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ABSTRACT

The problem of blind source separation (BSS) can be solved through the statistical
tool of independent component analysis (ICA). The present contribution reviews recent
solutions to ICA contrasts based on the minimization of marginal entropy (ME). In the
two-signal case, a novel estimator, so-called sinusoidal ICA (SICA), is obtained by approx-
imating Comon’s 4th-order cumulant based contrast function. Interestingly, SICA as well
as analogous methods scattered across the literature are particular instances of a class of
closed-form solutions gathered under the name of general weighted estimator (GWE). In
the n-dimensional case, n > 2, these elementary estimators are applied over the input com-
ponents in pairs, as in the Jacobi optimization (JO) technique for matrix diagonalization.
The reduction of the computational burden of JO for ICA is addressed. Adaptive (on-line)
versions are briefly considered as well. A simple simulation experiment illustrates the good
performance of the approximate ME approach.

KEYWORDS: array signal processing, blind source separation, higher order statistics,
independent component analysis, unsupervised learning.

1. INTRODUCTION

Blind separation of sources (BSS) consists of extracting a non-observable set of signals,
the so-called sources, from another set of observable signals generated as mixtures of the
sources. One of the approaches to achieve separation is to project the observations into a
basis where the components are statistically independent. This is the aim of independent
component analysis (ICA) [1]. In its simplest (noiseless) form, the problem accepts the
following matrix formulation. The entries of the mizture vector x(t) = [z1(t), ..., zm(t)]"
observed at the sensor output at time instant ¢, where (-)” represents the transpose operator,
are instantaneous linear combinations of a set of zero-mean unknown source signals s(t) =
[Sl(t)7 EES) Sn(t)]Ta m 2 n:

x(t) = As(t). (1)

The (m x n) matrix A , called transfer or mizing matriz, is also unknown. In general, if
s(t) is a stationary ergodic random sequence, the mixing matrix is full column rank, the
sources are statistically independent and at most one of them is Gaussian, it is possible
to compute a separation matrix which extracts the source components up to, perhaps,
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irrelevant permutation and scaling. Since the source amplitudes are immaterial, one may
assume, without loss of generality, that the source variance is unity: E[ssl] = I, where T
denotes the identity matrix and symbol (-)¥ represents the conjugate-transpose operator.

The separation is typically carried out in two steps. First, whitening or standardization
(often carried out via principal component analysis, PCA) consists of projecting the ob-
served vector on the signal subspace, second-order decorrelation and power normalization,
yielding signals {z;(#)}"_, such that E[zz/] = I. As a result, the source and whitened
vectors are necessarily related through a unitary transformation:

z(t) = Vs(b). (2)

Thus, the problem reduces to the computation of matrix V. In the second step, ICA
aims to compute matrix V that makes the entries of the output vector y(t) = Vz(t)
as independent as possible. This process is able to retrieve the sources up to scalings
and permutations, i.e., accomplishes the source separation [1]. Although many approaches
have been proposed to date [2], this paper focuses on those minimizing contrast (or cost)
functions based on the output differential entropy. We first deal with the two-dimensional
case to later develop solutions for n > 2 dimensions based on Jacobi optimization (JO).
The convenience of initializing the Jacobi iterations by computing the relevant statistics
beforehand will be discussed. Finally, adaptive versions will also be outlined.

2. THE 2-DIMENSIONAL ME CONTRASTS

The minimization of statistical dependence of the projected observation results in, among
other criteria, the minimization of the mutual information (MI) between outputs or, equiva-
lently, of their marginal entropies (ME). For zero-mean unit-variance decorrelated mixtures,
these approaches reduce to the computation of the unitary transformation that either can-
cels the cross-cumulants or maximizes the marginal cumulants [3, 4]. Under orthonormal
transformations both approaches are tantamount. We will focus on ME minimization in
the sequel [1, 4].

A contrast function ¢(y) is a functional in the output components whose minimization
yields the ICA solution [1]. If s has independent components then ¢(s) < ¢(As), VA
non-singular, with equality iff A can be decomposed as the product of a permutation and
an invertible diagonal matrix. Besides, ¢(y) is invariant to permutation and scaling of the
components in y.

If the maximum likelihood (ML) contrast [5] is minimized under the whitening constraint
for all possible distributions, we obtain the ME contrast [6, 7]

() = 3 Hi ¥

where H[-| denotes the differential entropy. Using the Edgeworth expansion [8] to approxi-
mate ¢MF by a function of 4th-order cumulants, we obtain [1, 7]

2(y) = - (Chy)? (4)

)

where C%.. = E[y}] — 3 represents the 4th-order marginal cumulant (kurtosis) of y;. This
contrast is discriminant over the set of random vectors y with at most one non-kurtic
component [1]. Functional ¢3¥ is an orthogonal contrast [4], for it assumes (2nd-order)
decorrelated outputs and is thus to be optimized under the unitary constraint.

In the real-valued two-dimensional case, matrix V' = V() performs a planar rotation

of angle 0. The source pair s(t) = [s,(t), s4(t)]T can be expressed in polar coordinates as



(r(t), a(t)). Accordingly, the whitened sensor-output pair z(t) = [2,(t), z,(t)]” accepts the

polar representation (r(t), 3(t)), where, by virtue of eqn. (2), 5(t) = a(t) + 6. Therefore,
the BSS/ICA problem is reduced to the estimation of angular parameter 6.

In [1], the value of 6 which minimizes the ME criterion (4) is obtained among the
roots of a 4th-degree polynomial. However, certain simplifications are possible, leading
to approximate closed-form solutions which avoid polynomial rooting. For instance, the
ML solution of [9] is valid for sources with the same long-tailed distribution, the extended
ML (EML) estimator of [10] can be used when the source kurtosis sum is not null, the
alternative EML (AEML) estimator of [11] when the sources kurtoses are different, whereas
the approximate ML (AML) approach of [12] combines the latter two expressions in a more
robust estimator that may be used for any source distribution. Other methods of this type
can be found in [13, 14, 15].

Interestingly, all these approximate closed-form estimators can be gathered under a
general expression, the so called general weighted estimator (GWE) [16, 15], given by:

. 1
Ocwr (wy, we) = Zl(wngfv + (1 —we)éy), 0<we <1, wy={£lv} (5)

where
& =E[r' 1) 0] & =B [ (t)*D] 4 =E[r'(1)] -8 (6)

are the centroids associated to the whitened outputs. In the above equations, Z(-) supplies
the principal value of its argument, and j = v/—1. The sample estimates of (6) are used in
practice.

As realized in [16, 15], approximations to the ME contrast minimization solution are
found as particular cases of the GWE for different values of wg and w,. In effect: éEML =
Oawe (7, 1) [10]; 0apmL = Oawi(:; 0) [11]; Oamr = Oawr (v, 1/3) [12]; Omassroc = Oawe (7, 1/2)
[13]; or the estimators in [17, 7, 18, 9] as Oqwr(£1,1). Also, it is shown in [14, 15] that a
sinusoidal approximation to ¢p5i¥(6) in (4) yields the angle estimator

Osica = Oawr(v, 3/7) (7)

which is consequently referred to as sinusoidal ICA (SICA).

The optimum values of (w,, wg) can be computed from certain source statistics [16],
if these are available. Such weights are optimum in that they characterize the minimum
(asymptotic) variance estimator of the GWE class. Although we have focused on real-valued
mixtures, an expression for the weighted estimator also exists for complex mixtures [16].

Other closed-form formulae, comprising cumulant orders other than four, are studied in
[19, 20].

3. N-DIMENSIONAL CASE

The GWE estimator in eqn. (5) was designed as an analytic solution to the two-dimensional
ICA problem. Based on the Jacobi optimization (JO) technique for matrix diagonalization
[21], Comon extended the solution of contrast (4) to the n-dimensional scenario, for an
arbitrary source number n > 2. JO operates pairwise, minimizing the two-dimensional
contrast for every whitened-signal pair in turn over several sweeps until convergence. For
each pair of outputs, the unitary matrix is properly updated with the angle that minimizes
the contrast. The algorithm can be summarized as follows [1, 22]:

Algorithm 1 n-dimensional GWE using non-initialized Jacobi optimization: JO-GWE.

1. Whitening. Compute the whitened outputs z. Initialize the separator output as y = z
and set sweep number ¢ = 1.



2. Sweep c. For all g =n(n—1)/2 signal pairs (1 <p < q<n), do

(a) Set [z, zg]" = [yp, yq]T and compute the Givens angle 0,;, = Ocwr as in eqn. (5).
(b) If |Opg| > Omin, update the solution with angle 6,,.

3. End? If the number of sweeps c satisfies ¢ = 1+ y/n or no angle |0pq| > Omin, stop.
Otherwise sweep again over Step 2 with ¢ = c+ 1.

In [7] the algorithms only stops when the set of g Givens rotations have all been updated by
a value under a threshold 6,,;,. No limit is set on the number of sweeps ¢. The value Oy is
selected so that rotations by a smaller angle are not considered as statistically significant.
Typically, Omin = 1072/v/N where N is the number of samples. In [1], the algorithm stops
after going through Step 2 more than 1+ /n times. We use this threshold in our approach
and we have set iy, = 7/360 (i.e., 0.5°) to avoid useless computations.

In Steps 2.a-2.b we may estimate ), and update the solution in two fashions [1, 22]:

¢ In the standard JO approach [1], at every Step 2.a the statistics (6) are computed
from the current values of the output samples. Angle 6, is estimated and used to
update (rotate) the outputs in Step 2.b until convergence.

¢ In the initialized JO (IJO) approach [22], the pertinent statistics are computed from
the whitened outputs before entering the Jacobi-like iterations. The statistics are then
‘rotated’ according to the current estimate of V' in order to calculate the centroids
(6) at every Step 2.a of the algorithm. Matrix V' is then updated with the estimated
0pq- The output signals are extracted from the final value of V' after convergence.

Reference [22] discusses which of these two methods should be used. As both approaches
provide the same solution accuracy, the focus is on the computational burden. In the JO, the
statistics are recalculated from the available samples at every step. Thus, the computational
complexity of this method is mainly determined by the sample size. In the IJO approach,
by contrast, the larger the number of sources, the larger the dimension of matrix V and
the larger the number of operations spent in the rotations of the statistics. Hence, 1JO’s
computations may soon be dominated by the number of sources. As a result, the approach
to be used depends on a suitable compromise between the sample size and the number of
sources. This decision leads to the Optimized JO (OJO) method [22].

Similarly, adaptive versions may also be designed according to two criteria. Both ap-
proaches are based on the adaptive learning of the statistics as follows:

¢ In the adaptive EML (ad-EML) method [23], the standard JO approach [1] is taken
by adaptively updating the statistics (6). This involves learning these three values
for every signal pair pg and every sweep c¢. Since the statistics at sweep ¢ depend
on their learning at previous sweeps, which, in turn, depends on the trajectories of
the separator output, the method may not converge properly for a large number of
sources.

¢ In the adaptive IJO (AIJO) approach [24], we just adaptively learn the statistics with
every new sample. In parallel, every N new samples we may compute the solution V'
by means of the JO. Since the learning of the moments and the computation of the
solution are decoupled, convergence is guaranteed if we succes in the adaptive learning
of the statistics, provided that the JO also converges.



4. EXPERIMENTAL RESULTS

The comparative performance of the GWE is illustrated in this section with a simple simu-
lation experiment. Estimator fsica in (7) is used as GWE [15], and is compared to JADE
[3, 25], the 4th-order based ME method by Comon [1], and the Fast-ICA [26, 27] algorithm.
The same whitening procedure was implemented in all methods. The Fast-ICA [27] was
executed with the parameters by default, including stabilization. We mix n = 6 zero-mean
unit-variance signals with different distributions: uniform, Laplacian (g = 0.1), Rayleigh
(B=1), exponential (1 = 1), Gaussian, and lognormal (¢ = 0.1). The mixing-matrix entries
are uniformly distributed random numbers in the range [—1, 1] and we assume the mixture
to be noiseless.

We used OJO to decide between JO and 1JO; under the conditions of this simulation, the
latter method had the lowest computational cost. Fig. 1 shows the performance variation
as a function of the sample size N. The interference-to-signal ratio (ISR) [28], averaged
over 1000 independent experiments, is used as an objective separation index. As expected,
SICA-OJO and Comon’s ME present a similar performance. Though close to OJQO’s, the
performance of JADE and Fast-ICA are slightly worse than that of the other two methods.

ISR (dB)
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Figure 1: Mean ISR for SICA-OJO (), Comon’s ME (o), JADE (¢) and Fast-ICA (V).

5. CONCLUSIONS

This paper has reviewed the approximate solutions to ICA contrasts relying on ME mini-
mization. These solutions consist of formulae which provide, in the two-dimensional case,
a direct estimate of the separation parameter by ‘plugging in’ certain statistics (centroids)
of the whitened sensor output, without polynomial rooting or costly iterative optimization.
The GWE provides a general expression for many of the 4th-order cumulant based approxi-
mations to the ME contrast encountered in the literature. In the n-dimensional case, n > 2,
a Jacobi-like iterative procedure may be employed, either in the standard form originally
proposed by Comon (JO) or suitably initialized (IJO), depending on their relative compu-
tational complexity. The performance of these approximate solutions are up to the mark of
more elaborate ICA techniques at a fraction of the computational cost.
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