)] = —log|det(A)| can be considered con-
stant if we absorb any changes in det(H) due to h in the
remaining columns of H. If we want to consider the above
likelihood function as a contrast function for the extraction of
the source s, it should satisfy properties P1)-P3) of Definition
1, which is not straightforward. It is obvious from (2) that two
sources s; and s; for which p,, = p,, cannot be distinguished
with the above likelihood function.

Our goal is to find some adaptation of the likelihood Lg (h|y)
such that it can be used as a contrast function for the extraction
of s; but without having p,, (neither a parametrization) at its
disposition. In what follows', we illustrate first the basis of the
conditional expected log-likelihood as a contrast function for
source extraction under the general model (1). Since the maxi-
mization of the proposed estimator will be shown to be combi-
natorial in nature, we next derive a practical algorithm based on
conditional second-order statistics.

B. The Conditional Likelihood

We assume that we have a presence indicator I, for s; with
respect to a threshold C', which is defined as

ls,, ifl[sj/os,|>C 3
I,,, otherwise. )

If we define furthermore B = R\ (=C,C) and B = (-C, C),
then we may rewrite the log-likelihood of (2) conditioned on [,
as

Lg (h|y l]s]-) X /pm||lsj (u) logpsjﬂlsj (u)du
B

+ / P, (u)logpyp, (u)du.  (4)

B

With the definition P(I,,) = |5 ps, (u)du, we have

Ps ., (u) = {gfj (w)/P (1), :Z E g

Let us admit the commonly accepted definition 0 log 0 2 0. The
conditional log-likelihood of (4) is heavily penalized by the term
fﬁpl,”sj (u) logps, .. (u)du, which is zero if and only if h is
such that p., (u) = 0,Yu € B.

Proposition 1: L(x) = Lr(hly,l,,) is a contrast for the
source model (1) and this for any C' > 0.

For a proof, we refer the reader to the Appendix.

We can follow an analogous reasoning for the conditional log-
likelihood L¢(hy,I;,), from which we see that our goal is to
obtainp, 5 (u) = 0,Vu € B.

Since £(x) is a contrast under the above condition, h (and
thus 5;) can be found through its maximization. However, the
heavy penalization term makes the solution not tractable, and
the maximization of £(x) is equivalent to an exhaustive search
over all possible filters h. This is an NP-hard problem.

C. Relaxation of the Conditional Likelihood Function

We have seen that a numerical optimization of the conditional
log-likelihood in (4) is NP-hard. In this paragraph, we try to
relax the condition Pali,, (u) = 0,Vu € B such that a nu-
merically tractable solution exists. Consider the following re-
laxation:

m}in /pm‘ﬂsj (u)y(u)du Q)

B

where (u) is any positive function. It is straightforward that
Pal,, (u) = 0,Yu € B = fﬁpz\ﬂsj (uw)y(u) = 0. The in-
verse holds equally true for all (general) distributions (proof in
Appendix). We thus have that miny, fﬁPIIIIs] (w)y(u)du = 0,
which is equivalent to the minimization of p,| I, However, the
above minimization remains NP-hard due to the integration over
the posterior B.

To make the minimization in (5) numerically tractable, we
take y(u) = u? as a possible weighting function. The mini-
mization reads

m}in/pmms (u)u?du

B

and would then intuitively be equivalent to a maximization
problem

2
Dz, (w)udu
max —fR ! ”( ) (6)

h o2

where we used 02 = [ po(u)u’du in the denominator to sat-
isfy the scale invariance P1). The equivalence can be seen from
the equality

Japap., (wudu Jgpap, (wudu+ [gpep, (v)u’du
2 - 2

g g
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where [ Pali., (u)u?du dominates the nominator due to the
chosen weighting function. Maximizing the former means that
the probability mass of p,|;, (u) would shift towards large
values of = (|z| > C, boundeé by the variance normalization),
which can be regarded as a minimization of pq1, (u),Yu € B,
as required.

D. A Contrast With an Algebraic Optimum

The maximization in (6) is thus equivalent to the max-
imization of W(z) = E,{z*}/E{2?}, with E, {2?} =
Jr P, (u)u?du. Introducing the shorthand notations
Py = E,, {uu”} and @,, = E{uu”}, we write

o) h7oyh

V@) =g = Wo.n

)

This is a generalized Rayleigh quotient, and its maximization
has as an algebraic solution; see, e.g., [19, Sec. 8.7.1].

The maximization of (7) can be done through the eigenvalue
decomposition of ®7'®y (whenever ®y is invertible) and
choosing the major eigenvector/eigenvalue pair q, A for which

¢yl RY q =g\ 8)

Taking h = q, we obtain z = §j = h7y and U(z) = A.

We have already seen that the log-likelihood as defined in (4)
is a contrast function for the extraction of a source s; indepen-
dently distributed with respect to §. However, since ¥(z) in (7)
is an approximation thereof, we need to investigate under what
conditions the above approximate likelihood is indeed a contrast
function.

Proposition 2:

oy
U(z) = 3

x

subject to z = hTy )

is a contrast for the extraction of s; under the following suffi-
cient conditions Vi # j:

Cl) [E{SJSL} = 0;

CZ) [Esj{SjSi} = 0;

C3) E. {s2}/E{s?} > E, {s2}/E{s?)}.

For the proof, we refer the reader to the Appendix.

Remark that the statistical independence of s; with respect
to s is no longer a necessary condition and that this condition
has been relaxed to second-order independence (decorrelation)
only. Since the conditioning on |s;| > C is used for the calcu-
lation of the conditional variance, we refer to our method as that
of maximum variance in the tails of the conditional distribution
(MaxViT).

Remark that we can formulate a slightly adapted version for
the MaxViT contrast function as

U(z) = E., {SEEL;}[E{:L i =V(z)—1.

This equation has the same maximizer fl, but we now have that
all eigenvalues—other than the major eigenvalue—equal zero
under model (1).
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IV. CONNECTION TO OTHER METHODS

While the starting point of our method is quite different from
that of most of the methods that will be discussed below, certain
connections exist with these methods. We insist on clarifying
possible connections before the presentation of the results to
motivate our choice of algorithms used in Section V.

A ICA

In most practical cases, the mutual independence of the
sources is an acceptable prior, which makes ICA one of the
most popular source separation algorithms nowadays [2],
[20]-[22]. We prove next that the independence of the source
s; with respect to § is a sufficient condition to be recovered
by the approximate maximum likelihood estimator of MaxViT,
under the assumption that the conditional covariance can be
calculated, i.e., the set CS7 should be available. As such, we
show also that our assumptions are more general than those
made to derive (4).

Since the independence of the entries already assures that C1)
and C2) are met, we are only left to show the plausibility of C3)
under the independence assumption. Independence means that
Pzjs, (u) = pz(u),Vz # f(s;) and where f(-) can be any func-
tion. We thus have E, {s7} = E{s}},Vi # j and E,,{s7} >
E{s?}, where the last inequality is proven in the Appendix. In
addition, the results obtained in the Appendix allow us to alter
the condition in (5) to f(_c’c) ps; (w)g(u)du — 0, which is a
condition on the function g(u) = log p, | L., (u) but now directly
in relation to p,, (u).

B. Reference-Based Filtering

When a reference signal is available for the extraction of a
source, one can use extraction filters such as obtained, amongst
others, via the optimal Wiener filter estimate [12] or via BSSR
[13]. In this section, we show that by choosing the right refer-
ence for the Wiener filter or the BSSR method, we obtain the
same result as with the approximate maximum likelihood esti-
mator of MaxViT under certain conditions.

Consider first the Wiener filter hy, = [E{ny}fl[E{yr},
where 7 is the reference signal. Taking as a reference r = s,
we have hyy = ®7'E{ys;}, and the variance of the output
ITw = hqv;/y is

o, =E{s;y"}o; 'E{ys;}
=E{s;s"TJAT(A® AT) ' AE{ss;}

=E {s?}Z [(I)S_l]jj

where the last equality follows from C1), from which
follows that [®7'],; = (det®,)"'(det®s) =

(det &) [®y] ) (det ®s) =[] = E{s2}7'. The
conditional variance is analogously given by

oy, =E{s3}"[(e2) 7]

(10)

(1)

JJ

where [(®2’ )_l]jj =

fulfilled.

(@) = E{s2}'if C2) is
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The value of the solution to the Wiener filter in the contrast
function can be given by combining (10) and (11) and putting
them into (7), yielding

o D, o
Ulzyw) = -2 = —3 <1< 12
(l’u) ‘I’mw (I’;j I ‘I’sj ( )

with equalities if and only if ®,, = @3 or P,,(B) = 0.
Unfortunately, we then no longer have the dominance of the
source s; in the contrast function since all sources now satisfy
/0, = 1.

For the BSSR method, we have the more general objective
function (defined for real variables)

1 A
Bssn(@) = 5-E{(@n)®} ~ Z(Th—1)  (13)

where 7 is an a-priori defined reference signal and 2p the order.
An iterative fixed-point algorithm has been proposed in [13] to
maximize this function, but algebraic solutions exist at orders
p = 1/2andp = 1. At p = 1/2, the BSSR cost function
accepts the closed-form solution h = E{yr} and is equivalent
to the optimal Wiener filter associated with reference signal r
if the observations y are spatially white (®, = I,,,). At order
p = 1, the cost function can also be solved algebraically; indeed,
h is then given by the dominant eigenvector of the reference-
weighted covariance matrix E{yyTr2}.

A similar approach can be found in the QHOC as developed
in [14] and [15], where we have in the real, instantaneous case

\II(QRI}OC(:U, r) = krr{z}, subjectto @, =1

(14)
with kg.{z} = Cum{z,z,71,72...7g_2}. In practice,
most often a single reference signal r is used, which is
arbitrarily chosen (e.g., as an arbitrary linear combina-
tion of the observations). By the multilinearity of cumu-
lants, one may then write kgp,{z} = hT¢>y7rh, where
((I)y’,,)i,]. = Cum{y;,y;,7,7...7}. Alternating between up-
x(R—2)
dates of h = argmaxy, h” @, .h (subjected to h"® h = 1)
and recalculating the reference as r = hTy, one then obtains a
source estimate §;. Contrary to the BSSR method, QHOC aims
at estimating the full separation, and thus no source order has
been fixed for the successive extractions (with possible defla-
tion). Evidently, the reference could be chosen with respect to a
specific source, similar to the BSSR method. If the observations
are prewhitened, the BSSR objective [(13)] for p = 1 and the
QHOC objective [(14)] for R = 2 are then essentially the same.
The BSSR and QHOC methods are closely related in the
sense that their objective differs mainly in their choice of refer-
ence. Moreover, the BSSR at order 2p = 2 and QHOC method
for any pair order R are similar to the MaxViT method when
using the following specific reference:

iy = { g - o) 2 €

otherwise (5)

and for a spatially white observation vector y. The latter is not
explicitly required by MaxViT, which renders MaxViT less sus-
ceptible to the performance bounds imposed by a prewhitening

stage [9], [23]. In addition, the choice of a conditional prob-
ability (resulting in the reference signal of (15) for QHOC or
BSSR) guarantees an algebraic solution for MaxViT and no cu-
mulating errors due to successive estimation-deflation proce-
dures as with a random reference in [15].

It should also be noted that the BSSR method in [13] has
been proposed with a specific application in mind, and little re-
search has been done on its convergence and robustness. In this
paper, we make use of the connection between BSSR and our
method to show the robustness with respect to arbitrary binary
references, which we prefer to address as a conditional indicator
function. Note that, whenever we will refer to BSSR in what fol-
lows, we refer explicitly to the original iterative implementation
as can be found in [13].

C. ICA With a Reference

As we have shown in Section IV-A, the independent source
model, which is the basis for ICA, is also a suitable MaxViT
model under a not too restrictive condition [i.e., the conditions
C1)-C3) are generally satisfied under the ICA model]. Within
this perspective, MaxViT may be seen as a direct competitor to
cICA [11]. While the methods of cICA are generally based on
an augmented Lagrangian in the framework of constrained pro-
gramming using iterative updating methods, the contrast func-
tion in Max ViT offers a closed-form estimator for the extraction
filter. Contrary to the family of cICA algorithms, we can now
guarantee a global optimizer in low-noise conditions. Moreover,
in the noiseless case and for independent sources, MaxViT will
provide a filter estimate from which we can obtain the indepen-
dent source, under the condition that we can approximate the
conditional set C sufficiently well. A simple indicator function
Is, can be used to construct a simple binary reference signal as
in (15) (see also [11], [24]), where we have now shown its re-
lation to a maximum likelihood approach. It should be inves-
tigated whether another choice for the conditional probability
function ﬁSjlﬂsj with an appropriate updating rule would yield
better results.

D. Sparse Decompositions

Also interesting is the similarity between our method and the
sparsity pursuit methods (e.g., [25]), where the objective is to
have a low approximation error of the observations (with re-
spect to some measure, generally /) with as few representative
basis functions as possible. This is similar to the objective in our
MaxViT model, aimed at minimizing the approximation error
(through a maximization of the explained variance of the ob-
servations) on a limited amount of samples (the basis functions
being Dirac functions). While MaxViT needs a prior knowl-
edge about the presence of s;, which is reflected in the con-
dition I, sparsity pursuit for multidimensional signals aims at
searching a combination of a minimum number of dictionary el-
ements to approximate the observations [26] when the mixing
matrix A is supposed known. Combining these two strategies
would give a weighted conditional covariance E, {yy”} =
E{yD(l,,)D(l,)"y"}, where D can be any linear basis and
I5, acts as an indicator function for those elements in that dic-
tionary on which s; has a significant presence. Maximizing the
MaxViT contrast under a maximum sparsity constraint could
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then be done jointly over h and I5,, but this problem will be
tackled in future research.

Within the framework of sparse component analysis,
MaxViT—calculating the variance dominance on a subset of
the observations—can also be seen in the category of algo-
rithms based on piecewise linear source separation [26], [27].
The latter has the basic assumption that outside the support of
the source of interest, its amplitude is zero or is captured in
the background noise with a predefined (low) noise variance
(our o). MaxViT has an equivalent assumption on the source
presence, as may be seen from Section III-C.

E. The Method of Conditional Moments

At first glance, our approach seems similar to the MCM of
[16]. MCM is based on a generalized eigenvalue decomposition
of second-order moments conditioned on the half-space x; > 0
of the current estimates x = HTy. As is the case for QHOC, an
estimate is obtained by iterating over alternating updates, this
time between H = arg max H” (0%/)™'$*H and x — HTx,
with 2 = E{xxT|z; > 0} and &% = ®% — E{x|z; >
0}E{x|z; > 0}T. As opposed to MCM, our method does not
limit itself to Laplace or uniformly distributed sources and does
not impose a correction on the estimation of Laplace (super
Gaussian) sources. In addition, contrary to MCM, MaxViT does
not limit its application to symmetrically distributed sources and
can deal with Gaussian sources. Of course, these advantages go
at the expense of the extra additional information of the pres-
ence indicator l;.

In this paper, we have also shown that methods based on
conditional moments are derived from a conditional likelihood
function and that a specific class of these conditional likelihood
functions for which f(_c,c) ps; (u)log Py, (u)du — 0 (see
Section IV-A) result in a contrast under model (1).

V. PERFORMANCE ANALYSIS

A. Theoretical Estimation Bounds of MaxViT

In this section, we establish the error bounds on the estima-
tion of s; in the model = h” As = g”'s. This error can be
measured through the interference-to-signal ratio (ISR) defined
as

Zz’;ﬁj |gi|2
(n = 1lg;[?

which is a measure for the average interference and takes the
value zero if and only if the extraction filter is the jth canonical
vector.

The filter g is the product of the dominant generalized eigen-
vector h associated to A®:” AT /AP AT and A. Here, we only
consider the bias in the estimate of h as a consequence of the
nonvanishing conditional covariance between s; and s;, 7 # 7.
The ISR as a function of this covariance can be calculated for
s € R? as

ISR = (16)

1+ (Ipl/6)* = 1

1+ (lol/8)* +1

6% + |p|* — 6 s20
ISR(p, 8) = EEriwie

a7)
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Fig. 1. Theoretical bounds for the value of ISR as a function of the conditional
covariance p and the conditional variance domination 8.

TABLE I
THE FRACTION |p|/ 4 FOR DIFFERENT DISTRIBUTIONS AND DIFFERENT VALUES
FOR ¢ BASED ON UNIT VARIANCE, ZERO-MEAN 1i.i.d. REALIZATIONS, AND
A BASIS OF K, = 10% SAMPLES (SEE TEXT). THE VALUES ARE GIVEN AS
MEAN £ STANDARD DEVIATION

Uniform Normal Laplace
C=1 0.12+£0.09  0.09£0.07 0.0740.06
C=+/2 0.1240.10 0.0940.07 0.0740.06

C =43 N/Al 0.104+0.06  0.0940.06
1For ¢ = v/3, we have P, (B) = 0 and our method is not applicable (N/A).
where
5= (cp;;: - cp;g) /2 (18)
p=Es {sjsi}. (19)

The calculations for the value of ISR are given in
Appendixes D and E; and the relation between |p|/¢ and
the theoretical ISR value is given in Fig. 1. We can give an
impression of the accuracy of this theoretical measure by
comparing it with the obtained ISR as obtained through the
relation of (16). We did this for 1000 Monte Carlo realizations
of two independent identically distributed (i.i.d.) (respectively
Laplacian, Gaussian, and uniformly distributed) unit variance,
zero-mean source signals of K = 1000 samples each observed
through an orthonormal mixing matrix A. With this simula-
tions, we obtained a maximum absolute error of 9.44 1016,
confirming the accuracy of (17).

Fromboth (17) and Fig. 1, we see thatz = §; = s, if |p| < 6,
and a good estimation of the source s; is guaranteed even if |p|
tends to 6 (we still have a theoretical —7.7 dB if |p| = §), which
is a reasonable assumption in many practical situations. It can
be seen that the smaller the discrimination in the conditional
variance becomes in C3), the more stringent the condition C2)
on |p| becomes [and thus automatically also C1)]. Under the
condition |p| = 0, we have already shown that (9) is a contrast
for the separation of s; from a mixture in Section III-D; and,
indeed, we obtain ISR= 0 from (17), as long as 6 # 0 (for
6 = 0, we have that ISR= 1, since no discrimination is possible
with the current contrast).

Table I gives the mean fraction of |p|/é for three different
distributions (uniform, Laplacian, and normal) and for dif-
ferent values of C. Note that the number of sample indexes
in the set C,, differs according to the chosen distribution and
consequently has a considerable influence on the variance of
the statistics E, {f(z)} = > kec, f(x[k])/#Cs,. There-
fore, we decided to use K samples on a basis of Ky, where
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K = K/P(l,,). This brings the number of sample indexes
in C,, from which E.,{f(u)} is estimated to an almost equal
number, independent of the distribution used. The ISR or the
fraction |p|/6 can now directly be compared for a given K.
Equation (17) is a compact expression for case s € R?, but
for s € R™, n > 2 the calculations become more cumbersome.
For n = 3, we turn to simulations on a synthetic dataset, for

which we give the results below.

B. Experimental Performance Comparison

To compare the performance of our algorithm with respect
to the related algorithms discussed in Section IV, a dataset has
been created based on realizations of a source vector s € R3, for
which we have K = 1000 realizations. The entries in {s} (3 are
samples from an i.i.d. unit-variance zero-mean Laplacian dis-
tribution. The so-obtained source signals are then transformed
through a unitary matrix A to the observation space y = As.
Without further specifications, we have set C' = 1 to determine
the conditional probabilities and let s; be the source of interest.

The algorithms of the Wiener filter and our MaxViT algo-
rithm both have a closed-form solution, while the ICA algorithm
(COM2 [2], without prewhitening, since we have a unitary mix-
ture) and the BSSR algorithm (taken at higher order 2p = 4
for the evident reason of avoiding similarity with our MaxViT
contrast; see Section IV-B) are iterative. The COM2 algorithm
has been run over the classical |1 + y/n| sweeps over all the
signal pairs, which guarantees (although heuristically) its con-
vergence. The BSSR algorithm has either been run until con-
vergence or over 10? iterations, whatever has been reached first.
Since COM2 provides a separation rather than an extraction, we
only retained the output z; that had the highest correlation with
s1, the source of interest.

Both BSSR and the Wiener filter can be used with different
reference signals. To restrict the wide scope of possibilities,
we retain only those references that have a close resemblance
with the conditional used for Max ViT, i.e., through the indicator
function I, . The so-obtained reference signal r is then defined
as

0, otherwise

Derivations of this reference function defined as b = sign(r)
[see also (15)] or |b| = |sign(r)| are also used, where we define
sign(0) = 0. Similar reference functions have also been pro-
posed, e.g., in [11] and [24]. All experiments are evaluated over
1000 Monte Carlo realizations of {s}1qz and A.

In Table II, we show the mean ISR value as defined in (16).
The ISR is a measure that quantitatively measures the estima-
tion of the filter h, through an evaluation of g = ATh. Con-
trary to measures such as Pearson’s correlation coefficient, it is
an asymptotic evaluation of the ISR and does not make any as-
sumption on the distribution of the error. Table II is organized
in such a way that, reading it from left to right, the information
content in the reference signal decreases. The values between
brackets are obtained after a rotation of the i.i.d. vector s by a
unitary matrix. This results in decorrelated entries of s that are
no longer guaranteed independent.

TABLE II
ISR AS A MEASURE FOR THE ASYMPTOTIC ACCURACY OF THE SOURCE
ESTIMATE FROM A SYNTHETIC DATASET OF THREE i.i.d. LAPLACIAN SOURCES
OF K = 10 SAMPLES FOR DIFFERENT ALGORITHMS AND DIFFERENT
INFORMATION FEEDS. VALUES BETWEEN BRACKETS ARE OBTAINED FROM
UNCORRELATED SOURCES, WHICH ARE NOT INDEPENDENT

r b 5] no ref.
MaxViT(1) -36.01
(-28.62)
MaxViT(v/3) -34.19
. . (-28.58)
Wiener -36.61 -35.80 17.31
(-29.37)  (-28.91)  (17.08)
BSSR -2 -26.13 -31.91 -31.91
(-25.37)  (-29.30) (-29.30) .
COM2 -33.80
(-24.26)
0 [Frrre e .
——MaxViT
25 b - ¢ -MaxViT(c = V/3)
—— Wiener (b)
SO -« ~Wiener (7')
15 b v COM2
m Y ——BSSR (b)
E =20 E\X vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv —X—BSSR (T‘)
g | .
TH X S B Ko X XX X% % X X X
R SO S5 S ) e G 40 G0 415 4
: —x——u—x—;—x—x——&--‘i—i-_—tﬂ:
_40 i i i i
0 5 10 15 20

SNR (dB)

Fig. 2. The source interference ISR (dB) as a function of the SNR (dB). The
noise is normally distributed additive noise (see text for details). The method is
compared with a classical ICA method, the BSSR solution, and the solution by
a Wiener filter.

C. Influence of Additive Noise

‘We start from the same observations and source signals as de-
fined above. To discard the influence of the parameter quotient
|pl/6 on the ISR—see (17)—we assure that we have p;, (|u] >
Clls;) = ps;(Jul > C|ly;) = 0,Vi # j by permuting the
samples of {s;},. appropriately. To test the performance of
the algorithm under noisy conditions, centered Gaussian noise
7 ~ N(0,0.13) has been added to the observations y. Since
the observations are standardized and the noise is isotropic, the
signal-to-noise ratio (SNR) can be given by the simple expres-
sion SNR = ¢ 2. The model reads y = As+m and the estimate
of s;isx = gnTs +g™.

The influence of the SNR on the performance parameter ISR
is shown in Fig. 2. Since in the case of additive noise an accurate
estimate of the filter does not guarantee an accurate estimate of
the source, we also give the value of 1 — |p|, with p the sample
estimate of IE{J:Sj}/(IE{ZU2}1/2IE{S?}1/2). This direct compar-
ison between the source estimate x and the source s; can be
found in Fig. 3. The comparison of Max ViT has been carried out
with respect to the algorithms used in Table II, however, making
a selection of reference signals that we judged most useful for
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" [——MaxViT
|- ¢ -MaxViT (c = v3)
)

—— Wiener (b

-10 |-+ -Wiener (r
-15 v COM2
——BSSR (b)

1—1p| (dB)

-20 “|-%-BSSR (r)
25+ T e :
Y
=30+
-35}-
—40 | L I )
0 5 10 15 20
SNR (dB)

Fig. 3. The “correlation” 1 — p(z, s;) (dB) as a function of the SNR (dB).
The noise is normally distributed zero-mean additive isotropic noise (see text
for details). The method is compared with a classical ICA method, the BSSR
solution, and the solution by a Wiener filter.

comparison. This includes the performance of a Wiener filter
and the BSSR method with an unsigned reference |b|, adding
exactly the same amount of information as is used in MaxViT.

To complete the performance picture, we also add MaxViT
with ¢ = /3 for comparison. Note that in Fig. 3, the Wiener
solution has all of its performance values out of the range used
for plotting (ISR (Wiener(|b])) € [10, 50]dB).

D. Robustness With Respect to the Conditional Set

Assume we no longer have p(-| |s;| > Co,,) but rather
p(-| |s;| +n > Co,,), where 7 is a nuisance parameter ex-
pressing the uncertainty we have about our initial condition. As
before, let us denote by C,; = {k| |s;[k]| > Co,,} the condi-
tional set of sample indexes. We can now suppose that the condi-
tion |s;|+n > Co,, gives rise to an indicator ﬁsj , which results
in a mismatch in the conditional set CSJ. In what follows, we
experimentally analyze the robustness of the algorithm with re-
spect to a mismatch of the conditional set Cs;.

As above, we have K = 1000 realizations of three i.i.d. stan-
dardized Laplacian sources s observed in y through a unitary
mixture A. The samples of s; have been permuted such that
Vi # 5,Cs; (N(U; Cs,) = 0, and thus the source s; can be esti-
mated since we have E{s;s;} ~ 0, E,, {s;s;} ~ 0 (i.i.d. vari-
ables) and <I>§j /@, > 1 (see Sections IV-A and V-A). Note that
we artificially lowered the theoretical ISR estimation bound by
permuting the samples and thus augmenting 6. Also, define the
following sets of sample indexes:

e K={klkeN,1 <k <K}

« C,, =K\Cy;

* Cpe = mL qu-;

¢ CCO»]' = (Ui;éj CSi) \CSj'
The latter two sets are, respectively, the neutral and the con-
flicting set with respect to s;.

Consider also the following three set operations:

* Py = Shrinkage(P1, )

P> C Py with #(Pz) = (1 — Oz) X #(P1)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 1, JANUARY 2010

. 'P3 = Inﬂation(P177D27 Oé)
Ps=PUZ

with #(P3) = (1 + @) X #(P1) and Z C Py
* P3 = Interchange(Py, P2, «)
a
l-«

where # is the cardinal number of the setand 0 < o < 1.

By applying set operations to Cs , , we obtain an estimate of the
perturbation of the conditional probability p(-| |s;|+n > Coy,),
as has been explained above. The results of this perturbation
study can be found in Fig. 4, where we present the results of
the above-defined set operations with Cs; as the basis set. The
set (P2) is chosen as Cpe or C,, ; for a neutral, respectively,
a conflicting operation with respect to s;. The influence of the
set perturbation is expressed in terms of the source interference
ratio ISR (16).

The following scenarios can now be investigated to observe
the behavior in the most optimistic, a random, or, respectively,
the most pessimistic scenario.

* The smart set choice [see Fig. 4(c)] has a shrinkage oper-
ator for which Vk1 € Po, ko € P1\ P2 : |s;[k1]]| > |s;[k2]]
and an inflation operator for which Vk; € Z, ko € P2\ Z :
|silka]l < Isjlk]l.

e The random set choices [see Fig. 4(b)] does not make
any assumption about a possible order and apply the rules
naively.

» The worst case scenario [see Fig. 4(a)] has a shrinkage
operator for which Vk; € Pa, ko € Py \ P2 : |sj[k1]] <
|sj[k2]| and an inflation operator for which Vk; € Z, ks €
Pa\ Z : |sj[ka]l 2 [sj[k2]|-

‘P3 = Inflation <Shrinkage(7’17 a), P,

VI. DISCUSSION

The performance of MaxViT in the noiseless case has shown
competitive results with respect to the algorithms used in the
comparison Table II. MaxViT even outperforms the refer-
ence-based algorithms BSSR (2p = 4) and the limited support
Wiener filter that have access to a larger amount of information
(b instead of |b| makes a 1 bit per sample information gain).
We also outperform a completely blind algorithm based on
higher order statistics (COM2), showing the advantage of
using a probability conditioned on the source of interest only.
Moreover, the little performance gain that can be obtained
by the Wiener filter is at the expense of a highly informative
prior, using the waveform r from (20), which is generally not
available. In an observation environment contaminated by ad-
ditive isotropic Gaussian distributed zero-mean i.i.d. noise, the
MaxViT estimator shows to be robust, being competitive with
the methods used in the comparison, with a slight estimation
gain over almost the whole SNR range used in the simulations
(Figs. 2 and 3). The only competitor that outperforms MaxViT
when additive noise is present is the Wiener estimate with
reference r from (20).

We also observe from Table II that the performance of BSSR
remains equal, whether a signed or unsigned binary reference is
used. This is an immediate consequence of the limitation of the
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Fig. 4. The effect of a perturbation of the conditional set C; .. The effect of the mismatch is measured through the source interference ISR (16) as a function of
the relative number of samples « that are affected by the set operations. See text for more details.

BSSR algorithm to use even powers of the reference signal (2p)
[13]. Surprisingly, as can be seen from the same Table II, the
BSSR algorithm (and we may assume that the same would hold
for the QHOC algorithm) does not yield a significant increase in
estimation accuracy with an increase in available information,
i.e., changing the reference signal from b to 7. This points out
that the conditional relative variance may be seen as a sufficient
statistic to extract the source s; from the mixture.

The MaxViT estimator also has been shown to be quite
robust to mismatches with respect to the conditional set Csj;
see Fig. 4(b). This distinguishes our method from other works
such as [10], [13], and [28], where the estimator is reported to
be susceptible to mismatches between the used reference and
s[k];, especially with respect to its phase. Empirically, BSSR
has been shown robust to reference mismatches including
time shift and sample omission (i.e., the equivalent of an
interchange, respectively, a shrinkage operator acting on the
set Cs,) [29]. By placing BSSR in the framework of MaxViT,
this can now partly be explained by the robustness of MaxViT
to the conditional set Cs,. This follows from the assumption
that BSSR with a binary reference inherits certain properties
of MaxViT while being equivalent to MaxViT for p = 1 and
reference signal b defined in Section V-B.

The errors induced by the mismatch between the conditional
set Cs, and ésj fed as a prior to the algorithm are comparable
to those induced by additive noise, as has been suggested in
Section V-D. However, notice that small errors in the filter esti-
mate do induce a smaller error in the filter output than does the
additive noise. This can be deduced from the fact that our filter
output can be written as a function of the optimal filter h* and a
perturbation ey, as z* +¢,, = (h* + sh)Ty, whereas in the case
of additive noise, the same error in the filter estimate results in
¥+ ez = (b + en)  (y 4+ 1) = 2* +e0 + (h* +en)'n.
Thus for the same error in the filter estimate, we logically ob-
tain a better estimate of the source if the error is due to the set
mismatch only.

Note that despite the use of specially designed simulations
to reduce the fraction |p|/6 and thus to minimize the ISR (by
choosing Cs; (\(U;; Cs;) = @), we may generalize our re-
sults to independently distributed sources that have not been
corrected. This is because, from Table I, we have that the frac-
tion |p|/6 generally remains acceptably small for i.i.d. Lapla-
cian, Gaussian, and uniform sources.

A quick overview of the performance of the MaxViT algo-
rithm can be given by evaluating under what conditions we
obtain an acceptable ISR of —30 dB. It follows from Figs. 2
and 3 that we accept a signal to noise level no lower than 4
dB and [from Figs. 4(a)—(c)] a worst case interchange of in-
dexes of Cs; with C,; of up to 7% of #C;,. However, in prac-
tical situations, an estimation of the set Csj is usually done with
more care and, even when unfortunately chosen, we would in-
terchange samples between sets randomly rather than creating
a worst case scenario. This random interchange can be done for
up to some 30% to 70% of the samples of Cs,, depending on
whether conflicting, respectively, neutral sample indexes have
been involved. In practical situations, a set estimate (fsj offering
a considerable performance should thus often be available, e.g.,
by using a threshold on the amplitude of the observations (as in
[28]) or based upon prior knowledge of the support in the fre-
quency domain (see, e.g., [30]).

The estimation of a source s; from a set of observations y
can be done for every source in the mixture (approximately)
satisfying the sufficient conditions C1)—C3), and this whenever
an approximation of its conditional set is available. When more
than one source is of interest, we propose an iterative estimation
without deflation, especially when #(Cs, (Cs,) is relatively
small. Avoiding the subtraction of the projection of y onto s;
from y prior to estimating s; reduces the possible error propa-
gation from which these deflation approaches suffer.

As explained in Section III, the only constant in MaxViT that
has to be set is C, and its influence on different source distribu-
tions can be found in Table I. We see that its value is not crit-
ical, at least for large sample populations. In practical situations,
where only a limited population sample is available, it should
neither be taken too large nor too small because the conditional
covariance with respect to [, respectively (implictly), with re-
spect to Ilsj, would be calculated on too small a sample set, and
its estimation would suffer from an increase in variance.

VII. CONCLUSION

We have shown that maximizing the likelihood criterion con-
ditioned on a presence indicator gives rise to a contrast func-
tion for the extraction of a source of interest. The filter corre-
sponding to the optimum of the contrast function can be found
algebraically, provided that the conditional second moment can
be estimated from the observations. The MaxViT estimator has
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interesting properties, such as robustness to noise or perturba-
tions of the conditional set, making it a valuable alternative to
constrained ICA algorithms.

APPENDIX

A. Proof of Proposition 1

P1) holds if we consider unit variance variables only. This
can be done without loss of generality. Since the log-likelihood
L(x) of (4) is either zero or tends to —oo, and £(z) = 0 holds
if and only if we have p,i, (u) = 0,Vu € B and p ol (u) =
0,Vu € B P2), it remains to prove that the latter two conditions
1mp1y the equality z = \;s; of P3).

Proof: Suppose that we have  # );s;, and thus z =
gls = 9585 + Z,L-#j 9isi = g;5; + 5, where at least one g; has
a nonzero value and for which p s, (u) = 0,Yu € B.

Since s; is independently distributed with respect to § and
thus with respect to all s;(¢ # j), we have that s; is indepen-
dently distributed with respect to $. As a consequence, the dis-
tribution p,|;, (u) can be written as the convolution of the dis-
tributions p, |J|]sj (u) and pg(u), or

pan, () = [ pu (= wps(r)dr. @)
R
A necessary condition for z to yield £(z) = 0 is that

papi, (u) = 0,Yu € B. However, if 3 & with nonzero Lebesgue
measure for which the support set S of p; has a measure |S| > ¢
and for which p, 1, (u) > 0,Yu : |u] € [C,C + |¢]], then, by
2D, 3u: |u < c, px“] (u) > 0. As a consequence, our initial
supposition was wrong, and we must have g; =0,Vi # j,ie.,
L(z) =0=x=)\js,. ]

An analogous reasoning can be used to prove that Pafi, (u) =
0,Yu € B implies © = As;. ’

B. Proofoffﬁpxusj (u)y(u) =0 = Pali.., (u) =0,Yu €B

Proof: If [z pai(u)y(u)du = 0, with y(u) a positive func-
tion taking y(u) = 0 for u = 0 only. We must have

{le(u) 0,

p?‘\ﬂ(o) ak5u ,0

Vu e B\ {0}

where 6,0 = 1 is Dirac’s delta at the origin. Assuming sources
with continuous distributions, the second option is not possible
unless h = 0. This trivial case is avoided by the constraints
introduced later in the construction of the algorithm.

The assumption of continuous distributions can be relaxed if
C is chosen such that B and B both have a nonzero Lebesgue
measure (for discrete distributions, we have, respectively, #@ >
1land #B > 1). [ |

C. The Objective Function of (9) is a Contrast for the
Extraction of s;

To prove that U, is a contrast under the conditions C1)-C3)
from Section III-D, we need to show that it has the properties
P1°)-P3’) from Section II-B.
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Proof: The indeterminacy of the source scaling has been
taken care of by the denominator in (9), and thus P1’) holds.
Furthermore, we have

hfoyh  glodg X, 19| 2®s
hT®,h — gldsg >, |02

since our sources are uncorrelated, both conditionally and un-
conditionally. Splitting up the sum in the different contributions
gives us (up to a multiplicative positive constant)

19,5703 + ) |giP0 + ) 1gilPe = |gil*eP
i#j i#j i#j
which can be rewritten as
O+ Y Lol (@3 - 03) <03
i
—®) < 0,Vi # 5.

where the inequality follows from (@3’ ;

This proves the domination.
We also have

oY = &> |gl* (D

i>2

—®3) =0

Now, since (®3/ —®37) < 0,Vi # j, we have the above equality
if and only if |g;|?> = 0,¥i > 2. Thus

g’og _ 0

gfofg a D,

This proves the discrimination and thus, together with the dom-
ination, P2’) and P3’) are fulfilled.

Since any objective function fulfilling P1’)-P3’) is a contrast
function for source extraction, our function ¥(z) in (9) is a con-
trast under the conditions C1)-C3). |

Note that this could be extended to the case where
the covariance E; {sisx} # O0,Vi,k # ji # k., as
long as E;{s;s: } = 0,Yi # j. For the proof, define

= [s1,82...8j-1,8j+1...5n]7. Now take the eigenvalue
decomposmon of 2 as VI®Z'V = A, where A is a diagonal
matrix with the eigenvalues \; on its diagonal and extend V to

C L0,

Vol V)
where 0,,_1 is a vector of zeros in R”~!. The proof then con-
tinues similarly as above but replacing <I>§j by A and g by
Vg. As a consequence, condition C3) in Section III-D becomes
(Dij > max \;.

D. Algebraic Solution for the 2 x 2 Case

Suppose that y has uncorrelated, unit-variance, and
zero-mean entries, without loss of generalization, since y
can always be rendered so through whitening. Since ®, = I,
the eigenvector that would separate our source as z = ely is
the dominant eigenvector of the covariance matrix ®3', which
has a general symmetric form

o3 = [‘b’ i] (22)
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The above matrix has eigenvalues

(23)
Z5\/1 + =

o=z | PV 0 (24)
VT e

with ¢ = (a — ¢)/2.

E. Calculation of ISR

We induce the estimation bound in case the sources are not
perfectly conditionally uncorrelated. Since we only consider
unitary transformations A = Q (for our y is or has been ren-
dered spatially white), we know that the eigenvalues of ®3° and
®y’ are equal. Moreover, the ith eigenvector q; of ®y’ equals
Qe;, where e; is the ith eigenvector of ®5’ (see also the equiv-
ariance property [9]). As a consequence, we only need to con-
sider the simpler case where Q = I,,,, without loss of generality.

Limiting s to belong to R?, the matrix ®3' takes the form

Es, {s152}
1256

51
<I>Sl

o3 =
s Es {5152}

(25)

From (24), one can explicitly calculate the separation filter h
associated to ®3* by the above (24). As such, we obtain for the
ISR (l92[*/191[* = |h2l?/|h1[?)

2 2 _ £2
Isp = V&t o — 8%
VIR + 8

with 6 = (@1 — ®3!)/2and p = E,, {5152}

(26)

F. Proof of the Inequality E, {s3} > E{s?}

Proof: To prove the inequality, we prove the more general
form E, {v(s;)} > E{v(s;)} for any positive valued function
~v. We have

E., (165} = [ poyn, (w)3(w)du

T (i
Ja ps, (w)du
ey = Jgpa, (u)r(a)du
Ja ps, (u)du

> [ pe (i =Efr(s,)}

These results hold if we impose the condition of

(5), since we have from Holders inequality that
Jgps,(u)du [gy(u)du > [5ps, (u)y(uw)du and thus
Jgps,(w)du — 0 = [gps,(u)y(u)du — 0 for all
positive valued functions -. As a consequence, we have
Es, {7(s;)} > E{v(s;)} with equality if and only if
Jg ps; (u)du = 1,ie., C < min|s;|. Since u? is a nonnegative
valued function, C' > 0 and we generally have min |s;[k]| = 0

(continuous distributions defined on the whole real line), we
have E, {s?} > E{s5}. [ ]
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